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Abstract 
Objectives: Conversational agents (CAs) with emerging artificial intelligence present new opportunities to assist in health interventions but are 
difficult to evaluate, deterring their applications in the real world. We aimed to synthesize existing evidence and knowledge and outline an evalu-
ation framework for CA interventions.
Materials and Methods: We conducted a systematic scoping review to investigate designs and outcome measures used in the studies that 
evaluated CAs for health interventions. We then nested the results into an overarching digital health framework proposed by the World Health 
Organization (WHO).
Results: The review included 81 studies evaluating CAs in experimental (n¼59), observational (n¼15) trials, and other research designs 
(n¼7). Most studies (n¼72, 89%) were published in the past 5 years. The proposed CA-evaluation framework includes 4 evaluation stages: (1) 
feasibility/usability, (2) efficacy, (3) effectiveness, and (4) implementation, aligning with WHO’s stepwise evaluation strategy. Across these 
stages, this article presents the essential evidence of different study designs (n¼8), sample sizes, and main evaluation categories (n¼7) with 
subcategories (n¼40). The main evaluation categories included (1) functionality, (2) safety and information quality, (3) user experience, (4) clini-
cal and health outcomes, (5) costs and cost benefits, (6) usage, adherence, and uptake, and (7) user characteristics for implementation research. 
Furthermore, the framework highlighted the essential evaluation areas (potential primary outcomes) and gaps across the evaluation stages.
Discussion and Conclusion: This review presents a new framework with practical design details to support the evaluation of CA interventions 
in healthcare research.
Protocol registration: The Open Science Framework (https://osf.io/9hq2v) on March 22, 2021.
Key words: chatbot; conversational agent; virtual assistant; healthcare; evaluation; systematic review. 

Introduction
Conversational agents (CAs), also known as chatbots or vir-
tual assistants, are software programs that are designed to 
imitate human conversations.1,2 Over the past decade, CA 
technologies and applications have advanced rapidly with 
emerging artificial intelligence (AI)3 including natural lan-
guage processing4 and machine learning.5 Several CA appli-
cations have already become popular tools in our daily lives, 
such as ChatGPT,6 Google Bard,7 Siri, Google Assistant, and 
Alexa.8

With recent advances, CAs present new opportunities to 
assist in delivering health interventions.9,10 For example, 
researchers have proposed CA-enabled programs in hospitals 
to provide surgery information,11 patient triage,12 inpatient 
care,13 and post-discharge follow-ups.14 Many CA programs 
have also been studied in community care to improve health 

education,15–18 mental health,19–24 and the self-management 
of chronic diseases.25–27 To combat the COVID-19 pan-
demic, several large national and international health organi-
zations including the World Health Organization (WHO)28

have implemented CA applications29 to assist in delivering 
timely health information28 or screening the symptoms for 
early interventions.28,30,31

To use CAs in healthcare, rigorous evaluations are essen-
tial.32,33 Conversations in CAs are usually controlled by AI. 
The use of AI is often associated with poor transparency 
(known as “the black box effect”) because AI-based control 
mechanisms are normally complex and cannot be well 
explained.33,34 A lack of transparency has been the leading 
concern for using AI-based applications in healthcare.35,36 In 
addition, AI studies are often associated with various limita-
tions (or unforeseeable errors) such as ineffective model 
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designs, insufficient prior knowledge base, inadequate train-
ing data, or inappropriate training processes.33,37 Because of 
these limitations, AI-based systems sometimes fail to function 
as expected.3,33 The failures often result in poor user experi-
ence, low adherence and uptake, ineffective health outcomes, 
inappropriate care advice, or even unintended harm.3 These 
issues have recently been highlighted.8,33,38–40 Therefore, rig-
orous clinical evaluations are essential for understanding CA 
performance,41 preventing potential risks,3 and, ultimately, 
achieving safe, effective, and sustainable interventions in 
healthcare.35,36,41 However, effective evaluation of CAs, 
involving various design methods and strategies, is often 
complex and challenging.41 Existing reviews on CA evalua-
tions are limited to a narrow scope, such as technical met-
rics,42–44 or simple method descriptions without systematic 
investigations.45,46 To support CA evaluations, a comprehen-
sive evaluation framework is needed47–50 but remains absent.

The objective of the review is to synthesize existing CA 
evaluation methods and outline an evaluation framework for 
supporting future CA evaluation studies. We conducted this 
scoping review to extract the study designs and outcome 
measures of health-related CA studies. We then categorized 
the nested data according to an overarching digital health 
framework by WHO.51 We finally discussed the findings and 
knowledge gaps in CA evaluations.

Methods
We conducted the scoping review in accordance with the 
PRISMA Extension for Scoping Reviews (PRISMA-ScR).52

Our protocol was prospectively registered in the Open Sci-
ence Framework on March 22, 2021.53 We selected the scop-
ing review approach because it allowed us to explore and 
synthesize complex and diverse evidence in the literature.54

Selection criteria
We designed the selection criteria (Table 1) focusing on peer- 
reviewed journal articles. The review only included the CAs 
that allowed users to talk or chat in a natural language with-
out any constraints (unconstrained CA).46 In contrast, some 
CAs only allowed users to enter predefined text messages, 
such as answering “Yes” or “No,” or select options via 
forms, menus, or buttons (or in situ55). We excluded con-
strained CAs because their conversations and AI functions 
are often limited.

Search strategy
We searched five databases: CINAHL, Medline via Ovid, 
Scopus, Embase, and IEEE Xplore, using a search strategy 
with variants and combinations of search terms relevant to 
CAs and health interventions (Appendix S1). We included 
articles published in English from the inception of the data-
bases to January 13, 2021. In addition to the database 
searches, we also manually identified articles from existing 
systematic reviews in the CA research field.9,42–46,56

Data extraction
We used EndNote (Ver. 20) to export the articles from each 
database and Covidence57 to screen and extract the data. A 
data extraction form was developed according to the review 
protocol.53 Two authors (H.D. and J.S.) independently 
screened the title and abstract of each article. They then con-
ducted full-text reviews to determine the eligible articles. The 
discrepancies between the 2 authors were resolved by consen-
sus and discussions with the third author (A.V.). We 
extracted country names according to the recognized mem-
bers in the United Nations.58

Synthesis of results
We identified the design of each study according to published 
design definitions/descriptions,59–63 design guide,59and over-
view64 (Appendix S2).

We extracted the outcome measures from each study. We 
accordingly identified seven widely used categories: (1) func-
tionality,51 (2) safety and information quality,3,65 (3) user 
experience,51,66,67 (4) clinical/health outcomes, (5) costs and 
cost benefits,68 (6) usage, adherence, and uptake from objec-
tive analysis of conversation records, distinct from similar 
subjective evaluations in “User experience,” and (7) user 
characteristics for implementation.51

To generate an evaluation framework, we employed an 
overarching evaluation framework for digital health interven-
tions, published by the WHO.51 The framework provides 
evaluation descriptions and targets across four evaluation 
stages: (1) “feasibility and usability,” (2) “efficacy,” (3) 
“effectiveness,” and (4) “implementation”.51 These stages 
are fundamentally consistent with the 4 widely known phases 
of clinical trials.47–50 We accordingly nested the extracted 
data across these 4 stages. We selected the WHO’s frame-
work because it was the state of the art, the most comprehen-
sive, and well-recognized in the digital health research field.

Table 1. The inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

At least one objective of the study was to evaluate CA intervention(s), 
including CA applications, healthcare modes, or programs.

The CA in the study was only one function of a robot, robotic toy, vir-
tual reality, or game-based application and its conversational function 
was not evaluated independently.

The CA was unconstrained, allowing users to enter text-based messages 
or conduct voice-based conversations.

The CA mainly sent messages/notifications, asked users to enter data 
entries, or conversed through predefined responses (buttons, menus, 
yes, no, etc.)

The evaluation was relevant to primary, secondary, or tertiary preven-
tion of disease or health issues.

The CA application was designed to provide education, training, or 
knowledge/skill assessments to healthcare providers and/or students.

The evaluation was based on the analysis of data from humans, includ-
ing testers, participants recruited, or people using the intervention in 
the real world.

The study was mainly based on AI training data or an exploratory sur-
vey to investigate the preferences/perceptions of a CA application.

The article was published in a peer-reviewed journal in the English 
language.

The study only reported preliminary analysis outcomes, normally in 
conferences or communications.
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Quality assessment
We assessed the reporting quality using the mobile health 
(mHealth) evidence reporting and assessment (mERA) check-
list.69 This assessment approach has been used in similar 
reviews,70,71 and the WHO’s digital health evaluation 
guide.51 The mERA checklist includes 13 domains. We clas-
sify each domain into “Fully reported,” “Partially reported,” 
and “Not reported.” Two authors (H.D., J.S.) independently 
assessed each included article, and the discrepancies in the 
assessment were resolved through discussion.

Results
We retrieved a total of 6350 articles from the search (Fig-
ure 1), including 6293 articles from the databases and 57 
articles from existing reviews. We then removed 3647 

duplicates, 1404 articles through the title-abstract screening, 
and a further 106 articles through the full-text review. We 
finally included 81 articles for the data extraction.

Study characteristics
The 81 articles included in this review (Appendix S3) were 
published between 2009 and 2022 (Figure 2A), with 89% of 
them (n¼72) in the past 5 years. The studies originated from 
21 countries (Figure 2B), predominantly from the United 
States (n¼31, 38%). We identified 12 main intervention 
areas (Figure 2C) with the leading of “Mental, psychological, 
or cognitive health” (n¼30, 37%).

Eight health-related CAs were available to the public, 
focusing on chronic disease or conditions (DoctorBot15 and 
Gia72), adolescent health education (on contraception, 
Layla73), mental health (Bunji,74 ELIZA,75 Wysa,76–78

Figure 1. Flow diagram of the bibliographic search results and the included articles through the title-abstract screening and full-text review. CAs, 
conversational agents; PDA, personal digital assistant—a type of handheld computer irrelevant to CA.
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Woebot,79 and PAT80), and substance use disorders (Woe-
bot81,82). The general CAs of Siri, Google Assistant, and 
Alexa were also evaluated for providing health informa-
tion.8,17,19,83–87 The remaining CAs were mainly under 
research.

Study designs
We identified 8 categories of designs (Appendix S3) and sum-
marized them in a hierarchical diagram (Figure 3). There 
were 15 observational and 59 experimental studies. The 
observational studies included the cross-sectional (n¼11), 
cohort (n¼ 1), and case-control (n¼ 3) designs. The experi-
mental studies included 20 randomized controlled trials 
(RCTs) and 38 quasi-experimental trials (or nonrandomized 
studies). Among the RCTs, there were 20 parallel RCTs and 
1 crossover RCT.

We found 7 studies (9%) in which investigators (usually 2 
authors) tested CAs using predefined questions and reviewed 
CAs’ responses to determine the safety and information qual-
ity of CA interventions.17,19,83–87 We categorized these stud-
ies in a separate design category (“laboratory setting”) 
because the investigators neither assigned the intervention to 
participants in an experiment/trial (experimental studies59) 
nor observed intervention effects on people in usual clinical 
practice (observational studies59).

We also found 10 other studies (12%) that were not closely 
related to clinical interventions. One single-arm study eval-
uated safety and information quality (Siri, Google Assistant, 
and Alexa).8 Three studies investigated the differences 
between 2 CAs (MYLO vs ELIZA, a two-arm parallel 
RCT)75 or a CA and traditional search engines (a cross- 
sectional study).88 One single-arm study explored the level of 
self-disclosure (the willingness to answer sensitive or private 
questions, a single-arm study).89 Three studies investigated 
the potential to substitute a CA for conventional clinical 

assessments (a CA vs a questionnaire, a crossover RCT40; a 
CA vs an interview,90 single-arm trials; a CA vs a pain ques-
tionnaire, a single-arm experimental study91). The remaining 
two studies mainly investigated users’ expectations and pref-
erences,92 and the barriers and facilitators of CAs.80

Interventions were limited in 23 studies. Many studies 
(n¼ 22, 27%) had participants performing predefined 
tasks23,25,93,94 or conversing with the chatbot for only a sin-
gle session.8,11,18,20,22,24,40,75,90,91,95–102 One RCT recruited 
participants to only review conversation responses (rather 
than to converse with the CA) from either a CA (Interven-
tion) or a medical committee (Control).39

Outcome measures
We identified 285 outcome measures and categorized them 
into 7 main categories (Appendix S4). Table 2 summarizes 
the main categories with subcategories and selected outcome 
measures. The main categories included “Functionality” 
(Number of outcome measures, Nom ¼ 44), “Safety and 
information quality” (Nom ¼ 17), “User experience” (Nom ¼

80), “Clinical/health outcomes” (Nom ¼ 68), “Costs and cost 
benefits” (Nom ¼ 2), “Usage, adherence, and uptake” (Nom ¼

62), and “User characteristics for implementation science” 
(Nom ¼ 12).

“Functionality” examines how well CAs functioned as 
designed. Researchers evaluated how sentence classifications 
functioned to interpret users’ intentions or intents (“Sentence 
classification performance” with accuracy25, precision25,93, 
etc.) and overall CAs’ conversation functions in terms of 
“Understanding and responses.” Some CAs were designed to 
conduct various small tasks (screening alcohol use94, collect-
ing symptoms25, etc.) or engage with users (initiating new 
topics26, providing social support92, etc.) for long-term per-
sonalized interventions. These design functions were also 
evaluated (“User engagement” and “Task achievements and 

Figure 2. Characteristics of studies in the review with the final bibliographic search in January 2021. (A) Publication year. (B) Country of the studies 
conducted. (C) Intervention area.
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efforts”). For speech-based CAs, two studies evaluated 
“Voice and device control”, such as voice volume, speed, and 
sound quality.91 Finally, some CAs were designed for clinical 
assessments, such as assessing depressive disorders,40 sleep 
conditions,90 and tobacco use disorders.100 Researchers 
hence evaluated “Clinical assessment performance” to vali-
date these CAs as clinical assessment tools.

“Safety and information quality” were evaluated, espe-
cially for CAs with large language models or contents from 
the Internet. Researchers examined whether CAs’ responses 
were appropriate and safe (“CA response appropriateness”). 
They moreover evaluated the “Risk of misinformation.” Mis-
information refers to a health-related claim of fact that is cur-
rently false due to a lack of scientific evidence.130

Misinformation-related factors were also evaluated, such as 
resource reliability,86 evidence-based resources,85 informa-
tion accuracy and completeness,85 and information quality.84

As CAs could affect users’ care decisions, the “Risk of unin-
tended harms or adverse events” was evaluated. “Unintended 
harms” refers to harmful consequences if the action is not 
taken timely or appropriately, such as actions for allergic 
conditions and emergency tasks.8 “Adverse events” include 
deaths,8 suicide attempt, and alcohol/drug overdose.82

Finally, researchers evaluated “Privacy and trust” using sur-
veys,55,105 and/or qualitative studies (interviews).55

The category of “User experience” included 80 outcome 
measures in 13 subcategories. None of the outcome measures 
was specifically designed for evaluating CAs. “Clinical/health 
outcomes” also included a large number of outcome meas-
ures (Nom ¼ 68) but were mainly evaluated with validated 
assessment questionnaires. “Costs and cost benefits” were 
only reported by 2 studies. Evaluations of “Usage, adherence, 
and uptake” were diverse with 62 outcome measures. “User 
characteristics for implementation science” were mainly lim-
ited to “Age and gender.”

Proposed evaluation framework
The CA evaluation framework comprises 4 essential evalua-
tion stages: (1) Feasibility and usability, (2) efficacy, (3) effec-
tiveness, and (4) implementation (Table 3). For each stage, 
the framework presents the evaluation descriptions, targets, 
and illustrative sample sizes, according to WHO’s recommen-
dations for digital health interventions51. It presents existing 
study (or trial) designs, outcome measures, and sample sizes. 
The framework also highlights (in light blue) essential out-
come measures. For example, at Stage I, existing studies 
mainly evaluated CAs using single-arm experimental trials 
(n¼ 30, 75%) and laboratory tests (n¼ 7, 17.5%). The most 
widely used sample sizes were in the 10-20 range for single- 
arm studies and 1 or 2 experts for laboratory tests. The essen-
tial outcome measures can be potentially used as primary out-
comes. In clinical studies, primary outcomes are aligned with 
the primary aim to answer important research questions (or 
hypothesis)134 and, sometimes, determining study sample 
sizes,134 for example, the power analysis in RCTs135.

Cost-related evaluations are very limited in the framework, 
with only 2 studies at Stage I and II, respectively. However, 
studies at Stages I and II are conducted under a research set-
ting, unable to produce generalizable results. We recommend 
“Costs and health economic analyses” at Stages III and IV. 
The evaluations potentially include cost-utility analysis, cost- 
effective analysis, cost-minimization analysis, and cost- 
benefit analysis.136

Quality assessment
We assessed the reporting quality of the included studies 
using the mERA checklist69 (Appendix S5). As the studies in 
a laboratory setting (n¼7) did not evaluate the interventions, 
many mERA criteria were not applicable to these studies. 
We, therefore, reported the mERA summary for the remain-
ing 74 studies (Figure 4). Most studies provided “fully 

Figure 3. The flowchart of different study designs in the studies. CA, conversational agent (intervention, in comparative studies); TR, a traditional 
intervention/care program (control, in comparative studies); RCT: randomized controlled trial.
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Table 2. The summary of the outcome measures nested in the seven main categories and subcategories in the review.

Category and subcategory (number of outcome measures, Nom) Selected typical outcome measures (unit, questionnaire or method)

1. Functionality (Nom ¼ 44)

• Sentence classification performance (Nom ¼ 5) Precision (%),25,93 sensitivity (%),25,93 accuracy (%),25 and specificity 
(%),25 and F1 (value)25,93 of the classifier.

• Understanding and responses (Nom ¼ 17) Response accuracy (%),17,19,86,103, inquiries unable to answer (%),86

response completion (%),86 understanding (scale, survey),91 etc.

• Engagement functions (Nom ¼ 7) Topics initiated by CA versus participants,26 attempts to restart 
conversation (n),8 sentiment (score, coding responses manually),17 etc.

• Task achievements and efforts (Nom ¼ 4) Conversation tasks completed (%),94 task failure rate (n and %),8 and 
task completion (coefficient),25 and time per task (seconds).8

• Voice and device control (Nom ¼ 2) Adequate volume, speed, and sound quality (a survey),91 and negative 
technical aspects (qualitative analysis of user's responses).104

• Clinical assessment performance (Nom ¼ 9) Accuracy,40,100 sensitivity,40,90 specificity of CA-based clinical 
assessment outcomes (CA vs standard clinical assessments),40,90 etc.

2. Safety and information quality (Nom ¼ 17)

• CA response appropriateness (Nom ¼ 6) Response appropriateness (scale),19,86,87 appropriate responses 
(descriptive),83 etc.

• Risk of misinformation (Nom ¼ 4) Misinformation (%),17 reliable (%)86 and evidence-base (%)85

resources, information accuracy and completeness (%),85 and quality 
(descriptive).84

• Risk of unintended harms or adverse events (Nom ¼ 4) Responses with risk of unintended harms (n and %; eg, medication and 
emergency tasks),8 serious adverse events (n),82 and deaths (n and %).8

• Privacy and trust (Nom ¼ 3) Privacy and trust (a survey),55 privacy and trust (a qualitative study, 
interview),55 and privacy infringement (a survey).105

3. User experience (Nom ¼ 80)

• Ease of use (Nom ¼ 2) Ease of use (scale, a self-designed questionnaire)11,88 and learning 
experience (score, a self-designed questionnaire).106

• Engagement (Nom ¼ 3) User engagement (scale, a survey),95 DBCI engagement (scale),92 and 
perceived engagement (scale, a survey).101

• Conversation capability (Nom ¼ 6) Response appropriateness (scale, a survey),11 dialogue performance 
(score, SASSI),94 emotional awareness (score, a questionnaire),106 etc.

• Usefulness/helpfulness (Nom ¼ 6) Usefulness (scale, a survey21,107 or interview88), perceived helpfulness 
(a survey, open-ended question, or interview),21,108 etc.

• Perceived quality and trust (Nom ¼ 5) Perceived trust (score, a questionnaire),89 perceived quality of the 
answers (score, EORTC QLQ-INFO25),39 etc.

• Satisfaction (Nom ¼ 5) Satisfaction (scale, a self-defined survey,8,15,72,99,105,107,109–111 and 
CSQ-881,82,112), content satisfaction (scale, a survey),106 etc.

• Feasibility (Nom ¼ 3) Feasibility (score, a self-designed questionnaire).18,20,26,81

• Usability (Nom ¼ 5) Usability (scale, SUS),75,96,107,113,114 usability (open comments, a focus 
group session),27 perceived usability (scale),92,105 etc.

• Acceptance/preference (Nom ¼ 11) Acceptance (scale, a survey),88 preference of CA (scale, a survey),88

potential to replace humans (scale, a survey),11 etc.

• Overall user experience with mixed themes (Nom ¼ 26) Overall user experience (UEQ,23,25 USE,96 NPS,115 URP-I81,82), users 
with positive or negative experience (n, the CA prompted the survey),15

etc.

• Working alliance (Nom ¼ 1) Working alliance (questionnaire, WAI-SR78,79,81,82,101,112).

• Suggestions for improvement (Nom ¼ 4) Suggestions for improvements (open-ended question in a 
survey),20,93,108,110 good and bad experiences with the CA  
(a survey),109 etc.

• Other open comments (Nom ¼ 3) Perceived stress (survey and interview),24 benefit (focus group study),27

and feelings of answering sensitive questions (CA vs humans).89

4. Clinical/health outcomes (Nom ¼ 68)

• Psychological/mental health (Nom ¼ 34) PHQ-9,21,95,106,109,112,116 QIDS-SR,105, GAD- 
7,21,81,82,95,106,109,112,116–118 SAS,105 PANAS,106,,109,112,119

PSYCHLOPS,21 DASS21,75,117 PSS-10,95,105,120 etc.

(continued) 
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reported” data for 4 mERA assessment domains, namely 
“Intervention delivery” (>80%), “Intervention content” 
(>70%), “User feedback” (>60%), and “Intervention fidel-
ity” (>50%). The report rates for the remaining domains 
were low (<50%).

Discussion
This review includes 81 evaluation studies on CAs for health 
interventions. The studies were heterogeneous with regard to 
evaluation methods, intervention strategies and focus. Most 
CA studies were reported within the past 5 years (n¼72, 
89%). In the review, we extracted study designs (n¼8), sam-
ple sizes, and outcome measures (n¼ 285). Then, we catego-
rized and nested the extracted data according to the 

overarching framework for digital health evaluations by 
WHO.51 We finally outlined a new framework for CA 
evaluations.

New CA evaluation framework
The new CA evaluation framework synthesizes the existing 
evidence across 4 evaluation stages. The evidence is rich at 
Stage I (40 studies, 49%) and gradually becomes limited at 
Stage IV (8 studies, 10%). Despite the limitations, the frame-
work streamlines evaluation stages, targets, designs, sample 
sizes, and essential outcome measures (main categories) along 
the stages. Moreover, the framework includes 2 new essential 
evaluation aspects: “Functionality” and “Safety and informa-
tion quality” at Stage I. It also presents the evaluation gaps of 
“Costs and health economic analyses” at Stages III and IV.

Table 2. (continued) 

Category and subcategory (number of outcome measures, Nom) Selected typical outcome measures (unit, questionnaire or method)

• Disease conditions (Nom ¼ 3) Pain (%, NRS),82 Parkinson’s disease rating scale (MDS-UPDRS),121

and Parkinson’s disease questionnaire.121

• Modification of behaviors and risk factors (Nom ¼ 23) Behavior modification (score, SQUASH),122,123 smoking cessation  
(%, a survey),124 physical activity (score, AAS),113,123 etc.

• Knowledge and skills (Nom ¼ 4) Knowledge gained (scale, a survey),16,18 problem solvability (score, a 
survey),75 problem resolution (score, a survey),75 etc.

• Health wellbeing and issues (Nom ¼ 4) SWLS,120 WHO-5-J,95,125 EQ-5D-5L,126 and falls (falls per 1000 
patient-days).13

5. Costs and health economic analyses (Nom ¼ 2)

• Cost effectiveness (Nom ¼ 1) Time spent per 100 patients (hours per 100 patients, an analysis of 
the conversation logs).14

• Costs (Nom ¼ 1) Monthly budget (dollars per month, an analysis of running costs of 
the CA system).73

6. Usage, adherence and uptake (Nom ¼ 62)

• Usage (Nom ¼ 38) Conversation duration (second, minute, or 
hour),14,15,26,55,72,73,75,81,82,88,115,126–128, exchanges (n),108–110, CA 
responses (n),92,127,129 etc.

• Adherence (Nom ¼ 15) Adherence (n),108,120 dropouts (n, %; conversation dropouts,15 and 
dropouts of interventions15,116,122), follow-up rate (%),14 etc.

• Uptake (Nom ¼ 9) Completed questionnaires (n),122 total followers (n),73 total impres-
sions (n),73 average daily reach times (times of reach per day),73 etc.

7. User characteristics for implementation science (Nom ¼ 12)

• Age and gender (Nom ¼ 2) Age (age groups, n, %)15,72,88,110 and gender (n, %).15,72,88,110

• Nationality, ethnicity and religion (Nom ¼ 4) Nationality (n),88 race and ethnicity (%, White, Hispanic, Black),72 reli-
gion (n),88 and language (%, users in Spanish).72

• Education and socioeconomic status (Nom ¼ 2) Occupation and education (n, %, self-designed questionnaire),88 and 
urbanization levels (n, self-designed questionnaire).88

• Health conditions (Nom ¼ 3) Users with a personal history of cancer (%),72 a family history of cancer 
(%),72 and risks of different cancers (NCCN criteria, Tyrer–Cuzick 
criteria).72

• Devices used (Nom ¼ 1) Mobile users (%).73

AAS, The Active Australia Survey; CSQ-8, Client Satisfaction Questionnaire with 8 questions; DASS21, depression, anxiety, and stress scales 21; DBCI, a 
questionnaire on the Digital Behavior Change Intervention; EORTC QLQ-INFO25, The European Organisation for Research and Treatment of Cancer 
Quality of Life Group information questionnaire; EQ-5D-5L, health-related quality of life with 5 dimensions: mobility, self-care, usual activities, pain/ 
discomfort, and anxiety/depression; F1, the harmonic mean (average) of the precision and recall; GAD-7, the Generalized Anxiety Disorder scale—7; NCCN 
criteria, National Comprehensive Cancer Network criteria; NPS, net promoter score; PANAS, the positive and negative affect schedule; PHQ-9, the Patient 
Health Questionnaire—a 9-item self-report questionnaire that assesses the frequency and severity of depressive symptomatology within the previous 2 weeks; 
PSS-10, the Perceived Stress Scale; PSYCHLOPS, the psychological outcome profiles; ROC, receiver operating characteristic—a graphical plot to evaluate a 
binary classifier/decision system across different discrimination thresholds; QIDS-SR, the Quick Inventory of Depressive Symptomatology-Self-report; SAS, 
the Self-rating Anxiety Scale; SASSI, the Subjective Assessment of System Speech Interfaces—a 7-point Likert scale on accuracy, likeability, cognitive demand, 
annoyance, habitability, and speed; SQUASH, the Dutch Short Questionnaire to assess health enhancing physical activity; SUS, the system usability scale; 
SWLS, the Satisfaction with Life Scale; UEQ, the User Experience Questionnaire; URP-I, usage rating profile-intervention with feasibility (6 items) and 
acceptability (6 items) scales; USE, the Usefulness, Satisfaction, and Ease of Use (USE) Questionnaire Short-Form; WAI-SR, the Working Alliance Inventory- 
Short Revised (agreement on the tasks of therapy, agreement on the goals of therapy and development of an affective bond); WHO-5-J, HEALTH well- 
being—5 Well-Being Index (Japanese version).
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The 4evaluation stages in the CA framework are based on 
WHO’s recommendations. They are fundamentally consis-
tent with the traditional clinical and medical evaluation 
phases.47–51 These stages are built upon each other to ensure 
safety, health benefits, and socioeconomic impacts in the 
research translation of new interventions into the real 
world.47–51

The framework will, accordingly, help researchers review 
existing studies, identify knowledge gaps, and develop new 
methods or recommendations for improving CA evaluations. 
It practically supports the stepwise evaluation strategy in 
future CA evaluation studies and encourages new systematic 
reviews with extensive scopes at different evaluation stages to 
improve the research translation of CA interventions in the 
real world. The framework also helps engineers and policy-
makers understand the complex journey of the research 
translation. Such understanding is essential for achieving 
effective and sustainable CA research in healthcare.

Relevant findings and recommendations
We found extensive evaluations of “Functionality”, such as 
classifying sentences, providing responses, engaging with 
users, achieving various simple tasks, and assessing patients 
as an independent clinical assessment tool. The functionality 
evaluations are essential because those functions collectively 
determine the intervention delivery. In addition, such evalua-
tions help understand the technical potentials and limitations 
of CA applications for designing effective interventions in the 

research. We therefore propose functionality evaluations as a 
main category at Stage I in the CA evaluation framework.

We found 8 studies (10%) evaluated topics with risks, such 
as medication, suicide attempt, alcohol/drug overdose, and 
private information, especially for complex CAs with con-
tents from the Internet, such as Siri and Google Assistant. 
Accordingly, we recommended safety and information evalu-
ations at Stage I in the framework. The findings and recom-
mendation support recent concerns of potential safety and 
privacy risks when using AI in healthcare,3,36,137. They 
underscore the need for understanding the risks in CA evalua-
tion studies,138 especially for advanced CAs which enable 
broad conversations with large knowledge networks or lan-
guage models139,140 such as recent ChatGPT6,141.

By analyzing study designs, we found that the safety and 
information evaluations were limited to studies using prede-
fined questions in a laboratory setting or a session-based sin-
gle-arm trial. How to evaluate safety and information quality 
effectively and reliably in other study designs remains 
unclear. This finding encourages the development of new 
strategies, such as large question-answer (QA) databases and 
experts’ reviews of large conversation records, to improve 
safety and information quality evaluations in CA studies.

We found that the outcome measures for evaluating user 
experience were diverse (n¼285). In addition, none of the 
measures had been specifically validated for CA interven-
tions. Many evaluation components such as usability, feasi-
bility, satisfaction, and acceptance were inconsistently 

Figure 4. Percentage of articles met the criteria on the mERA checklist. Each mERA criterion is categorized as “Reported,” “Partially reported,” and 
“Not reported.” HIS, health information systems.
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defined and selected. Because of difficulties in qualitative 
evaluations, many studies used qualitative evaluation meth-
ods such as interviews or open-ended questions to capture 
in-depth evidence. These findings indicate overwhelming dif-
ficulties in evaluating user experience and imply a strong 
need for developing and validating suitable questionnaires to 
improve user experience evaluations in future CA studies.

We found that 4 studies explored whether a CA could pro-
vide a clinical assessment (not an intervention) equivalent to 
or better than in-person clinicians22,40,90,100 (“Clinical assess-
ment performance” in “Functionality”). The evaluations fun-
damentally differed from the traditional evaluation focusing 
on comparing an intervention program against usual care in 
terms of improvements in clinical/health outcomes. The find-
ing indicates a need for extending conventional evaluation 
frameworks and scopes to accommodate and encourage new 
evaluation perspectives such as conversation comparisons 
between CAs and humans in future CA studies.

Only 2 studies evaluated “Costs and health economic ana-
lyses”14,73 at Stages 1 and 2. Cost-related evaluations often 
determine healthcare policies for improving health interven-
tions. Reporting on cost is also recommended by the mERA 
checklist. We recommend cost-related evaluations at Stages 3 
and 4 in the framework because CAs at these stages are nor-
mally implemented in the real world, essential to obtain gen-
eralizable results. In addition, clinical trials at these stages are 
normally larger than those at Stages 1 and 2, essential for 
achieving reliable evaluation outcomes.

There were only 8 studies found at Stage 4 of the proposed 
framework. The evidence was insufficient for us to synthesize 
essential methods for WHO’s recommendations, such as 
“health impact,” “Error rates,” and “Changes in policy.” 
Obtaining users’ data such as age, gender, and conversation 
records could also be difficult because of privacy and 
security-related policies.142 More studies with integrated data 
retrieval approaches, such as electronic health records and 
national healthcare systems (eg, Medicare Benefits Schedule 
in Australia), are needed to effectively address those recom-
mended tasks at Stage 4.

Many CA evaluation studies (n¼22, 27%) were limited to 
predefined tasks, single conversation sessions, or participants’ 
review of a conversation record. We also found that several 
studies used a crowdsourcing method (the practice of obtain-
ing information or input from paid services of a large number 
of people via the Internet),102,132 rather than studies using 
more traditional methods of recruitment. Crowdsourcing 
methods help recruit participants quickly,143 but the results 
may be inaccurate because of incentive mechanisms and risks 
of spammers.144 Therefore, understanding the design details 
and limitations is essential for the accurate interpretation of 
evaluation outcomes.

We found that the study sample sizes in this review were 
generally smaller than the illustrative numbers of users out-
lined by WHO’s framework, especially at Stages 3 and 4. In 
the research, sample sizes are often estimated carefully135

according to the intervention, trial design, evaluation stage, 
and primary outcomes. Therefore, more studies and further 
investigations are needed for understanding and proposing 
illustrative sample size ranges for CA interventions in the 
research.

For individual studies, identification of essential require-
ments in detail for evaluating safety, information quality, and 
functionality is often complex because there are various 

influential factors, such as CA designs (Rule-based dialogues, 
state-based systems, generative language models, etc.), inter-
vention areas (Mental health, chronic disease management, 
substance use disorders, etc.), intervention components 
(Health information, education, clinical assessments, medica-
tion, care decision support, etc.), and users’ characteristics 
(Normal healthy adults, women with pregnancy, people with 
severe mental conditions, seniors, etc.). For example, a com-
plex CA application for mediation intervention to vulnerable 
people would present a higher level of safety concern than a 
simple CA for general health promotion in normal adults. 
However, how to evaluate these 2 CAs differently and effec-
tively to ensure their safety remains unclear. Therefore, 
expert reviews, from multidisciplinary research fields, would 
be needed to address the knowledge gap in future studies.

Regarding the reporting quality of CA studies in this 
review, the mERA results demonstrated low reporting rates 
across many mERA criteria including “Cost assessment,” 
consistent with recent digital health intervention 
reviews.71,145 The results imply that some essential evalua-
tion details might not be reported fully by the authors and, 
hence, captured in our review. They again indicate a strong 
need for improving the adherence and update of digital health 
evaluation guidelines and frameworks in future CA studies.

Strengths
We categorized diverse CA study designs and outcome meas-
ures and employed a globally recognized framework to syn-
thesize the evidence. We finally provided a comprehensive 
evaluation framework for CA interventions and discussed 
issues and gaps for future studies.

Limitations
The data synthesis was limited to a single overarching digital 
health evaluation framework. The digital health framework 
focuses on general web applications or smartphone apps. Its 
recommendations on AI technologies are limited. Integrating 
multiple evaluation guidelines or frameworks, such as recom-
mendations for complex interventions146,147 or AI-related 
applications,35,36 would be useful to improve and enrich the 
CA evaluation framework in future studies.

Conclusion
Evaluation frameworks are essential to achieving safe and 
effective health and clinical outcomes in CA-based interven-
tion studies, but none yet exists. We synthesized the evidence 
from 81 CA evaluation studies and outlined an evaluation 
framework for CA interventions. Our findings provide sev-
eral important implications for evaluating CA interventions 
and encourage further investigations to continue to improve 
CA evaluation frameworks in future research.
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