Table 2.
Model | Version | Train accuracy | Test accuracy | Test precision | Test recall | Test F1 | Test AUC |
---|---|---|---|---|---|---|---|
DT | Baseline | 1.0 | 0.75 | 0.70 | 0.73 | 0.71 | 0.749 |
RF | Baseline | 1.0 | 0.81 | 0.85 | 0.67 | 0.75 | 0.865 |
ANN | Baseline | 0.75 | 0.76 | 0.71 | 0.74 | 0.72 | 0.832 |
SVM | Baseline | 0.67 | 0.66 | 0.69 | 0.37 | 0.48 | 0.735 |
Accuracy = (TP + TN)/(All cases); Precision = TP/(TP + FP); Recall = TP/(TP + FN); F1 = 2*((precision*recall)/(precision + recall)).
Abbreviations: ANN = artificial neural networks; DT = decision trees; FN = false negative; FP = false positive; RF = random forest; SVM = support vector machines; TN = true negative; TP = true positive.