Skip to main content
. 2023 Nov 29;31(3):552–562. doi: 10.1093/jamia/ocad232

Table 2.

Model performance for the 4 model types (DT, RF, ANN, and SVM), at baseline.

Model Version Train accuracy Test accuracy Test precision Test recall Test F1 Test AUC
DT Baseline 1.0 0.75 0.70 0.73 0.71 0.749
RF Baseline 1.0 0.81 0.85 0.67 0.75 0.865
ANN Baseline 0.75 0.76 0.71 0.74 0.72 0.832
SVM Baseline 0.67 0.66 0.69 0.37 0.48 0.735

Accuracy = (TP + TN)/(All cases); Precision = TP/(TP + FP); Recall = TP/(TP + FN); F1 = 2*((precision*recall)/(precision + recall)).

Abbreviations: ANN = artificial neural networks; DT = decision trees; FN = false negative; FP = false positive; RF = random forest; SVM = support vector machines; TN = true negative; TP = true positive.