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Abstract 
Objective: The HIV epidemic remains a significant public health issue in the United States. HIV risk prediction models could be beneficial for 
reducing HIV transmission by helping clinicians identify patients at high risk for infection and refer them for testing. This would facilitate initiation 
on treatment for those unaware of their status and pre-exposure prophylaxis for those uninfected but at high risk. Existing HIV risk prediction 
algorithms rely on manual construction of features and are limited in their application across diverse electronic health record systems. 
Furthermore, the accuracy of these models in predicting HIV in females has thus far been limited.
Materials and methods: We devised a pipeline for automatic construction of prediction models based on automatic feature engineering 
to predict HIV risk and tested our pipeline on a local electronic health records system and a national claims data. We also compared the 
performance of general models to female-specific models.
Results: Our models obtain similarly good performance on both health record datasets despite difference in represented populations and 
data availability (AUC¼0.87). Furthermore, our general models obtain good performance on females but are also improved by constructing 
female-specific models (AUC between 0.81 and 0.86 across datasets).
Discussion and conclusions: We demonstrated that flexible construction of prediction models performs well on HIV risk prediction across 
diverse health records systems and perform as well in predicting HIV risk in females, making deployment of such models into existing health 
care systems tangible.
Key words: HIV; risk prediction; electronic health records; HIV prevention; predictive modeling. 

Background and significance
Despite major improvements in HIV diagnosis and treatment 
over recent decades, the HIV epidemic is a continuing prob
lem in the United States. The Centers for Disease Control and 
Prevention (CDC) estimate there were approximately 1.2 mil
lion people with HIV (PWH) living in the United States in 
2019.1 This includes an estimated 13% who are undiagnosed 
and remain unaware of their infection. Testing and diagnosis 
of these individuals is of paramount importance for reaching 
the target goal of ending the HIV epidemic in the United 
States by 2030,2 as these individuals account for 40% of new 
HIV infections.

Another important tool for reaching these public health 
goals involves the use of pre-exposure prophylaxis (PrEP) for 
persons at high risk of HIV infection, introduced in 2012 for 
adults and 2018 for patients �18 years old.3,4 However, 
despite the availability and effectiveness of PrEP, uptake has 
been slow with only 23% of people eligible for the treatment 
having a current prescription in 2019.5 Several barriers to 
increasing PrEP use have been identified.6–8 Chief among 
these is providers not regularly screening for indications for 

PrEP because a very small proportion (<1%) of people in the 
United States are estimated to need this intervention.

There is a clear need for tools to help providers identify 
individuals at high risk for HIV infection to facilitate initia
tion of conversations about sexual history, HIV testing, and 
PrEP. Machine learning-based risk prediction models derived 
from electronic health record (EHR) data are an example of 
such tools that have been explored in recent years for HIV 
risk prediction.9,10 Krakower et al,11 Marcus et al,12 and 
Ahlstr€om et al13 each developed HIV risk prediction models 
using EHR data from a multidisciplinary outpatient practice 
in Boston, MA, Kaiser Permanente Northern California sys
tem, and a national medical record data in Denmark, 
respectively.

While these risk models performed well, they have 2 major 
limitations. First, these models were all developed using man
ually selected and engineered features relying on clinical 
expertise such as “number of positive tests for gonorrhea or 
chlamydia in the previous 2 years.” Engineering such features 
is time-consuming and may not generalize well across EHR 
systems. The second major limitation of previously published 
HIV risk models is while they perform well in predominantly 
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male populations, they perform very poorly when identifying 
females at risk of HIV infection. The model developed by 
Marcus et al12 flagged 46% of males with incident HIV, 
however, it flagged none of the females, while the other stud
ies did not evaluate their models on females at all. While the 
rate of new HIV infections has been declining in males over 
the last 5 years, the rate in females has remained stable, dem
onstrating a need for better prevention implementation strat
egies in this population.1 Furthermore, only 10% of females 
with an indication for PrEP were prescribed the medication 
in 2019.14 A risk model that can reliably identify females at 
high risk of HIV infection as well as males would be an 
invaluable tool for clinicians to improve the uptake of PrEP 
in this population.

Objective
In order to address the challenge of HIV prevention, we iden
tified 2 critical tasks that can significantly reduce new HIV 
cases: (1) improving identification of undiagnosed PWH to 
connect them to effective treatments, protecting both their 
health and reducing the risk of transmission; and (2) identify
ing high risk individuals who can benefit from PrEP. We 
address these 2 challenges, while undertaking the 2 aforemen
tioned limitations of previous models in this study. We devel
oped a pipeline for creating risk models for HIV infection 
based on automatic feature engineering and demonstrated 
that this pipeline can be automatically applied across differ
ent types of EHR and claims data. We tested our method on 
national claims data and local EHR data and show that 
female-specific risk models improve on the performance of 
the general models in this population.

Methods
Data
Two clinical databases were used for the development and 
evaluation of the models. Optum’s de-identified Clinfor
matics Data Mart Database (CDM) is a national de-identified 
database derived from administrative health claims from 
members of large commercial and Medicare Advantage 
health plans. In addition to administrative data, the database 
contains data on prescribed medications and laboratory tests, 
including test results. The database has records for approxi
mately 68 million patients, from all 50 US states and spans 
over 13 years from January 1, 2007, through June 30, 2020. 
The UT Physicians (UTP) clinical data warehouse stores EHR 
data from the UTPs outpatient network based in Houston, 
TX. This database contains records for approximately 4 mil
lion patients from 2005 through 2021. The use of these 

databases in the study was approved by the UTHealth Com
mittee for the Protection of Human Subjects.

Cohort selection and preparation
Development of HIV risk prediction models depends on accu
rate identification of PWH in the data. Identifying new HIV 
diagnoses (ie, identifying the first HIV diagnosis of a patient) 
in the EHR is difficult and has been based on specific 
sequence of HIV diagnostic tests, codes, and measurement of 
HIV-1 plasma RNA levels in previous studies.15 In our study, 
we instead identified all PWH in different stages based on our 
previously published phenotyping algorithm.16 People 
with HIV were identified in both CDM and UTP databases 
(Figure 1) using this algorithm. Briefly, patients with a posi
tive HIV confirmatory test, detectable HIV viral load greater 
than 1000 copies/mL, or prescription for HIV antiretroviral 
medications specifically for treatment rather than prevention 
of HIV were considered to have a diagnosis of HIV. Inclusion 
criteria involved patients at least 13 years of age based on the 
CDC recommended minimal age for universal HIV screen
ing.17 Patients who are not PWH were considered the control 
pool for this study. An index date was then assigned to PWH 
as the date of the earliest evidence for HIV infection in the 
data, that is, the minimum date of first ICD code for HIV, 
first positive HIV screening test, first positive HIV confirma
tory test, first detectable viral load, or first antiretroviral pre
scription date. For the controls, the index date was the date 
of their last encounter in the database. We excluded patients 
if their length of clinical history prior to the index date was 
less than 1 year. By requiring at least 1 year of history prior 
to the first evidence of HIV to be included in the study, we 
reduce the risk of including prior HIV diagnoses into our 
analysis data as controls.

Feature extraction and data preparation
We extracted 4 types of features from the data, including 
demographics (race, sex, age at index date, marital status 
[available in UTP only]), and diagnoses (ICD 9-CM and ICD 
10 diagnosis codes), prescribed medications, and laboratory 
data, all 3 types from a 2-year window prior to index date. 
For ICD codes, we used only top-level codes, that is, the first 
3 characters describing the disease category. Medications 
were coded in generic names and represented as dichotomous 
features (ie, has the patient used the medication within the 
observation period or not). We disregarded the doses or 
packaging information. The 2 datasets vary in the included 
medications. The CDM contains only medications that had 
both prescription and dispensing dates while UTP included 
prescription records as well as recorded medications (medica
tions a patient reports taking but were not prescribed in the 
system). We constructed features from laboratory tests using 

Figure 1. Schematic of cohort derivation and modeling process. Abbreviations: CDM: Clinformatics Data Mart Database; EHR: electronic health record; 
PWH: people with HIV; UTP: UT Physicians.
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both the numeric value of the laboratory result and a dichot
omous feature indicating the presence of the laboratory test. 
To handle the longitudinal values of lab tests, the numeric 
results per patient were aggregated using the average, mini
mum and maximum values across the 2-year window prior 
to index date followed by scaling each feature using z-score. 
Missing numeric data were imputed using k-nearest neighbor 
(KNN, k¼ 3) imputation. We removed sparse features that 
were present in less than 5% of patients in both the PWH 
and the control group. Categorical features were represented 
using one-hot encoding, where we create a new column 
(dummy variable) for each unique value in the category and 
fill each dummy variable with ones if the sample has this cate
gory and zero otherwise.

Model optimization and training
Due to the large numeric imbalance between PWH and con
trol populations, we selected 10 random subsamples of con
trol patients, each including approximately the same number 
of controls as there were PWH. We tested 6 classifiers: logis
tic regression, Least Absolute Shrinkage and Selection Opera
tor (LASSO) and Ridge penalized logistic regression, random 
forest,18 and 2 types of gradient boosting decision tree algo
rithms, XGBoost19 and CatBoost.20 Since the boosted tree 
models can handle missing data, these algorithms were also 
tested on data without imputation. Model hyperparameters 
were tuned in a nested 5-fold cross-validation via Bayesian 
optimization21 using the BayesianSearchCV class, part of the 
Python scikit-optimize library.22 All models were developed 
using Python version 3.9 and scikit-learn version 1.1.1.

Evaluation
Evaluation metrics included recall (sensitivity), precision 
(positive predictive value; PPV), F1, and AUC, averaged 
across the 5-folds for each subsample and further averaged 
across 10 subsamples of control patients to obtain the final 
value of these metrics for each model. We compared the per
formance of the 6 different classifiers on the full datasets to 
determine which classifier performed the best at this task. We 
then compared the performance of the top model trained 
only on females to the performance of the top model trained 
on the full dataset and tested in female patients only. We fur
ther evaluated the contribution of the 20 top-performing fea
tures using Shapley Additive Explanations (SHAP values23).

We ensured the low risk of bias and clinical utility by pass
ing the checklists of the Prediction model Risk Of Bias 
ASsessment Tool (PROBAST) and the CHecklist for critical 
Appraisal and data extraction for systematic Reviews of pre
diction Modelling Studies (CHARMS)24 using the template 
proposed in Fernandez-Felix et al.25

Results
Demographics of PWH and controls in UTP and 
CDM datasets
The UTP dataset included 1629 PWH and 19 468 randomly 
sampled control patients meeting the criteria for inclusion in 
the analyses with the year of index date ranging between 
2005 and 2021. For training the models, we created 10 sub
samples from the controls and ran the models 10 times 
(Methods). Comparisons of the demographic characteristics 

between PWH and controls in the dataset are summarized in  
Table 1. Compared to controls, PWH were younger (43.3 ± 
15.6 and 48.7 ± 20.7 for PWH and controls, respectively), 
more often male (59% for PWH vs 39% for controls), more 
often single (43% PWH vs 24% controls were single while 
15% PWH were married vs 30% of controls), and more 
often Black (48% for PWH vs 19% for controls), following 
trends seen among PWH in local and national surveillance 
data.5,26

The CDM dataset included 16 049 PWH and 200 000 ran
domly sampled controls patients who met the criteria for 
inclusion in the analyses. The year of index date for these 
patients ranged from 2008 to 2020 (Table 1). Similar to the 
UTP data, PWH were younger and more often male in the 
CDM data compared to the control patients (77% vs 45% 
male, respectively). While the overall population in CDM 
includes more White patients than the population in the UTP 
dataset, PWH in the CDM dataset were more likely to be 
Black than controls.

Model training and evaluation in UTP and CDM 
datasets
We evaluated 6 machine learning algorithms on the UTP and 
CDM datasets (Methods, Table 2). XGBoost models per
formed the best on both UTP and CDM data (pre
cision¼ 0.76 and 0.75, recall¼ 0.73 and 0.75, F1¼0.74 and 
0.75, and AUC¼ 0.85 and 0.86 on UTP and CDM data, 
respectively, Table 2). XGBoost models were also trained 
with the unimputed version of the data (Methods), displaying 
slightly improved performance, with a precision of 0.77 and 
0.76, recall of 0.75 and 0.76, and the same F1 of 0.76 and 
AUC of 0.87 in both UTP and CDM data, respectively 
(Table 2). We thus chose the XGBoost model trained on 
unimputed data as the best performing model to use for fur
ther analyses.

Owing to the difference in the way index date was defined 
for cases and controls, controls tended to have a later index 
date. This created a potential bias in ICD-9 versus ICD-10 
usage, since ICD-10 was officially implemented in October 
2015.27 To verify that our models are not affected by this 
potential bias, we selected a subset of patients (cases and con
trols) whose index date occurred from 2017 on, allowing 
for the 2-year window to include the time after the transition 
to ICD-10 codes. We observed similar performance 
on this cohort using our selected algorithm of XGBoost 
(Table S1).

Evaluation of best performing model in females
We evaluated the top performing model in Table 3. The 
model trained on the full dataset had a slightly higher AUC 
than the model trained specifically on female patients in both 
datasets (0.86 vs 0.85 for UTP and 0.81 vs 0.80 for CDM). 
However, we found that the model trained specifically on 
female patients had an improved precision and recall. While 
in UTP data the improvement was minor (precision of 0.75 
vs 0.74 in the fully trained model and recall of 0.66 vs 0.64), 
the improvement was more substantial in the CDM data (pre
cision: 0.70 vs 0.67 in the fully trained model; and recall: 
0.72 vs 0.36). Similar to the full dataset, we also tested our 
method only patients with index date after 2017, obtaining 
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comparable results in UTP and better performance in the 
CDM (Table S1).

Top features of best performing models in overall 
and female-specific data
The top 20 features contributing to the UTP model can be 
seen in Figure 2A and a list the features their associated codes 
and data type (diagnosis, medication, laboratory test) can be 
found in Table S1. Overall, the top features consisted of dem
ographic variables, features suggesting healthcare utilization 
(eg, ICD codes for general medical exam), and personal or 
family history of disease or exposure to health hazards (eg, 
smoking). Shapley Additive Explanation values associated 
with these features (x-axis, Figure 3) were aligned with the 
demographic traits described in the previous section, that is, 
that patients predicted to have HIV were more often young, 
Black, male, and single. They also tended to have ICD codes 
for personal history of hazards to health and certain other 

diseases and lacked ICD codes suggesting regular interaction 
with the healthcare system.

Similar to the overall model, the top 20 features for the 
female-specific XGBoost model in the UTP data demon
strated similar trends in the types of features contributing the 
most information to the model (Figure 2B).

In the CDM data, the top features in the overall XGBoost 
model included demographic features (PWH are more often 
young, male, and Black or Hispanic) and ICD codes reflecting 
regular healthcare utilization (PWH had fewer), similar to the 
UTP data (Figure 3A). A list of the top feature with their 
associated codes and data type can be seen in Table S2. How
ever, the top features in the CDM data also included labora
tory tests screening for sexually transmitted infections (STIs; 
RPR Screen, Chlamydia RNA) as well as medications com
monly used to treat STIs and other infections, such as valacy
clovir, azithromycin, fluconazole, and doxycycline. Finally, 
the top features seen in the female-specific XGBoost model in 
the CDM data were similar to the model trained on all the 
data, albeit different ranking (Figure 3B).

Table 1. Comparison of demographic characteristics between PWH and control patients for UTP (N¼ 21 097) and CDM (N¼216 049) datasets.

UTP CDM

Control PWH P Control PWH P
n 19 468 1629 200 000 16 049

Sex (%)
M 7616 (39.1) 966 (59.3) <.001 89 148 (44.6) 12 375 (77.1) <.001
F 11 872 (61.0) 663 (40.7) <.001 110 841 (55.4) 3673 (22.9) <.001

Race/Ethnicity (%)
White 8922 (45.8) 461 (28.3) <.001 126 807 (63.4) 8424 (52.5) <.001
Black 3631 (18.7) 776 (47.6) <.001 18 759 (9.4) 3568 (22.2) <.001
Hispanic 1310 (6.7) 111 (6.8) .936 20 885 (10.4) 2614 (16.3) <.001
Other 4593 (23.6) 258 (15.8) <.001 n/a n/a
Unknown 1056 (5.4) 29 (1.8) <.001 25 137 (12.6) 838 (5.2) <.001

Age at index date (mean (SD)) 48.70 (20.74) 43.31 (15.58) <.001 51.75 (19.28) 38.50 (13.12) <.001
Age at index date (%) <.001 <.001

13-24 3046 (15.6) 152 (9.6) 17 389 (8.7) 2211 (13.8)
25-34 2774 (14.2) 285 (18.0) 28 046 (14.0) 4832 (30.2)
35-44 2782 (14.3) 332 (21.0) 30 915 (15.5) 3910 (24.4)
45-54 2722 (14.0) 396 (25.1) 32 218 (16.1) 3051 (19.0)
55þ 8144 (41.8) 414 (26.2) 91 432 (45.7) 2016 (12.6)

Marital status (%)
Married 5824 (29.9) 240 (14.7) <.001 n/a n/a
Single 4709 (24.2) 707 (43.4) <.001 n/a n/a
Other 1325 (6.8) 120 (7.4) .34 n/a n/a
Unknown 7610 (39.1) 562 (34.5) <.001 n/a n/a

Year of index date (%) <.001 <.001
2005 49 (0.3) 33 (2.0) n/a n/a
2006 118 (0.6) 102 (6.3) n/a n/a
2007 132 (0.7) 106 (6.5) n/a n/a
2008 138 (0.7) 73 (4.5) 7377 (3.7) 732 (4.6)
2009 150 (0.8) 108 (6.6) 9581 (4.8) 989 (6.2)
2010 215 (1.1) 76 (4.7) 9028 (4.5) 1042 (6.5)
2011 241 (1.2) 69 (4.2) 9248 (4.6) 995 (6.2)
2012 261 (1.3) 57 (3.5) 9143 (4.6) 1030 (6.4)
2013 399 (2.0) 91 (5.6) 12 702 (6.4) 1100 (6.9)
2014 658 (3.4) 80 (4.9) 106 48 (5.3) 1076 (6.7)
2015 603 (3.1) 107 (6.6) 10 130 (5.1) 1358 (8.5)
2016 867 (4.5) 89 (5.5) 11 807 (5.9) 1605 (10.0)
2017 1288 (6.6) 131 (8.0) 12 699 (6.3) 1571 (9.8)
2018 1953 (10.0) 144 (8.8) 15 165 (7.6) 1798 (11.2)
2019 2760 (14.2) 151 (9.3) 24 618 (12.3) 1956 (12.2)
2020 3890 (20.0) 138 (8.5) 57 854 (28.9) 797 (5.0)
2021 5746 (29.5) 74 (4.5) n/a n/a

Abbreviations: CDM: Clinformatics Data Mart Database; n/a, not applicable; PWH: people with HIV; UTP: UT Physicians
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Discussion
In this study, we developed a pipeline to generate risk predic
tion models for HIV infection. Our pipeline uses automatic 

feature engineering, overcoming previous reliance on man
ually defined features, and we show that they are generaliz
able across different types of data (EHR and claims data) and 

Table 2. Model evaluation results for UTP and CDM datasets (all metrics given as mean (SD)).

Indicator plus numeric variables for laboratory tests—UTP

Model Precision Recall F1 AUC

Logistic regression 0.73 (0.006) 0.74 (0.007) 0.73 (0.006) 0.83 (0.005)
LASSO (L1) 0.74 (0.006) 0.74 (0.007) 0.74 (0.006) 0.84 (0.004)
Ridge (L2) 0.75 (0.007) 0.74 (0.008) 0.74 (0.007) 0.84 (0.004)
Random Forest 0.73 (0.009) 0.68 (0.008) 0.70 (0.008) 0.81 (0.005)
XGBoost—imputed data 0.76 (0.009) 0.73 (0.012) 0.74 (0.009) 0.85 (0.008)
XGBoost—unimputed data 0.77 (0.009) 0.75 (0.008) 0.76 (0.008) 0.87 (0.005)
CATBoost—imputed data 0.75 (0.005) 0.71 (0.006) 0.73 (0.004) 0.84 (0.005)
CATBoost—unimputed data 0.77 (0.009) 0.75 (0.006) 0.76 (0.006) 0.86 (0.004)

Indicator plus numeric variables for laboratory tests—CDM

Model Precision Recall F1 AUC

Logistic regression 0.73 (0.001) 0.75 (0.002) 0.74 (0.002) 0.85 (0.001)
LASSO (L1) 0.73 (0.002) 0.75 (0.002) 0.74 (0.002) 0.85 (0.001)
Ridge (L2) 0.73 (0.002) 0.75 (0.002) 0.74 (0.002 0.85 (0.001)
Random Forest 0.75 (0.002) 0.72 (0.002) 0.73 (0.002) 0.84 (0.001)
XGBoost—imputed data 0.75 (0.002) 0.75 (0.002) 0.75 (0.002) 0.86 (0.001)
XGBoost—unimputed data 0.76 (0.003) 0.76 (0.002) 0.76 (0.002) 0.87 (0.001)
CATBoost—imputed data 0.75 (0.002) 0.75 (0.002) 0.75 (0.002) 0.86 (0.001)
CATBoost—unimputed data 0.76 (0.003) 0.75 (0.003) 0.76 (0.002) 0.87 (0.001)

Abbreviations: CDM: Clinformatics Data Mart Database; UTP: UT Physicians. Maximal AUC is in marked in bold.

Table 3. Model evaluation results for UTP and CDM in female-only datasets (all metrics given as mean (SD)).

XGBoost—UTP

Model Precision Recall F1 AUC

Overall model—full dataset 0.77 (0.009) 0.75 (0.008) 0.76 (0.008) 0.87 (0.005)
Overall model—female-only 0.74 (0.01) 0.64 (0.01) 0.69 (0.01) 0.86 (0.01)
Female-specific model 0.75 (0.014) 0.66 (0.012) 0.70 (0.012) 0.85 (0.009)

XGBoost—CDM

Model Precision Recall F1 AUC

Overall model—full dataset 0.76 (0.003) 0.76 (0.002) 0.76 (0.002) 0.87 (0.001)
Overall model—female-only 0.67 (0.006) 0.36 (0.005) 0.47 (0.006) 0.81 (1e−16)
Female-specific model 0.70 (0.004) 0.72 (0.008) 0.71 (0.003) 0.80 (0.003)

Abbreviations: CDM: Clinformatics Data Mart Database; UTP: UT Physicians.

Figure 2. Top 20 features in UTP data ranked by feature importance for overall model (A) and female-specific model (B). Abbreviations: SHAP: Shapley 
Additive Explanation; UTP: UT Physicians.
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perform well in different populations (population local to 
greater Houston, TX vs population sampled from all over the 
United States), with our top performing model achieving an 
AUC of 0.87 in both UTP and CDM datasets.

Models for HIV risk prediction developed using EHR data 
have been previously published. A LASSO penalized logistic 
regression model was developed using hand-selected features 
derived from EHR data in Boston, MA by Krakower et al.11

This model had a cross validated AUC of 0.86. In a compan
ion study, Marcus et al12 developed a similar LASSO penal
ized logistic regression model using EHR data from the 
Kaiser Permanente Northern California system which had a 
cross validated AUC of 0.84. Finally, Ahlstr€om et al13 devel
oped a ridge penalized logistic regression HIV risk prediction 
model using a national registry in Denmark which included 
demographic variables and information on past medical his
tory. This model achieved an AUC of 0.88 on a validation 
dataset. In comparison, our top performing model, an 
XGBoost model, performed similarly to these previously pub
lished models with a cross validated AUC of 0.87 in both the 
UTP and CDM datasets. The similar result with our 
approach in the absence of curating features is a major 
advantage of our approach. In addition, the 2 datasets we 
used to develop and evaluate our models are different in 
many respects. The CDM is nationally derived and UTP is 
from the Houston region. The CDM data are de-identified 
and derived from insurance claims data that have been aug
mented with medication and laboratory result data. In con
trast, the UTP data is a fully identified dataset derived from 
the EHR system of the UTPs outpatient network. While both 
datasets contain mainly privately insured patients, they have 
different demographic distributions, particularly among 
PWH (Table 1). That we were able to develop models that 
equally well identify patients with HIV in both datasets dem
onstrates the portability of our modeling process. Our results 
also suggest that building system-specific or population- 
specific models using features automatically generated from 
the data could improve the translatability of risk prediction 
models between health systems, as they often differ from one 
system to another, and features that might be present in data 
from one system may not be available in another.

Assessing HIV risk in females is challenging for several rea
sons. The primary risk factor for HIV infection in men is hav
ing sex with other men (MSM), which can be queried 
relatively easily in a medical history. By default, cis-gender 
women cannot be MSM. Therefore, determining a female’s 

HIV risk requires the clinician taking a detailed sexual history 
as part of a medical visit, however this is often not done.28,29

Even if a sexual history is taken, the female patient might not 
be aware of the HIV risk of her partners. In a data-driven 
approach to identifying high-risk females, the population of 
PWH is heavily skewed male (approximately 80%)1 meaning 
the number of training examples of females with HIV is small 
by comparison. Furthermore, the strongest risk factors for 
HIV (ie, MSM) are negative for females by default thus 
drowning out any potential risk they might have for HIV 
infection and making the model more likely to erroneously 
flag them as being low risk. We demonstrate that our models 
perform well in females (AUC 0.86 in UTP data and 0.81 in 
CDM data for model trained on the full cohort) but training 
it on a subset of female patients further improves the quality 
of HIV risk prediction in this population by substantially 
improving the precision and recall of the model. This is an 
important finding as previous models developed for predic
tion of HIV risk have either not been tested in females or 
have performed poorly in this population. For example, Mar
cus et al12 tested the ability of their model to identify PWH 
stratified by sex, and found that their model identified 46% 
of males with HIV but none of the females with HIV. We esti
mate that the primary reason for this bias in previous models 
is that their features were manually selected. Features that 
were pre-selected to address the overall performance might 
have been biased by the majority of PWH being males. Better 
targeting of HIV testing and PrEP to females is a major unmet 
clinical need.

Interestingly, in the UTP data, we saw similar features 
among the top 20 for both the model trained on the entire 
dataset and the model trained only on females, with some 
small shifts in the order of the top features between the 2 
models. Conversely, in the CDM female-specific model, fea
tures related to gynecological health had higher importance 
than in the general model. Additionally, medications such as 
metronidazole and fluconazole were included that are often 
used to treat gynecologic concerns like pelvic inflammatory 
disease, bacterial vaginosis, and candidiasis. Average globulin 
level was a top feature in the female-specific model in CDM 
but not in the general model, with higher average globulin 
level being associated with a prediction of HIV diagnosis. It 
has been shown that higher globulin levels are seen in PWH 
as compared to people who are uninfected,30 however, to our 
knowledge, no difference with respect to sex has been previ
ously reported. It is possible that the importance of this 

Figure 3. Top 20 features in CDM data ranked by feature importance for overall model (A) and female-specific model (B). Abbreviation: SHAP: Shapley 
Additive Explanation.
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feature is obscured in the full dataset due to the dominance of 
male-specific factors.

Finally, the bulk of the top features in the UTP data suggest 
regular contact with the healthcare system, such as ICD 9 or 
ICD 10 codes for “general medical exam”, “other conditions 
influencing health status”, “health supervision of infant or 
child”, and “encounter for immunization.” Generally, people 
flagged as having HIV by the models lacked these features, sug
gesting that individuals at the highest risk of HIV infection 
have less interaction or access to regular healthcare. This is 
borne out by data demonstrating that populations hardest hit 
by the HIV epidemic tend to be of lower socioeconomic status 
(SES), lack health insurance, and have poor access to care.31,32

One limitation of our study is that the population included 
in both datasets used in this study consists of primarily pri
vately insured patients. HIV infection disproportionately 
affects those who are generally of lower SES and thus are less 
likely to have private health insurance.32 Further tests will be 
needed to evaluate our models on populations without health 
insurance. Another limitation of our approach is that we 
train a new model for each dataset. While a unified model 
would be clinically desirable, such a model might not be prac
tical due to differences in data availability across different 
health record datasets. Finally, when training the algorithm 
on years where ICD-9 codes were used (prior to 2015), a 
careful design needs to be added to make sure there is not 
imbalance between cases and controls. In our datasets we 
observed minor changes when constraining to patients after 
2017, with small decrease in the UTP dataset, possibly result
ing from lower samples size and increase in performance in 
the CDM.

Our results demonstrate that a model tailored to the data 
could be done automatically and is expected to have better 
performance than a manually curated model that attempts to 
bridge differences in clinical data by focusing only on the 
common denominator between these datasets. We suggest 
that HIV prevention could significantly benefit from HIV risk 
stratification, triaging individuals based on a computed HIV 
risk. This HIV risk can facilitate targeted screening and, as 
appropriate, offering of PrEP. While the CDC recommends 
testing every individual aged 13 to 64 at least once, in prac
tice less than 40% of people in the United States have ever 
been tested for HIV, according to a CDC report.33 Further
more, a single test might not be sufficient to ensure detection 
in high-risk individuals. HIV risk stratification can support 
providers in identifying those patients for whom more fre
quent screening would be appropriate. We thus propose that 
running our algorithm on a health system regularly may have 
the potential to identify changes in the risk of a potential 
patient and promote clinicians to suggest HIV screening.

Conclusion
In conclusion, we developed and evaluated a modeling strat
egy for predicting risk of HIV infection based on automatic 
feature engineering. Our strategy performs well across 2 dif
ferent types of health data. Additionally, our models outper
form previously published models when identifying females 
at risk for HIV infection and perform similarly to models 
trained specifically on female patients. Although outside of 
the scope of this study, we aim to follow up on patients 
admitted to the UTP system to prospectively validate which 
percentage of high-risk patients has contracted HIV in the 

coming years. Implementation of these models in clinical set
tings has the potential to help providers identify patients at 
high risk of HIV infection and provide testing and prevention 
interventions to those who need them most.
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