Table 3.
Model | Version | Train accuracy | Test accuracy | Test precision | Test recall | Test F1 | Test AUC |
---|---|---|---|---|---|---|---|
DT | Undersampled | 1.0 | 0.74 | 0.68 | 0.75 | 0.71 | 0.837 |
DT | Oversampled | 1.0 | 0.73 | 0.66 | 0.71 | 0.69 | 0.760 |
RF | Undersampled | 1.0 | 0.80 | 0.78 | 0.74 | 0.76 | 0.868 |
RF | Optimized | 1.0 | 0.81 | 0.80 | 0.74 | 0.76 | 0.863 |
RF | Oversampled | 1.0 | 0.81 | 0.82 | 0.70 | 0.75 | 0.866 |
ANN | Undersampled | 0.77 | 0.76 | 0.71 | 0.73 | 0.72 | 0.830 |
ANN | Oversampled | 0.66 | 0.61 | 0.52 | 0.96 | 0.68 | 0.842 |
SVM | Undersampled | 0.70 | 0.68 | 0.59 | 0.84 | 0.69 | 0.724 |
SVM | Oversampled | 0.71 | 0.69 | 0.60 | 0.83 | 0.69 | 0.754 |
Final optimized RF model outcomes are provided.
Abbreviations: ANN: artificial neural networks; DT: decision trees; RF: random forest; SVM: support vector machines.