Skip to main content
. 2023 Nov 29;31(3):552–562. doi: 10.1093/jamia/ocad232

Table 3.

Model performance for the 4 model types (DT, RF, ANN, and SVM), with the 2 sampling versions (undersampled, oversampled).

Model Version Train accuracy Test accuracy Test precision Test recall Test F1 Test AUC
DT Undersampled 1.0 0.74 0.68 0.75 0.71 0.837
DT Oversampled 1.0 0.73 0.66 0.71 0.69 0.760
RF Undersampled 1.0 0.80 0.78 0.74 0.76 0.868
RF Optimized 1.0 0.81 0.80 0.74 0.76 0.863
RF Oversampled 1.0 0.81 0.82 0.70 0.75 0.866
ANN Undersampled 0.77 0.76 0.71 0.73 0.72 0.830
ANN Oversampled 0.66 0.61 0.52 0.96 0.68 0.842
SVM Undersampled 0.70 0.68 0.59 0.84 0.69 0.724
SVM Oversampled 0.71 0.69 0.60 0.83 0.69 0.754

Final optimized RF model outcomes are provided.

Abbreviations: ANN: artificial neural networks; DT: decision trees; RF: random forest; SVM: support vector machines.