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Abstract

The prefrontal cortex is a crucial regulator of alcohol drinking, and dependence, and other 

behavioral phenotypes associated with AUD. Comprehensive identification of cell-type specific 

transcriptomic changes in alcohol dependence will improve our understanding of mechanisms 

underlying the excessive alcohol use associated with alcohol dependence and will refine targets 

for therapeutic development. We performed single nucleus RNA sequencing (snRNA-seq) and 

Visium spatial gene expression profiling on the medial prefrontal cortex (mPFC) obtained from 

C57BL/6 J mice exposed to the two-bottle choice-chronic intermittent ethanol (CIE) vapor 

exposure (2BC-CIE, defined as dependent group) paradigm which models phenotypes of alcohol 

dependence including escalation of alcohol drinking. Gene co-expression network analysis and 

differential expression analysis identified highly dysregulated co-expression networks in multiple 

cell types. Dysregulated modules and their hub genes suggest novel understudied targets for 

studying molecular mechanisms contributing to the alcohol dependence state. A subtype of 

inhibitory neurons was the most alcohol-sensitive cell type and contained a downregulated gene 

co-expression module; the hub gene for this module is Cpa6, a gene previously identified by 

GWAS to be associated with excessive alcohol consumption. We identified an astrocytic Gpc5 

module significantly upregulated in the alcohol-dependent group. To our knowledge, there are 

no studies linking Cpa6 and Gpc5 to the alcohol-dependent phenotype. We also identified 
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neuroinflammation related gene expression changes in multiple cell types, specifically enriched 

in microglia, further implicating neuroinflammation in the escalation of alcohol drinking. Here, 

we present a comprehensive atlas of cell-type specific alcohol dependence mediated gene 

expression changes in the mPFC and identify novel cell type-specific targets implicated in alcohol 

dependence.
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1. Introduction

Prefrontal cortex (PFC) is involved in executive function and reward circuitry (Ball et 

al., 2011), and is a crucial regulator of escalation of alcohol drinking and dependence 

(Abernathy et al., 2010; Heilig et al., 2017). We and others have shown transcriptomic 

changes in postmortem brain samples from alcohol-dependent individuals (Warden and 

Dayne Mayfield, 2017; Flatscher-Bader et al., 2005) as well as animal models of alcohol 

consumption and dependence (Ferguson et al., 2019; Osterndorff-Kahanek et al., 2015). 

Growing evidence shows cell-type specific responses and roles in alcohol dependence 

(E. K. Erickson et al., 2021; Warden et al., 2020, Warden et al., 2021). Recent studies 

from our group identified cell-type specific changes in post-mortem brain samples from 

alcohol-dependent individuals (Brenner et al., 2020). The results indicated that previous bulk 

sequencing approaches did not have the resolution to identify transcripts in specific cell 

types such as microglia. In addition, we used snRNA-seq to identify an alcohol withdrawal-

sensitive subtype of protein kinase C delta-expressing GABAergic neurons in rat central 

amygdala (Dilly et al., 2022).

Alcohol dependence is characterized by escalation of alcohol consumption (Borgonetti 

et al., 2023a, 2023b; Varodayan et al., 2023; Patel et al., 2019; Warden et al., 2020; 

Cruz et al., 2023). Understanding cell-type specific mechanisms underlying excessive 

alcohol consumption associated with alcohol dependence and comparing it to transcriptomic 

signatures observed in individuals with AUD allows for identifying translationally relevant 

target networks. Here, we used the well-established two-bottle choice-chronic intermittent 

ethanol (CIE) vapor exposure (2BC-CIE), an alcohol dependence model, which results in 

the escalation of voluntary alcohol consumption in mice (Lopez and Becker, 2005; Patel et 

al., 2021; Borgonetti et al., 2023a, 2023b; Varodayan et al., 2023; Patel et al., 2022; Patel et 

al., 2019), and results in neuro-biological and behavioral adaptations similar to humans with 

AUD (Kimbrough et al., 2017; Ehlers et al., 2018).

We performed single nucleus RNA sequencing (snRNA-seq) on medial prefrontal cortex 

(mPFC) obtained from mice exposed to 2BC-CIE paradigm, an alcohol dependence model, 

and Visium Spatial Gene Expression on coronal brain sections obtained from the same 

animals. Differential gene expression analysis identified alcohol-dependence responsive 

genes in each cell type. Gene co-expression network analysis in each cell type identified 
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alcohol-dependence sensitive modules. Spatial Visium Gene Expression analysis identified 

highly alcohol-dependence susceptible regions within the coronal brain sections.

Bioinformatics approaches have been developed to integrate single-cell RNA sequencing 

data and spatial transcriptomics data to deconvolute the information of overlapping cells in 

spatial transcriptomics data (Longo et al., 2021). Thus, allowing for the inference of the 

location of every cell type in the brain region of interest. We integrated the snRNA-seq and 

spatial gene expression data to map the spatial location of different excitatory and inhibitory 

neurons subtypes.

Here, we sought to determine the cell-type specific gene expression changes in the mPFC 

of a mouse model of alcohol dependence and identify alcohol-sensitive gene co-expression 

networks.

2. Methods

2.1. 2BC-CIE model and brain harvesting

12 weeks-old C57/BL6J male mice underwent the two-bottle choice-chronic intermittent 

ethanol (CIE) vapor exposure (2BC-CIE) procedure described in (Patel et al., 2021). 2BC-

CIE is a well-established model used to generate ethanol dependent mice that are exposed 

to CIE vapor and display excessive (escalated) 2BC ethanol intake as well as a control 

group (defined as non-dependent) that voluntarily consumes ethanol in the same 2BC 

paradigm, but does not receive passive ethanol vapor exposure (Borgonetti et al., 2023a, 

2023b; Varodayan et al., 2023; Patel et al., 2019; Warden et al., 2020). Briefly, mice were 

acclimated to 2BC testing, i.e., given a bottle of water and a bottle of ethanol (15% ethanol/

water) for 2 h, 5 days per week for 3 weeks. Mice were then exposed to ethanol (n = 6) or 

air (n = 8) in vapor chambers for four days (16 h vapor on, 8 h vapor off). Following a 72-h 

abstinence period, both treatment groups were given 2BC testing for 5 days. These weeks of 

2BC and vapor exposure were repeated for a total of 5 cycles. Brains were harvested while 

the mice were still intoxicated (<1 h) after the last vapor exposure as in our previous studies 

(Borgonetti et al., 2023a, 2023b; Varodayan et al., 2023; Patel et al., 2019; Warden et al., 

2020). This study was performed in male mice, future studies are warranted on female mice 

to confirm the generalizability of its conclusions.

2.2. Brain sectioning and mPFC micropunches

Whole brains were embedded in OCT and 300-μm coronal sections were then obtained. 

At Bregma 2.96, two 300-μm sections were placed on cleaned glass slides, followed by a 

10-μm section, which was placed on a Visium Spatial Gene Expression slide (10× Genomics 

1000184, described later in the methods). Then two more 300-μm sections were collected. ~ 

8 micropunches/sample were obtained for single nuclei isolation from the 300-μm sections 

using a 1.5 mm diameter micropuncher as shown in (Supplementary Fig. 1).

2.3. Single nucleus isolation and library preparation

Micropunches were homogenized in 1.5 ml Nuclei EZ Lysis Buffer (Sigma # NUC101) 

supplemented with 0.2 U/ul RNAse inhibitor (NEB # ML314L) and 1X protease inhibitor 
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(Sigma, 05892791001) in a pre-chilled 2mls KIMBLE Dounce tissue grinder (Sigma 

Aldrich D8938) until no tissue was visible. The lysate was filtered through a 35-μm cell 

strainer and centrifuged at 900 xg for 5 min at 4 °C. The cell pellet was resuspended 

in wash/resuspension buffer (2% BSA in 1X PBS supplemented with 0.2 U/ul RNAse 

inhibitor) and mixed with Optiprep medium (60% iodixanol, Sigma-Aldrich # D1556) to 

a 25% final concentration. The suspension was carefully layered on to a 29% iodixanol 

cushion and centrifuged at 13,000 xg for 30 min at 4 °C. The supernatant was carefully 

removed without disturbing the pellet and the pellet was resuspended in 100 μl wash and 

resuspension buffer. The nuclei were stained with DAPI and counted using a Countess 

Automated Cell Counter (Thermo Fisher Scientific). Single nuclei libraries were prepared 

using the Chromium Next GEM Single Cell 3’ Kit v3.1 (10× Genomics, PN-1000128) with 

a target cell count of 10,000 cells. Libraries were sequenced on a NovaSeq 6000 using 

an S4 flow cell. snRNA-seq Fastq files were processed using CellRanger (v6.1.2) using 

the reference genome mm10–2020-A with introns included. Sequencing depth provided an 

average of 38,000 reads per cell exceeding the optimal of one read per cell per gene (Zhang 

et al., 2020).

CellRanger outputs were imported to Seurat (v4.3.0), gene by feature count matrix was 

constructed, mitochondrial and ribosomal genes were eliminated, log normalization was 

performed, and the log normalized values were used for downstream analysis.

The supervised clustering pipeline scSorter (Guo and Li, 2021) was used to classify the 

nuclei into 19 distinct cell types (6 excitatory neurons subtypes, 6 inhibitory neurons 

subtypes and 7 non-neuronal cell types based on markers from (Guo and Li, 2021; Tran 

et al., 2021).

Differential Gene Expression.

The R package Libra was used to access multiple differential expression pipelines (Patel et 

al., 2021; Squair et al., 2021). We chose four pipelines with varying in the implemented 

statistical methods to identify differentially expressed genes for treatment groups in 

each cell type. We used a single cell-based method MAST (Finak et al., 2015) and 

pseudobulking methods edgeR (Robinson et al., 2010) and DESeq2 (v1.30.1, (Love et al., 

2014). Additionally, we applied the DEsingle method (v1.6.0, (Miao et al., 2018) which 

employs a Zero-Inflated Negative Binomial model to estimate the proportion of real and 

dropout zeros to address the limitation of the sparsity of snRNA-seq data. The overlapping 

differentially expressed genes identified using at least three pipelines in each cell type and 

edgeR calculated fold changes were used for subsequent analyses.

2.4. Weighted correlation network analysis

Weighted correlation network analysis, also known as weighted gene co-expression 

network analysis (WGCNA, v1.72–1) (Langfelder and Horvath, 2008) was performed 

on control cells for each cell type. Gene co-expression modules were constructed using 

blockwiseModules, using minimum module size of 30 genes, and unsigned topological 

overlap matrix. Soft Threshold (power) was determined by selecting the lowest power 

for which the scale-free topology fit index curve reached a value of 0.9. Resulting gene 
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dendrograms were used for module detection using the dynamic tree cut method (minimum 

module size = 30). The hub gene for each module was detected using chooseTopHubI-

nEachModule. Within each module, we calculated the percentage of genes that were 

determined to be differentially expressed in the alcohol-dependent samples to identify 

alcohol dysregulated gene co-expression modules (Fig. 2b).

Additionally, we used hdWGCNA (Morabito et al., 2022; Morabito et al., 2021), a 

weighted gene co-expression network analysis pipeline optimized for single-cell RNA-seq 

experiments, to test the stability of WGCNA findings in select cell types. Additionally, we 

removed predicted genes (Gm and Riken genes) from the hdWGCNA analysis to focus 

only on named gene annotations, and to test if the modules constructed by WGCNA 

were not heavily influenced by predicted genes (Gm and Riken annotations). Briefly, 

hdWGCNA constructs meta cells, through collapsing highly similar cells thus reducing 

spurious gene-gene correlations resulting from the sparsity of the data. The pipeline applies 

the WGCNA analysis on the metacells resulting in gene co-expression modules and hub 

genes identification. We used the pipeline to compute module eigengenes for each module 

and to calculate module differential expression between alcohol-dependent samples and air 

controls. Meta cells were constructed on each cell type using the following parameters: 

reduction method = tsne, nearest neighbors parameter k = 25 and maximum number of 

shared cells between two meta cells = 10. Enrichr analysis, a component of the hdWGCNA 

pipeline, was performed on genes of each module to determine associated biological 

pathways and functions.

2.5. Visium spatial gene expression library preparation

Visium Spatial Expression slides contain within each capture area 4992 oligonucleotide 

barcoded spots (capture spots), each spot is 55 μm in diameter. Barcoded capture spots allow 

for tagging the transcripts from the tissue section within each spot therefore enabling the 

identification of each transcript’s spatial location. Slides containing 10-μm coronal sections 

(described above) were fixed for 30 min in ice-cold methanol at −20 °C, followed by H&E 

fixation and imaging as described in the manufacturer protocol (10× Genomics, 1000187). 

Sections were permeabilized for 18 min, followed by cDNA synthesis, second strand 

synthesis, cDNA amplification, and library preparation as described in the manufacturer 

protocol. Libraries were sequenced on NovaSeq 6000 using S4 flow cell. Visium Fastq files 

were processed using Space Ranger (v1.3.1) and reference genome mm10–2020-A. Folds 

or damaged regions were removed from downstream analysis using the manual draw tool 

in Loupe Browser. Barcodes of valid sections were exported to the Seurat package (v4.3.0) 

followed by unsupervised clustering of the capture spots. The FindAllMarkers function was 

used to identify each cluster’s top enriched markers (Supplementary Table 1). Differential 

expression analysis was performed on clusters represented in all the samples, comparing 

alcohol-dependent samples to air-treated controls to identify region-specific transcriptomic 

changes in response to CIE treatment. Average expression of each gene within each cluster 

in each sample was calculated, t-tests were run comparing alcohol vapor samples to air 

treated controls. Genes with average expression within the lower quartile of gene expression 

values were eliminated to avoid differential gene expression signals produced by technical 

noise.
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2.6. Integration of snRNA-seq data and spatial transcriptomics

A challenge with Visium Gene Expression data is the lack of single cell resolution. A single 

capture spot (55 μm) can contain multiple cell types. We used the Seurat integration pipeline 

(Stuart et al., 2019), which applies an anchor-based integration workflow, to integrate the 

spatial transcriptomics and snRNA-seq data, to mitigate the lack of the single cell resolution 

on the Visium capture spots. The pipeline identifies anchor genes between a reference 

annotated dataset (snRNA-seq) and a query data set (Visium Spatial Gene Expression data), 

followed by the probabilistic transfer of annotations from the reference to the query set 

resulting in a prediction score for snRNA-seq for each cell type contained in each Visium 

capture spot.

3. Results

3.1. CIE exposure escalates voluntarily ethanol consumption

Mice treated with either ethanol or air had similar baseline levels of 2BC ethanol 

consumption. 2BC ethanol drinking escalated in CIE-treated mice after each cycle compared 

to baseline drinking levels, while there was no escalation in air-exposed controls compared 

to baseline (repeated measures ANOVA, interaction effect between exposure group * 

drinking session, F (5, 60) = 5.222, p-value = 0.0005, Fig. 1b). Average weekly alcohol 

consumption in each of the alcohol-dependent and air-control groups and average blood 

alcohol levels in alcohol dependent group after each vapor cycle are shown in (Table 1). 

Average blood alcohol level in the alcohol dependent group before euthanization was 188.4 

+/−5.38 mg/dl.

3.2. Identification of major cell types in mPFC

We sequenced libraries from ~150,000 single nuclei from the mPFC of 6 CIE-treated and 

8 air-treated control mice. The supervised clustering pipeline scSorter (Guo and Li, 2021) 

was used to classify the nuclei into 19 distinct cell types (6 excitatory neurons subtypes, 

6 inhibitory neurons subtypes and 7 non-neuronal cell types based on markers from (Guo 

and Li, 2021; Tran et al., 2021) (Fig. 1c). The full set of cell type markers is presented 

in Supplementary Table 2. Excitatory and inhibitory cell types comprised 32% and 28% 

of the identified cells, respectively, while astrocytes and oligodendrocytes comprised 8% 

and 7% of all cells respectively, while each of microglia, macrophage, and oligodendrocyte 

precursor cells (OPC) comprised 4% of the identified cell types (Fig. 1d).

The FindMarkers function in the Seurat pipeline was used to identify genes enriched in 

each cell type over all other cell types. Two inhibitory cells subtypes (C & F) were Adarb2 

positive suggesting they are Lamp5/Pax6 or VIP interneurons, inhibitory cell subtypes (B 

& D) are Adarbd2 negative suggesting they are PVALB or SST interneurons (Hodge et al., 

2019) (Supplementary Fig. 3d). In contrast to inhibitory cells, sub-clustering of excitatory 

neurons did not show robust and distinct subtype markers, indicating that the differences 

between the excitatory cells’ subtypes are subtle (Fig. 1e). Distinct layer information of 

excitatory neurons is discussed later in the results section (integration of snRNA-seq and 

spatial gene expression results).
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Non-neuronal cell types were enriched in known cell-type markers validating the supervised 

clustering assignments. For example, astrocytes were enriched in Gpc5 (Lau et al., 2020) 

and Slc1a3 (Lau et al., 2020; Achicallende et al., 2022), microglia in Tgfbr1 (Butovsky et 

al., 2014) and Apbb1ib, oligodendrocytes in St18 (Zhao et al., 2022), Prr5l (Falcão et al., 

2018) and Mbp (Galiano et al., 2006), and OPCs were enriched in Pdgfra (Ellison and de 

Vellis, 1994) and Lhfpl3 (Huang et al., 2020) (Fig. 1e). Additionally, we identified enriched 

genes in each cell type that can serve as novel cell type markers; the lncRNA Gm20713 was 

among the top enriched genes in astrocytes, Rnf220 is enriched in oligodendrocytes, Zfhx3 

and Lrmda in microglia (Supplementary Fig. 2d).

A cell-type diversity statistic (CTDS) was calculated for each sample (Karagiannis et al., 

2022) to determine if CIE exposure altered the overall cell-type composition. The CTDS did 

not differ between the two sample groups (t-test, p-value = 0.12), indicating no differences 

in cell-type composition after CIE exposure. Furthermore, the percentage of cells assigned 

to each cell type in each sample was not significantly different between treatment groups 

(Supplementary Table 3), except for excitatory cells subtype F showed a trend towards a 

higher percentage in CIE-treated mice (nominal p-value = 0.012) and OPCs that showed 

a trend towards a lower percentage in CIE-treated mice compared to controls (nominal 

p-value<0.05, Supplementary Fig. 2a, b). This result shows that CIE did not result in 

significant changes in mPFC cell-type composition, loss of a cell type, or the emergence of a 

CIE-specific cell type, a result consistent with those reported from human postmortem brain 

snRNA-seq from individuals with AUD (Van Den et al., 2023; Brenner et al., 2020).

3.3. Cell-type specific differential expression in mPFC of CIE-treated mice

We applied four different pipelines, two based on pseudobulk data which account for 

biological replicates (edgeR and DESeq2), and two using single cell-based methods (MAST, 

and DEsingle). MAST identified the greatest number of differentially expressed genes, while 

DESeq2 was the most conservative pipeline. For our analysis, a gene was determined to 

be differentially expressed for subsequent downstream analysis if it was identified by at 

least three of these pipelines. The full sets of differentially expressed genes within each cell 

subtype are listed in Supplementary Table 4.

We identified a group of genes that were dysregulated across the majority of identified cell 

types (at least 15 clusters). For example, Gm47283, Pbx3 and Scgb3a1 were dysregulated 

in all 19 cell types; Gm21887, Lcn2, Lgr5, Scg2 and Tenm3 in 18 cell types; and 

Gad1, Pcbp3, Ptgds and Ptpro in 17 cell types (Supplementary Fig. 3b). The number 

of differentially expressed genes was greatest within specific cell type clusters including 

inhibitory subtype C neurons, oligodendrocytes, and astrocytes (Fig. 2a). The full list 

of cell specific differentially expressed genes is shown in Supplementary Table 5. The 

Metascape gene enrichment tool (Y. Zhou et al., 2019) was used to identify gene ontology 

(GO) terms and biological pathways. Differentially expressed genes in inhibitory subtype 

C neurons were significantly enriched in Go Biological processes: learning and memory 

(37 genes), regulation of membrane potential (56 genes), and synaptic signaling (55 

genes); Reactome gene sets: GABA receptor activation (11 genes); and KEGG pathways 

neuroactive ligand-receptor interaction (34 genes) and morphine addiction (19 genes). 
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Enrichment of oligodendrocyte differentially expressed genes included GO Biological 

processes: regulation of membrane potential (64 genes), potassium ion transport (28 genes), 

cell junction organization (57 genes), cell-cell adhesion (45 genes), regulation of synapse 

organization (33 genes) and trans-synaptic signaling (47 genes). Enrichment of differentially 

expressed genes in astrocyte included GO Biological processes: angiogenesis (32 genes), 

extracellular matrix organization (31 genes), modulation of chemical synaptic transmission 

(53 genes), cell-cell adhesion (39 genes); and the Reactome Gene Sets: SLC-mediated 

transmembrane transport (22 genes, including the astrocyte enriched genes Slc1a3 and 

Slc1a2). Metascape full results are presented in Supplementary Table 6.

Previous snRNA-seq in human postmortem brain identified numerous cell specific changes 

in neuroinflammatory-related genes (Brenner et al., 2020); thus, we investigated CIE-

mediated enrichment of differentially expressed neuroinflammation genes in each cell 

type. A comprehensive list of neuroimmune related genes (757 genes) utilized by the 

Nanostring nCounter Neuroinflammation Panel (NanoString Technologies nCounter®) was 

used as an input for the enrichment analysis, we removed cell marker genes and neuronal 

signaling genes from the panel gene list, remaining genes (501 genes) were used as input 

for neuroinflammation related genes enrichment calculations. Differentially expressed in 

microglia were enriched in neuroinflammation related genes (30 neuroinflammation genes, 

p-value of enrichment = 5.23 * 10−5). 15 of the 30 genes were related to activated microglia, 

7 genes to adaptive immune response, 7 genes to growth factor signaling, and 4 genes to 

matrix remodeling (Table 2). The lncRNA Neat1, an inflammation associated lncRNA (Pan 

et al., 2022) was upregulated in oligodendrocytes from alcohol-dependent samples, a result 

consistent with bulk RNA sequencing data from mPFC of alcohol dependent mice (Farris 

et al., 2020). A subset of neuroinflammation genes were dysregulated in multiple cell types. 

For example, Lcn2 was downregulated in 18 cell types, Spp1 downregulated in 15 cell 

types, Apoe and Eomes were downregulated in 14 cell types. CIE-mediated upregulated 

neuroinflammation genes included Cd8a in T Cells, Ccl5 in Excitatory cells subtype B, 

Top2a in OPCs, Cd86 and Cd33 in microglia.

3.4. CIE induced changes in neuron-neuron communications

We performed NeuronChat (W. Zhao et al., 2023) to investigate neuron-neuron 

communications. Briefly, neuron-neuron communication is defined as the significant 

expression of the ligand from a sender cell type and the receptor from a receiver cell 

type as compared to the expression of those genes in a permutated dataset. NeuronChat 

identified incoming and outgoing communication patterns to and from each cell type based 

on the expression of ligands and receptors identified from manually curated neural signaling 

interactions. Outgoing communication patterns (each cell type as a sender/secreting cells) 

show astrocytes, inhibitory E, F, microglia, mural, oligodendrocytes to be contributing to 

gap junction and Cck_cckbr signaling (Pattern2), excitatory cells subtypes B and D to be 

contributing to glutamate signaling (Pattern 1), subtypes A, E and F to be contributing 

to pattern 4 (CO_gucy1a1). Inhibitory cells B, C, D and OPC contribute to Nrxn_Nlgn 

signaling (Pattern 3, Supplementary Fig. 3c). Comparing neuron-neuron communications 

between control and alcohol dependent samples showed decreased number of significant 

communication links between GABA and different types of GABA receptors and increased 
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excitatory connections, Glutamate - Grin receptors and Neurexin-Neuroligin connections in 

alcohol-dependent samples (Supplementary Fig. 3d).

3.5. Cell type specific gene co-expression modules

We identified WGCNA gene co-expression modules that were significantly enriched 

with differentially expressed genes and were confirmed by hdWGCNA analysis (Table 

3 and Supplementary Table 7). The greatest enrichment was found in modules from 

oligodendrocytes and inhibitory cells. Excitatory cells subtypes were not enriched in 

differentially expressed genes. Interestingly, Cpa6, a gene significantly expressed at higher 

levels in inhibitory cells subtype C (Fig. 2e), was identified as a hub gene in WGCNA 

in oligodendrocyte and inhibitory cell subtypes A and C modules. In addition, Cpa6 

modules in these three subtypes were significantly enriched in differentially expressed 

genes (Table 3). The oligodendrocyte module containing Cpa6 included 266 genes, 77% 

of which were differentially expressed compared to alcohol-dependent samples (odds ratio 

= 30.26, p-value = 3*10−138, Fisher’s Exact test, Supplementary Fig. 4a). Modules within 

Inhibitory cell types A and C that included Cpa6 as a hub gene contained 149 (55% 

of which are differentially expressed; odds ratio = 38.73, p-value = 6.7*10−79, Fisher’s 

Exact test) and 447 genes (52% of which are differentially expressed; odds ratio = 11.21, 

p-value = 1.69*10−109, Fisher’s Exact test), respectively (Supplementary Figs. 4d). Cpa6 

was identified as hub gene in inhibitory cells subtype C module 3 identified by hdWGCNA 

(Supplementary Fig. 4b), differential expression analysis of module eigengenes shows 

this module to be significantly downregulated in alcohol vapor samples (Supplementary 

Fig. 4c). GO enrichment analysis shows this module to be enriched in heparan sulfate 

proteoglycan biosynthesis and positive regulation of adenylate cyclase biological processes 

(Supplementary Fig. 4d). Cpa6 is connected to critical genes in the highly dysregulated 

inhibitory cells subtype C (Fig. 2d). For example, Cacna1ac, encoding for Calcium channels, 

the Pbx and Meis genes which are transcription factors interacting in transcriptional 

activation complexes (Y. Liu et al., 2001) and CPA6 was identified in GWAS as a gene 

involved in the regulation of alcohol consumption (Schumann et al., 2011). Cpa6 modules 

in oligodendrocytes, inhibitory cells subtype A & C shared significant overlap between their 

gene members (p-value<9e−05) (Supplementary Fig. 4e). The enriched pathways for Cpa6 

module genes include neurovascular coupling, synaptogenesis signaling pathway, opioid, 

and endocannabinoid signaling pathway (Supplementary Fig. 4f).

WGCNA identified an additional highly dysregulated co-expression module in 

oligodendrocytes, consisting of 122 genes, 43% of which were upregulated in alcohol-

dependent samples (odds ratio = 5.54, p-value = 2.63*10−17, Fisher’s Exact test, 

Supplementary Fig. 4a), and Pde4b as a hub gene. Pde4b, a gene of interest in alcohol 

research (Avila et al., 2017; Blednov et al., 2014; Wen et al., 2012; Wen et al., 2012), was 

identified in our differential expression analysis as an upregulated gene in oligodendrocytes 

(Supplementary Fig. 4g). Pde4b module genes were enriched in myelination signaling, 

synaptogenesis signaling, cAMP mediated signaling pathways (Supplementary Fig. 4g). 

This result is consistent with hdWGCNA oligodendrocyte module 5 showing Pde4b, St18, 

and Plc11 as hub genes (Supplementary Fig. 4h). Oligodendrocyte module 5 module genes 

were enriched in organelle organization and positive regulation of transcription biological 
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pathways. Differential module eigengene analysis shows this module to be significantly 

upregulated in alcohol vapor samples (Supplementary Fig. 4i).

WGCNA identified an astrocyte module with Gpc5 as a hub gene. This module was 

enriched in differentially expressed genes (22% of the 484 module genes are differentially 

expressed, p-value = 4.26*10−29, Table 3). 102 of the Gpc5 module genes were upregulated 

in alcohol-dependent astrocytes, while 3 were downregulated (Supplementary Fig. 4a). 

Slc1a3 a gene upregulated in human AUD astrocytes (Brenner et al., 2020), is a member of 

Gpc5 module, and is upregulated in alcohol vapor treated animals’ astrocytes. hdWGCNA 

identified the same module (Supplementary Fig. 4k), confirming the stability of this 

module using different modes of module construction, differential expression analysis of 

module eigengenes confirmed the upregulation of this module in alcohol-dependent samples 

(Supplementary Fig. 4l). Gene enrichment analysis of Gpc5 modules shows enrichment 

in amino acid: sodium symporter activity, L-glutamate transporter activity and L-aspartate 

transmembrane transport.

Module enrichment of neuroinflammation genes (NanoString Technologies nCounter®) 

was examined. Six modules were significantly enriched in neuroinflammation genes 

(Table 4), one of which (microglia Blue Module; p-value<7.5*10−64) included alcohol-

dependence differentially expressed genes. 19% of the genes in this microglial module, were 

differentially expressed in vapor-treated samples (p-value<7.5*10−64, Supplementary Fig. 

4m), all but one of the differentially expressed genes in this module were upregulated in 

alcohol vapor samples. The hub gene of this module is Inpp5d.

This analysis identifies CIE-sensitive gene co-expression modules in the cell types with the 

highest number of differentially expressed genes and connects known alcohol related targets 

to dysregulated cell-type specific gene regulatory networks in an alcohol dependence model.

3.6. Oligodendrocyte subclusters exhibit unique transcriptomic responses to CIE

t-SNE plots and unsupervised clustering identified multiple clusters of oligodendrocytes 

(Fig. 1c). Unsupervised clustering of the oligodendrocytes at resolution = 0.1 identified 4 

subclusters (Fig. 3b) with distinct enriched markers (Fig. 3e). WGCNA identified Cpa6 

as a hub gene. Only a subset of oligodendrocytes, subcluster 2 showed a high expression 

level of Cpa6 (Fig. 3d), a WGCNA identified hub gene of a highly dysregulated module in 

oligodendrocytes (Fig. 3a).

We performed pseudotime analysis (Trapnell et al., 2014) to order oligodendrocyte cells 

and identify if they can be ordered across a continuum. This analysis identified genes 

that vary across the pseudotime continuum. Myelin basic protein (Mbp) and myelin 

associated oligodendrocyte basic protein (Mobp) were highly expressed at the higher 

pseudotime values (Supplementary Fig. 5b). Cluster 0 exhibited higher pseudotime (Fig. 

3f) with higher expression of Mbp & Mobp (Fig. 3g) suggesting that higher pseudotime 

scores correspond to more mature myelinating oligodendrocytes. Genes varying across 

the oligodendrocyte pseudotime trajectory included Potassium channel genes Kcnb2 and 

Kcnd2 which were highly expressed at lower pseudotime values (Supplementary Fig. 

5b). Potassium channels were shown to be prominent in OPCs which are known to be 
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important for differentiation to oligodendrocytes, and their expression is subsequently 

downregulated in mature oligodendrocytes (Cherchi et al., 2021). Vipr2 was enriched in 

the oligodendrocytes subcluster 2 cluster, the same subcluster expressing Cpa6, suggesting 

an association of this subset of oligodendrocytes with the Cpa6 positive VIP neurons (Fig. 

3d).

A cell-type diversity statistic (CTDS) was calculated for each sample (Karagiannis et al., 

2022) to test if subtypes of oligodendrocytes are changed between the treatment groups. 

There was a significant difference (p-value = 0.028) between the alcohol vapor treated 

samples and air control samples suggesting that oligodendrocyte subtype composition differs 

between groups. We found a higher percentage of subcluster 0 oligodendrocytes in alcohol 

vapor-treated samples (subcluster 0) compared to air-treated controls, while subcluster 

2 oligodendrocytes showed a lower oligodendrocytes percentage total oligodendrocytes 

compared to air-control samples (Supplementary Fig. 5a). Differential expression analysis 

comparing alcohol vapor samples to air control samples for each subcluster identified 

uniquely dysregulated genes in each oligodendrocyte subtype (Supplementary Fig. 5b). We 

performed Ingenuity Pathway Analysis (IPA) on differentially expressed genes from each 

subcluster. Pathways significantly enriched in differentially expressed genes from cluster 0 

and 2 overlapped, included dermatan sulfate and chondroitin sulfate biosynthesis pathways, 

dermatan and chondroitin sulfate are proteoglycans critical for synaptogenesis and axon-

guidance (Schwartz and Domowicz, 2018) and are modulators of the microenvironment of 

extracellular matrix (Yamada et al., 2022). Opioid signaling pathway and synaptic long-term 

depression were significant in clusters 2 and 3 (Fig. 3h).

This data identifies a Cpa6 enriched oligodendrocyte subcluster with immature 

characteristics. Alcohol vapor samples show fewer cells belonging to this subcluster 

compared to air control samples. Oligodendrocyte subtypes show distinct differential 

expression responses.

3.7. Integration of snRNA and Spatial Transcriptomics Shows Regional Specificity of 
Neuronal Cell Subtypes

Unsupervised clustering of gene expression profiles across the capture spots of Visium 

Spatial Gene Expression data (described in methods) identified 18 unique spatially defined 

clusters (Fig. 4b). The Seurat FindAllMarkers function was used to identify each cluster’s 

top enriched genes (Fig. 4a row names, Supplementary Table 8). The top gene markers 

of each cluster are consistent with gene expression patterns of corresponding major brain 

regions illustrated in the Allen Brain Atlas (Lein et al., 2007). Clusters 1, 8, 0, 3, 12 and 

6 (listed in order of location, lateral to medial) occupied the dorsal regions of the section 

and were patterned in distinct layers consistent with specific cortical layers. Clusters 8 and 

0 mapped to cortical layers 2/3 with cluster 8 showing enrichment in Tmem215, Ddit4l, 

and Igfn1, and cluster 0 enrichment in Tnnc1 and Pamr1. These 2 clusters potentially 

differentiate layers 2 and 3 based solely on transcriptomic profiles. Cluster 3 mapped with 

cortical layer 5 and showed enrichment of Ighm and Igfbp4 compared to other clusters.

Cluster 15 overlapped with white matter tracts, top expressed markers in this cluster include 

myelin related genes (Mbp and Mobp). Clusters 2, 5, 10 and 14 were located in the ventral 
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region of the brain section. Cluster 5’s location is consistent with the anterior olfactory 

nucleus; markers of this cluster included Crtac1 and Lmo3. Clusters 10 and 14 locations 

are suggestive of representing the main olfactory bulb nucleus. Cluster 10 exclusively 

expresses tyrosine hydroxylase (Th). This data provides comprehensive transcriptomic atlas 

for various cortical and olfactory bulb layers. The top enriched markers of each cluster 

confirmed regional specificity when compared to corresponding ISH data from Allen Brain 

Atlas.

Integration of snRNA-seq and Visium Spatial Gene Expression data (detailed in methods) 

derived scores which enable the identification of the spatial location of each of the 19 

cell types identified by snRNA-seq. This analysis deciphered the spatial location of the 

different subtypes of excitatory and inhibitory cells (Fig. 4c). snRNA-seq data shows that 

the excitatory cell subtypes, in contrast to inhibitory cell subtypes, are closely related 

in their enriched markers (Fig. 1e), prediction scores of the 6 excitatory cell subtypes 

show regional specificity of each of the subtypes (Fig. 4c). Integration analysis shows 

the location of the highly CIE susceptible inhibitory neurons subtype C, to be specific 

to layer 2, differentiating it from the closely related subtype (Inhibitory neurons subtype 

F), which is shown by the integration analysis to overlap with spatial cluster 0 location, 

suggesting layer 3 specificity (Fig. 4c). The number of differentially expressed genes per 

cluster was quantified (Fig. 4d). Cluster 9 and 2 showed the highest number of differentially 

expressed genes, the two clusters’ capture spots occupied a fine outer-most lining of the 

sections, the top enriched gene was Ptgds, with spatial distribution matching ISH data from 

the Allen Brain Atlas. Cluster 15 was among the highest alcohol-dependent dysregulated 

clusters, cluster 15 overlapped with white matter tract and were enriched in myelin related 

genes (Fig. 4a). These region-specific gene expression changes validate the susceptibility of 

oligodendrocytes to CIE treatment. (Differentially expressed genes in each spatial cluster are 

presented in Supplementary Table 9).

4. Discussion

In this study, we provide a comprehensive cell-type specific brain region specific 

transcriptional responses atlas in a mouse model of alcohol dependence. We performed 

snRNA-seq on ~150,000 nuclei from the medial prefrontal cortex (mPFC) obtained 

from mice exposed to the two-bottle choice-chronic intermittent ethanol exposure (2BC-

CIE) paradigm, an alcohol dependence model, as well as control non-dependent mice. 

Additionally, we generated Visium Spatial Gene Expression profiling on coronal brain 

sections obtained from the same animals. snRNA-seq does not retain spatial information 

of the sequenced nuclei, Visium Spatial Gene Expression profiling retains the spatial 

information of the sequenced genes however it lacks single cell resolution. Integrating 

brain cell-type specific and spatially defined transcriptomic data from alcohol-dependent 

mice allowed for registering cells from the snRNA-seq into anatomical locations based 

on the data obtained from the spatial transcriptomics analyses. We utilized the Visium 

Spatial Gene Expression platform to: 1) identify spatially defined regional transcriptomic 

clusters, 2) to decipher the localization of cell types of interest identified by snRNA-seq by 

integrating cell-type specific and spatial gene expression data and 3) identify region-specific 

transcriptomic changes in response to CIE treatment.
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Alcohol use disorders cell-type specific changes were identified in human postmortem PFC 

(Brenner et al., 2020) and nucleus accumbens (Van Den et al., 2023). A novel population of 

cells in central amygdala associated with alcohol withdrawal was identified in a rat model 

of alcohol withdrawal (Van Den et al., 2023; Dilly et al., 2022). Our group showed cell-type 

specific responses and roles in alcohol dependence models, specifically glial cells (Erickson 

et al., 2021; Warden et al., 2020; Warden et al., 2021). In our human postmortem PFC 

snRNA-seq study glial cells were shown to be the most affected in alcohol use disorders 

(Brenner et al., 2020). Although cell-type specific responses in alcohol dependence have 

been shown, comprehensive transcriptomic profiling of cell-type specific changes in mouse 

models of alcohol dependence has been lacking.

In this study, cell diversity analysis showed that alcohol-dependent samples did not exhibit 

altered cell type composition compared to air-control samples, indicating that alcohol did 

not result in the depletion or enrichment of a specific cell type. snRNA-seq enables the 

identification of cell type specific CIE- transcriptomic changes (Supplementary Fig. 3a). 

We utilized multiple pipelines for snRNA-seq differential expression analysis for each cell 

type. These pipelines differ in their principles, assumptions, and whether they account 

for variation between biological replicates (Squair et al., 2021), pipelines designed for 

single cell analysis identified the greatest number of differentially expressed genes, while 

pseudobulking methods were the most conservative pipelines. For our analysis, a gene was 

determined to be differentially expressed for subsequent downstream analysis if it was 

identified by at least three of these pipelines.

WGCNA allows for construction of modules of co-expressed genes, allowing the study of 

gene regulation on network basis not individual gene basis. Combining network information 

with differential expression information enables the study of alcohol-associated network 

dysregulation and enables the identification of critical hub genes of the dysregulated 

modules. We constructed gene co-expression modules and identified cell-type specific 

modules dysregulated in the ethanol dependent model. We applied two pipelines for module 

construction, WGCNA (Langfelder and Horvath, 2008) and a similar pipeline modified for 

single-cell sequencing data (hdWGCNA, (Morabito et al., 2021, 2022). In the WGCNA, 

we used all the genes, including transcripts with no official gene name (Gm and Riken 

genes). Those unannotated transcripts can include functional protein-coding genes and long 

non-coding RNA that are not yet studied or annotated (Su et al., 2004), thus they were not 

eliminated from our differential expression results or module construction. To validate that 

the modules are not influenced by potential transcriptional noise from unannotated genes, 

we omitted those genes from the hdWGCNA module construction. Modules of interest 

identified in the WGCNA were consistent with modules identified in the hdWGCNA, 

indicating that signal from the unannotated genes did not “override” the overall module 

structure.

Inhibitory cell subtypes were the most sensitive neuronal cell types to the CIE paradigm, 

with inhibitory neurons subtype C being the most susceptible. Cortical layer-specific 

dissection followed by snRNA-seq identified caudal ganglionic eminence (CGE)-derived 

inhibitory neurons (Lamp5/Pax6 and VIP interneurons) to be enriched in Adarb2 and 

Gad1 and to be enriched in layer I-III (Hodge et al., 2019). Our data shows inhibitory 
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cells subtypes C and F to be Adarb2 and Gad1 positive, suggesting their CGE origin. 

Importantly, since inhibitory cell type C and F showed transcriptional similarity, we 

integrated the snRNA-seq and spatial datasets to show that these cell types have distinctly 

different spatial locations. We identified Cpa6 as a hub gene of highly dysregulated gene 

co-expression modules in two inhibitory cell subtypes and oligodendrocytes. Cpa6 was 

significantly enriched in inhibitory cells subtype C. Our data show low average expression 

of Cpa6 in oligodendrocytes; however, being a hub gene of a highly dysregulated module, 

suggests that it might be expressed in only a subcluster of oligodendrocytes. Unsupervised 

clustering of oligodendrocytes identified a subset enriched in Cpa6, we utilized pseudotime 

analysis to order oligodendrocytes on a continuum of maturity stages. Cpa6 expressing 

oligodendrocytes are shown in pseudotime analysis to be of immature nature. This subset 

of oligodendrocytes was also enriched in Vipr2 suggesting an association of this subset of 

oligodendrocytes with the Cpa6 positive VIP neurons. Our study identifies Cpa6 as a novel 

transcriptomic target for AUD research, to our knowledge, there is no research on its role in 

mediating excessive alcohol drinking associated with dependence; however, GWAS studies 

identified CPA6 and AUTS2 to be associated with alcohol consumption at genome-wide 

significance (Schumann et al., 2011). Cpa6 has been linked to epilepsy (Salzmann et al., 

2012; Sapio et al., 2012, 2015) and neurodevelopment (Lyons et al., 2010; Wilfert et al., 

2021), GWAS studies linked it to Alzheimer’s disease (Adewuyi et al., 2022), and unipolar 

depression (Thalamuthu et al., 2022). We show Auts2 to be highly connected to the hub 

gene Cpa6 in the highly dysregulated gene co-expression module in inhibitory cells subtype 

C, suggesting an important network in the alcohol use disorders context. In contrast to 

inhibitory cells, excitatory neurons subtypes did not show distinct gene markers, indicating 

subtle transcriptomic differences between the subtypes, integration of snRNA sequencing 

and spatial transcriptomics data showed regional specificity of each subtype. This indicates 

that the subtypes are brain region driven rather than functionally driven.

Human postmortem snRNA-seq studies identified oligodendrocytes as the most susceptible 

cell type in the mPFC of individuals with AUD (Brenner et al., 2020). This current study 

confirms this finding and validates the translational relevance of the CIE paradigm to human 

alcohol dependence. We identified Pde4b as a critical hub gene of a highly dysregulated 

module in oligodendrocytes; differential expression analysis shows upregulation of Pde4b 

in alcohol-dependent mice, all dysregulated genes in the Pde4b module were upregulated, 

indicating that upregulation of the hub genes resulted in upregulation of the module. 

Nonselective PDE4 inhibitors decrease ethanol intake in mice (Blednov et al., 2014, 2018, 

2020, 2022), rats (Wen et al., 2012; Franklin et al., 2015), and in non-treatment seeking 

individuals with alcohol use disorders (Grigsby et al., 2023); thus, the current work may 

shed additional light on the molecular and cellular mechanisms associated with this class of 

drugs. In addition, PDE4B was recently identified as significantly associated with genetic 

liability to substance use disorders (Hatoum et al., 2023; Clarke et al., 2017; Zhou et 

al., 2020; Liu et al., 2019). These results further strengthen the link between Pde4b and 

AUD and highlight oligodendrocytes’ connection with this target and offer insight into its 

downstream genes.

Our data identifies Gpc5 as a gene enriched in astrocytes and a hub gene of an astrocyte 

upregulated module. Gpc5, a cell surface heparan sulfate proteoglycan, was shown to 
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be linked with alcohol consumption in humans and modulated behavioral response to 

ethanol in Drosophila (Joslyn et al., 2011). Our data identifies Gpc5 as a potential gene 

of interest in studying astrocytes’ role in excessive alcohol drinking associated with alcohol 

dependence. A secondary analysis of our published data from dlPFC from individuals with 

AUD (Brenner et al., 2020) also identified an astrocytic gene expression module with GPC5 

as a hub gene. This module was upregulated in astrocytes from AUD individuals, and 

gene members of the human GPC5 module significantly overlapped with gene members of 

mouse Gpc5 modules (Supplementary Fig. 4p&q). This cross-species analysis shows the 

conservation between dysregulated modules in a mouse model of alcohol dependence and 

human AUD data emphasizing the validity and translational value of the identified signals.

Our results link alcohol-dependence dysregulated genes to neuroinflammation. Microglia 

was the only cell type with differentially expressed genes showing enrichment in 

neuroinflammation genes, however multiple neuroinflammation genes were dysregulated 

in other cell types in alcohol-dependent samples. Lcn2, a downregulated gene in multiple 

cell types in alcohol-dependent samples, was shown to be a chemokine inducer in the 

CNS, to accelerate recruitment of astrocytes during inflammatory conditions (Lee et al., 

2011), and to protect the brain during LPS induced inflammation (Kang et al., 2018). Other 

data showed its role in neurotoxic glial activation under chronic inflammatory conditions 

(M. Jin et al., 2014). Lcn2 was upregulated in our RNAseq data from astrocytes and 

microglia from alcohol dependence model (Emma K. Erickson et al., 2019). This suggests 

that Lcn2 expression might be dynamic depending on the context of neuroinflammation. 

Neat1, a lncRNA upregulated in alcohol-dependent treated animals’ oligodendrocytes 

(Supplementary Fig. 4n), has been shown to mediate and promote inflammation in cell 

culture and in animal models. It was shown to promote LPS induced inflammation in 

macrophages (Dai et al., 2021; Li et al., 2020; Zhang et al., 2019). Neat1 was upregulated 

after middle cerebral artery occlusion (MCOA), an experimental model of stroke, and it 

was a hub gene positively correlated with activated microglia, further linking the lncRNA 

to neuroinflammatory responses (F. Jin et al., 2021). Our WGCNA data shows Neat1 as a 

member of the upregulated Pde4b module.

Bank1, a gene shown to be associated with multiple substance use disorders in a multivariate 

genome-wide association meta-analysis of over 1 million subjects (Hatoum et al., 2023), is 

upregulated in alcohol-dependent microglia (Supplementary Fig. 4o). Bank1 was shown to 

be associated with critical immune signaling pathways including, Tlr7 pathway (Le Berre et 

al., 2021).

Collectively our data identifies cell-type specific changes in alcohol dependence. 

Dysregulated networks can be a detrimental consequence of alcohol dependence or a 

compensatory mechanism to restore normal PFC functions. Our data identifies a susceptible 

upregulated network in astrocytes; cortical astrocytes have been shown to regulate acute 

stimulatory and sedative-hypnotic ethanol-induced phenotypes (Erickson et al., 2021). We 

additionally identified a downregulated module in the most susceptible inhibitory cell type, 

Cpa6 the hub gene of this module was shown in GWAS to be associated with alcohol 

dependence. Our analysis of neuronal cell communication suggests decreased inhibitory 

signaling and increase in excitatory and neurexin-neuroligin signaling, a shift that may 
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contribute to alcohol-dependence induced neuro-adaptations (Constance et al., 2018; Fish et 

al., 2022). While possible cellular damage after CIE treatment can influence some of the 

transcriptomic changes we identified, our differentially expressed genes are not enriched in 

cell death or cellular damage associated pathways.

Overall, this study identifies new alcohol-related genes, sensitive mPFC cell types, and 

dysregulated gene co-expression networks in a mouse model of alcohol dependence. Cell-

type specific signatures in the mouse model of alcohol dependence allow for mechanistic 

and functional studies of changes identified in human data through targeting common 

human-mouse dysregulated mechanisms. Spatial transcriptomics enabled the deciphering 

of spatial location of transcriptionally similar cell subtypes; spatial location of cells or 

transcripts are not retained in snRNA-seq.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Single nucleus RNA sequencing of mPFC from 2BC-CIE paradigm treated animals:

(a) Schematic diagram showing the experimental design, animals were subjected to chronic 

intermittent ethanol or air (control) followed by 2 h 2 bottle choice (ethanol/water), after 5 

CIE sessions, brains were collected, flash frozen, mounted in OCT, cryosectioned into 300 

μm section to obtain PFC punches for single nucleus RNA sequencing, one 10 μm section 

followed by two more 300 μm section for snRNA-seq, was collected for Visium Spatial 

transcriptomics.

(b) Amount of ethanol consumed (g/Kg) during the 2-h 2 bottle choice sessions after each 

alcohol vapor/air control exposure session.

(c) tSNE plot showing single nuclei clustering from alcohol vapor and air control samples, 

color coded by cell types.

(d) Percentage of nuclei assigned to each cell type. (*oligo: oligodendrocytes).

(e) Heatmap showing average expression of the top enriched markers (rows) in each cell 

type (columns)
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Fig. 2. 
2BC-CIE results in cell-type specific transcriptomic changes and disruption of gene 

expression networks:

(a) number of differentially expressed genes identified by at least 3 differential expression 

pipelines in each cell type.

(b) schematic of the identification of 2BC-CIE exposure-dysregulated gene co-expression 

modules.

(c) Average log2 fold change (x-axis) and – log 10 (p-value) of gene members of Inhibitory 

Cells Subtype C Cpa6 module.

(d) Top connected genes in inhibitory cell subtype C Cpa6 module (e) Violin plot showing 

the expression of Cpa6 gene in inhibitory cells subtypes in air control and alcohol dependent 

samples.

Salem et al. Page 24

Neurobiol Dis. Author manuscript; available in PMC 2024 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Oligodendrocytes sub clustering into transcriptionally distinct subtypes.

(a) Average log2 fold change (x-axis) and – log 10 (p-value) of gene members 

of oligodendrocytes Cpa6 module. UMAP plots of oligodendrocytes colored by (b) 

unsupervised clustering assignment and (c) pseudotime score.

(d) expression of Cpa6 and Vipr2 in oligodendrocyte subclusters.

(e) heatmap showing scaled expression values of seven top expressed genes in each 

oligodendrocyte subclusters.

(f) violin plots showing pseudotime scores in each oligodendrocyte clusters (g) expression of 

myelin related genes, Mbp & Mobp, in oligodendrocyte subclusters.

(h) z-score of select predicted pathways enriched in differentially expressed genes in 

oligodendrocytes subclusters, positive z-score = predicted activation, negative z-score = 

predicted inhibition.
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Fig. 4. 
Visium Spatial Transcriptomics Identify Gene Expression Signatures of Spatially Defined 

Regional Clusters.

(a) heatmap showing the top enriched genes in each of the unsupervised clusters identified in 

the Visium sections.

(b) the spatial location of each of the unsupervised clusters in the brain section.

(c) prediction scores of each of excitatory and inhibitory cells subtypes.

(d) number of alcohol-dependence differentially expressed genes in each spatial cluster.
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Table 1

average consumption (+/−SEM) of 15% ethanol in 2 h across each 5-day 2 bottle choice testing cycle and 

average blood alcohol levels in alcohol dependent group on the third day of each four-day alcohol vapor cycle.

Average Air-Control Group 
Consumption (gm/Kg/2 h)

Average Alcohol-Dependent Group 
Consumption (gm/Kg/2 h)

Average Blood Alcohol Level 
(Alcohol dependent group) 
(mg/dl)

Baseline (final week of 
3)

1.01 +/− 0.23 1.18 +/− 0.35

Post Vapor 1 0.94 +/− 0.28 1.78 +/− 0.5 206.44 +/− 12.3

Post Vapor 2 1.27 +/− 0.35 2.05 +/− 0.51 151.50 +/− 12.24

Post Vapor 3 1.08 +/− 0.32 1.97 +/− 0.38 171.77 +/− 8.19

Post Vapor 4 1.08 +/− 0.26 2.22 +/− 0.42 162.14 +/− 7.97

Post Vapor 5 0.89 +/− 0.27 2.76 +/− 0.46 224.59 +/− 6.11
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Table 2

Overlap between microglial DE genes and neuroinflammation genes.

Genes Neuroinflammation Category

Apoe, Abcc3, Asb2, Blnk, Cd33, Cd86, Chn2, Epsti1, Fgf13, Lst1, Mertk, P2ry12, Slc2a5, Spp1 and Tmcc3 Activated Microglia

Asb2, Blnk, Cd33, Cd74, Cd86, Inpp5d and Lyn Adaptive Immune Response

Cd86, Fgf13, Hdac2, Lyn, Spp1 and Tgfbr1 Growth Factor Signaling

Cntnap2, Reln, Cd86 and Spp1 Matrix remodeling
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Table 3

WGCNA modules in select cell types and percent of genes differentially expressed in alcohol-dependent 

samples.

Module color Hub Gene Number of module genes % of DE genes

Inhibitory Cells subtype A Blue Cpa6 149 55%*

Brown Grip1 106 19%*

Turquoise Fgf14 839 8.5%

Yellow Npas3 66 13.6%*

Inhibitory Cells subtype C Blue Tmem163 87 47%*

Turquoise Cpa6 447 49%*

Oligodendrocytes Blue Pde4b 122 43%*

Turquoise Cpa6 266 77%*

Astrocytes Blue Gm12510 80 0%

Turquoise Gpc5 484 22%*

*
Indicates the module is significantly enriched in differentially expressed genes. (Full list of modules, modules gene members, hub genes and 

percent differential expressed genes in all cell types are presented in Supplementary Table 5).
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