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Abstract
Purpose of Review  Recent advances in genomic technology and molecular techniques have greatly facilitated the identifica-
tion of disease biomarkers, advanced understanding of pathogenesis of different common diseases, and heralded the dawn 
of precision medicine. Much of these advances in the area of diabetes have been made possible through deep phenotyp-
ing of epidemiological cohorts, and analysis of the different omics data in relation to detailed clinical information. In this 
review, we aim to provide an overview on how omics research could be incorporated into the design of current and future 
epidemiological studies.
Recent Findings  We provide an up-to-date review of the current understanding in the area of genetic, epigenetic, proteomic 
and metabolomic markers for diabetes and related outcomes, including polygenic risk scores. We have drawn on key exam-
ples from the literature, as well as our own experience of conducting omics research using the Hong Kong Diabetes Register 
and Hong Kong Diabetes Biobank, as well as other cohorts, to illustrate the potential of omics research in diabetes. Recent 
studies highlight the opportunity, as well as potential benefit, to incorporate molecular profiling in the design and set-up of 
diabetes epidemiology studies, which can also advance understanding on the heterogeneity of diabetes.
Summary  Learnings from these examples should facilitate other researchers to consider incorporating research on omics 
technologies into their work to advance the field and our understanding of diabetes and its related co-morbidities. Insights 
from these studies would be important for future development of precision medicine in diabetes.
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Introduction

There has been a marked increase in the prevalence of dia-
betes with 420 million people affected globally [1]. Tradi-
tional population- and family-based epidemiological studies 
have provided important insights on distribution of disease 
in time, place and person as well as trends over time. These 
data have generated hypotheses regarding aetiologies and 
mechanisms. Recent advances in genotyping and the study 
of genetics and other molecular markers together with the 
availability of different high-throughput platforms used to 
investigate different omics layers have ushered an exciting 
era in omics research. When these technologies are applied 
to well-characterized epidemiological cohorts, they can pro-
vide deeper insights on aetiology, disease pathways, progno-
sis and causation to improve the precision of diagnosis and 
classification for personalized treatment [2]. Public health 
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workers and practising physicians with interests in epide-
miology and precision medicine are in a prime position to 
set up new cohorts or leverage existing cohorts to discover 
diagnostic and risk stratification tools as well as drug targets 
aimed at preventing and improving clinical outcomes. In this 
review article, we provided a brief overview on how omics 
research could be incorporated into the design of current 
and future epidemiological studies. Throughout the review, 
we drew on examples from the literature, as well as our own 
experience of conducting omics research using the Hong 
Kong Diabetes Register and Hong Kong Diabetes Biobank, 
as well as other cohorts, to illustrate the value of adding 
omics research into epidemiological studies. Learnings from 
these examples should facilitate other researchers to consider 
incorporating research on omics technologies into their work 
to advance the field and our understanding of diabetes and 
its related co-morbidities.

Preparation for Omics Studies and Sample 
Considerations

Whilst there is a wide spectrum of omics that can be consid-
ered, ranging from information on the genome to epigenome, 
and the transcriptome, proteome, metabolome and others, 
the needs of the project need to be balanced against the costs 
and time required for collecting the required biospecimens 
and subsequent processing costs. Therefore, the best time 
to plan for omics studies is definitely before embarking on 
a new epidemiological study, so that the main focus of the 
project can be addressed, whilst also trying to “future proof” 
the cohort by considering any potentially necessary samples 
for future research. That said, it is possible to add the col-
lection of specific samples after a project has commenced. 
For example, it is not uncommon for genetic data to be 
added during the follow-up phases of a longitudinal cohort. 
Whilst it is true that the DNA sequence cannot be changed 
and hence obtaining DNA at a later stage for genotyping or 
sequencing would not give rise to results that are different 
to results that would be generated if the DNA samples were 
collected at baseline, other non-coding changes in DNA, 
such as methylation or other epigenetic changes, including 
leukocyte telomere length (LTL), do change with time and 
environmental exposure, and hence would differ at follow-
up compared to baseline, hence highlighting the additional 
benefit of having considered this upfront, and the potential 
benefit of serial collection of DNA to search for changes in 
these epigenetic marks. Table 1 summarizes some of the dif-
ferent types of omics research, and some general comments 
regarding the sample types and key considerations.

Another key issue that warrants some discussion is pre-
analytic considerations. In addition to collecting the right 
types of specimens for subsequent omics profiling, it is 

important to bear in mind the different characteristics or pit-
falls of analysis using the different platforms. Whilst genetic 
variations represent stable and permanent changes in the 
DNA sequence, methylation changes are subject to aging, 
effects of environment and treatment. On the other hand, 
metabolomic markers are more dynamic and unstable, and 
subject to metabolic perturbations as well as degradation. 
Whilst most protein markers are relatively stable, peptide 
hormones such as insulin are easily degraded. Hence, sample 
collection, transport and storage need to take into account 
the need to preserve the most labile or unstable analytes, 
and the adoption of best practice for sample collection and 
biobanking can enhance the success of subsequent omics 
profiling. Minimal sample handling, ensuring minimal sam-
ple transport and ensuring low temperature during transit 
and temperature monitoring during transit before storage 
at − 80 °C are some of the necessary steps to ensure samples 
are suitable for metabolomics profiling [3]. Further details 
on biobanking are available from more specialized reviews 
on this topic, and the white papers from the UK Biobank 
represent another good source of information [4]. We should 
highlight that whilst these omics technologies can be applied 
to different sample types, we have focused our discussion on 
the analysis of samples that are most likely to be collected in 
the setting of epidemiological investigations, such as blood 
samples.

Genetic Studies, GWAS and Polygenic Risk 
Scores

Family studies have revealed notable genetic components 
for diabetes and diabetic complications [5–8]. Genetic stud-
ies of diabetes and its complications however underwent 
several phases as the molecular technology evolved [9]. As 
one of the earliest efforts, linkage analysis had limited dis-
coveries of genetic loci with robust large effects. Candidate 
gene studies, another approach commonly adopted, were 
prone to false positives and confounders. Early genome-
wide association studies (GWAS) provided an alternative, 
high-throughput solution, but suffered from insufficient 
sample sizes to identify loci with modest effect sizes, which 
in fact account for the majority of the genetic component 
underlying complex traits [10]. With the rapid development 
of sequencing technologies, establishment of large biobanks 
and collaborative meta-analyses aggregating a large num-
ber of diabetes cohorts over the last decade, major break-
throughs have been achieved in the understanding of the 
genomics and genetics related to diabetes. Numerous stud-
ies conducted in diverse populations have greatly advanced 
our understanding on the genomic architecture and genetic 
heritability of complex diseases including diabetes. Similar 
studies have been undertaken in the Hong Kong Diabetes 
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Register (HKDR) [11, 12] and Hong Kong Family Diabetes 
Study (HKFDS) [13, 14] using these approaches, ranging 
from linkage analyses [15], candidate gene studies [16], 
GWAS [17] and meta-analyses [18, 19], to more recent 
sequencing efforts.

Diabetes is classically divided into an earlier-onset auto-
immune form (type 1 diabetes; T1D) and a later-onset non-
autoimmune form (type 2 diabetes; T2D), which account for 
the two main types of diabetes. Genetic exploration of T1D 
has mainly focused on the human leukocyte antigen (HLA) 
region, which presents the strongest association with T1D 
[20–22]. In addition, more than 60 loci outside of the HLA 
region have also been linked to T1D, including common 
variants revealed by GWAS in genes involved in immune 
regulation such as IL2RA and CTLA4 [23–25], as well as 
rare variants underscored by targeted sequencing of known 
loci, e.g. PTPN22 [26]. Although sequencing studies are 
known to complement GWAS by providing a more com-
prehensive characterization of genetic variation in a locus, 

there are currently limited large-scale sequencing efforts 
carried out in individuals with T1D.

The fast-growing epidemic of T2D and its devastating 
complications have spurred greater efforts in studying the 
genetics of T2D [27]. Earlier work in the genetic explora-
tion of T2D has been extensively discussed elsewhere [28, 
29]. To date, the largest GWAS on T2D is a multi-ancestry 
meta-analysis of more than 2.5 million individuals includ-
ing over 0.4 million T2D cases [30]. This study identified 
1289 distinct association signals mapped to 611 loci reach-
ing genome-wide significance. Index genetic variants in the 
most recently identified disease loci tend to be predomi-
nantly common (minor allele frequency [MAF] over 5% in 
at least one ancestry group) and had small effect sizes (odds-
ratios [OR] < 1.1). Apart from the expansion of known T2D 
loci, another contribution of this study was the detection of 
ancestry-correlated heterogeneity enriched at the T2D asso-
ciations, which provided explanation to the varied allelic 
effects among populations of different ancestry groups.

Table 1   Examples of the 
different types of omics 
research, the types of 
samples required and special 
considerations in the collection 
of samples and biobanking 
procedures in epidemiological 
studies. Abbreviations in the 
table: CpG region of DNA 
where a cytosine occurs next to 
a guanine nucleotide, DNAase 
deoxyribonuclease, NMR 
nuclear magnetic resonance, 
PCR polymerase chain reaction, 
RRBS reduced representation 
bisulfite sequencing, SNP single 
nucleotide polymorphism, 
WGBS whole genome bisulfite 
sequencing

Type of biomarkers Sample type Profiling methods 
or analy�c 
approach

Typical 
sample sizes 
required

Special 
considera�ons

Gene�cs and genomes (e.g. genome wide associa�on studies (GWAS))

common variants/
single gene�c 
polymorphisms (SNPs)

DNA 
(commonly 
extracted 
from 
leukocytes or 
whole blood, 
but also 
poten�ally 
from other 
�ssues)

Whole-genome 
genotyping arrays

Typically 
comparing 
thousands of 
cases versus 
controls 

Quality of DNA 
less cri�cal 
compared to 
other 
applica�ons

Low frequency or rare 
variants / muta�ons

As above Whole exome 
genotyping arrays 
or exome 
sequencing, 
targeted 
sequencing,
whole genome 
sequencing

Family-based 
cohorts or 
large cohorts 
with sample 
size larger 
than GWAS 
due to low 
frequency of 
variants of 
interest

Popula�on- or 
family-specific  

All variants As above Whole genome 
sequencing

Variable 
depending on 
allele 
frequency 
and effect 
size

Limited by 
current high
costs 

SNPs in candidate genes As above Sanger 
sequencing, 
allele-specific PCR 
or real-�me PCR

Variable 
depending on 
allele 
frequency 
and effect 

Easier to 
perform but 
less 
informa�ve
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Protein-coding variants or variants with low frequency 
have long been considered one of the explanations for the 
missing heritability, whereby common variants cannot fully 
account for the heritability for complex diseases like T2D 
[31]. An exome-array association study in over 80,000 T2D 
cases and 370,000 controls from five population groups 
reported 40 distinct coding-variant associations across 38 
loci at study-wide significance, among which 16 (40%) 
association signals were located beyond known T2D loci 
[32]. Population-specific analyses and trans-ethnic meta-
analyses revealed similar associations at the reported loci in 

European-descent populations and the overall study popula-
tion, except for a variant in PAX4 that was unique in East 
Asians [27]. Interestingly, although the study had increased 
power and sufficient coverage to capture low-frequency 
variants, 35 (87.5%) of the 40 independent coding-variant 
associations were common (MAF > 5%) and with modest 
effects (ORs 1.02–1.36). The remaining five signals also did 
not exert stronger effects than expected on the susceptibility 
to T2D, with ORs ranging from 1.09 to 1.29. Notably, fine-
mapping analysis of the associated variants in the context of 
regional linkage disequilibrium (LD) by large-scale GWAS 

Table 1   (continued) size
Structural variants (SV)
or copy number 
varia�ons (CNV)

As above long-read 
sequencing, SNP 
genotyping or 
other methods

Complements 
short read 
sequencing 
which 
discards 
many SVs and 
CNVs which 
may be 
significant  

Limited by 
current high 
costs  

Epigenomes (1) – DNA methyla�on (e.g. epigenome wide associa�on studies (EWAS))
Methyla�on markers Methyla�on 

at CpG sites 
using 
peripheral 
blood

Pyrosequencing, 
EpiTYPER, 
methyla�on-
specific PCR

Hundreds to 
thousands of 
cases and 
controls or 
within 
cohorts

Choice of 
�ssue highly 
relevant

As above As above Pre-designed 
methyla�on 
arrays (e.g. 
Infinium arrays) 
as the most 
commonly used 
pla�orm

Hundreds to 
thousands of 
cases and 
controls or 
within 
cohorts

Need to adjust 
for cell type 
composi�on in 
blood, as well 
as batch 
effects. 
Prospec�ve 
cohorts are 
preferred since 
reverse 
causa�on due 
to methyla�on 
changes 
secondary to 
phenotype 
being 
examined can 
confound the 
analysis 

As above As above Methyl-binding 
domain (MBD)-
sequencing, 
Reduced 
representa�on 
bisulfite 
sequencing 
(RRBS) etc.

Tens to 
hundreds of 
samples, but 
larger sample 
sizes likely 
preferred

Allows more 
comprehensive 
inves�ga�on 
on genome-
wide scale for 
EWAS

As above As above Whole-genome 
bisulfite 
sequencing 

Tens to 
hundreds of 
samples, but 

Currently the 
gold standard, 
providing 
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data only confirmed the causality of 16 (40%) signals, where 
one-third of the top coding-variant associations were likely 
to be driven by local non-coding variations nearby. Such 
“false leads” could result in an inappropriate inference on 
the disease etiology. Therefore, coding variants prioritized 
in genetic association studies, though functional, might not 
necessarily be causal. Careful investigation is required to 
correctly interpret the findings and the underlying biologi-
cal significance.

As sequencing technologies become more high through-
put and the costs continue to drop, whole-exome and whole 

genome sequencing (WES/WGS) have been increasingly 
applied to the study of the genetics of complex diseases [33, 
34]. So far, the largest sequencing study in diabetes reported 
exome sequencing analyses of over 20,000 individuals 
with T2D and ~ 24,000 non-diabetic controls [33]. Gene-
level association analysis of rare variants (MAF < 0.5%) 
identified 4 genes at exome-wide significance: MC4R, 
PAM, SLC30A8 and UBE2NL. Of note, the association of 
SLC30A8 with T2D was driven by 90 missense variants, 
where the reduced protein activity was linked to decreased 
T2D risk. However, a comparison of rare and common 

Table 1   (continued) (WGBS) larger sample 
sizes likely 
preferred

single CpG site 
resolu�on, but 
limited by high 
costs

Epigenomes (2) : Histone modifica�ons and chroma�n conforma�on
Open Chroma�n Prepara�on of 

fresh samples 
for 
precipita�on 
of chroma�n  

DNase I 
hypersensi�vity 
sequencing 
(DNase seq), 
(formaldehyde-
assisted isola�on 
of regulatory 
elements 
sequencing
(FAIRE-seq) or 
assay for 
transposase-
accessible 
chroma�n using 
sequencing
(ATAC-seq)

Tens to 
hundreds of 
samples

Chroma�n structure DNA from 
cells or �ssues

Chromosome 
Conforma�on 
Capture (3C) 
analysis and other 
derived 
techniques

Tens to 
hundreds of 
samples

Requires living 
cells

Chroma�n structure DNA from 
cells or �ssues

Hi-C, single-
molecule long-
read sequencing

Tens to 
hundreds of 
samples

detects 
genome-wide 
chroma�n 
interac�ons

Epigenomes (3): non-coding RNA 
Small non-coding RNA 
e.g. Micro-RNA (miRNA)

Serum, 
plasma, urine 
or �ssues for 
extrac�on of 
miRNA

Candidate 
miRNAs by real-
�me PCR

Tens to 
hundreds of 
samples

Lithium 
heparin tubes 
not suitable for 
miRNA 
profiling. 
Haemolysis 
may affect 
levels of 
certain 
miRNAs (e.g. 
miRNA-126)

High-throughput 
profiling by 
miRNA arrays or 
small RNA 
sequencing

Long non-coding RNA 
e.g. long intergenic 
ncRNAs (lincRNAs)

Known targets by 
Tiling array
Novel discovery 
by RNA-Seq
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Table 1   (continued)
Transcriptomes
mRNA/
transcriptomics

Blood total 
RNA or �ssues 
of interest

Expression arrays, 
RNA sequencing

Tens to 
hundreds of 
samples

Expression 
profiles are 
highly �ssue-
specific

Proteomes  
Protein markers Blood or urine Mass 

spectrometry 
(MS) or mul�plex 
targeted 
pla�orms (e.g. 
Somalogic, Olink) 

Hundreds to 
thousands of 
samples

Blood or urine Measurement of 
a single 
biomarker, o�en 
using an�body-
based assays such 
as ELISA

Hundreds to 
thousands of 
samples

Less 
informa�ve 
but more 
accessible

Metabolomes  
Non-targeted 
metabolomics

Blood or urine Nuclear magne�c 
resonance (NMR) 
spectroscopy, MS, 
Fourier transform 
infrared (FTIR) 
and high-
performance 
liquid 
chromatography 
(HPLC) etc.

Hundreds to 
thousands of 
samples

Condi�ons 
during sample 
collec�on, 
transport, 
processing and 
storage very 
important. 
Need to 
standardize 
factors 
including �me 
of day for 
sample 
collec�on, 
fas�ng status 
etc.

Targeted metabolomics Blood or urine Includes NMR-
based panels (e.g. 
Bruker, 
Nigh�ngale)

Hundreds to 
thousands of 
samples

Gut microbiome Usually would 
u�lize stool 
samples

16s ribosomal 
RNA sequencing, 
shotgun 
metagenomics

Hundreds to 
thousands of 
samples

Highly variable 
depending on 
loca�ons, diet, 
popula�ons 
and use of 
medica�ons 

Other ’omes

Exposome
Blood, urine 
or other 
samples for 
profiling of 
environmental 
pollutants

Mass 
spectrometry or 
others

Hundreds to 
thousands of 
samples

Variable 
depending on 
the parameter 
or chemical 
being 
evaluated

Phenomes 
Other phenotype data 
including data collected 
from wearables

Depends on 
the sensors 
used to collect 
data, ranging 
from diet, 
physical 
ac�vity, sleep, 
to other traits

Clinical 
assessment and 
wearables 

Variable O�en added 
dimension of 
different 
dura�on of 
data collec�on 
and varia�on 
during data 
collec�on
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variant associations in subjects with both sequencing and 
genotyping data suggested that sequencing had limited 
power in detecting single-variant associations when com-
pared with imputed array-based genotype data. In addi-
tion, even the strongest gene-level signals for rare variants 
resulted from sequencing data only explained 25% of the 
heritability of the strongest single-variant signals for com-
mon variants, arguing against conventional speculation that 
rare variants might have a large contribution to T2D herit-
ability. Power analysis in the study further emphasized the 
need for large sample size in sequencing studies, where the 
authors estimated more than one million samples would be 
required for rare-variant signals in validated T2D therapeu-
tic targets to reach exome-wide significance. These results 
highlight that sequencing study and array-based GWAS 
should be complementary in understanding the genetics of 
complex diseases like diabetes, with the former identify-
ing informative alleles and the latter for locus discovery 
and fine-mapping. With the anticipated drop in sequencing 
costs, the integration of WES/WGS with available GWAS 
data in well-characterized cohorts will remain the main 
approach for identifying causal genes for diabetes in the 
near future. Nevertheless, it is also important to note that 
for complex diseases with partial penetrance, the concept of 
multicausality and the interaction of genetic predisposition 
with exposures over the life course are important considera-
tions in these analyses [35, 36], and the availability of deep 
phenotyping, as well as the application of these principles 
in data interpretation, are important to improve understand-
ing based on the genetic results generated.

Similar strategies have been applied to identify the 
genetic basis of diabetic complications and related out-
comes, though the progress of these efforts lags signifi-
cantly behind the studies on the genetics of T2D, mainly 
due to the limited sample size of studies so far conducted, 
and the heterogeneity of definitions being used for the out-
comes of interests, such as diabetic kidney disease [37, 38], 
in part due to natural history of disease and modification 
by interventions. A detailed discussion on the genetics of 
diabetic complications is beyond the scope of this review, 
and is covered in more detail elsewhere [39, 40].

Polygenic Risk Scores for Diabetes

Recent advances in GWAS for diabetes have helped drive 
progress in the prediction of individual genetic suscepti-
bility to diabetes. One such development is the polygenic 
risk score (PRS), which aggregates the effects of genetic 
variants into one summary score. There have been increas-
ing studies highlighting the utility of PRS not only for risk 
stratification, but also for predicting diabetes progression, 
clinical outcomes, treatment response and disease subtyp-
ing [41–43].

For T1D, the majority of genetic risk is accounted for 
by the HLA class II (DR-DP loci), HLA class I and other 
non-HLA loci including INS and PTNP22 [44]. Previous 
studies have demonstrated the inclusion of PRS into models 
with clinical parameters could improve T1D risk prediction 
[45–47] and aid discrimination of T1D from T2D [48–50], 
or from the general population [51]. Oram and colleagues 
[48] developed a 30-SNP PRS for T1D (denoted as GRS-
1) that comprised HLA and non-HLA variants, which was 
shown to accurately distinguish between T1D and T2D (area 
under the curve [AUC] = 0.88) and predict progression to 
insulin deficiency (AUC = 0.87) in young adults with dia-
betes. The second version of Oram’s T1D GRS (known as 
GRS-2) was extended to 67 HLA and non-HLA variants 
that comprehensively integrate DR-DQ risk, HLA inter-
actions and additional non-HLA SNPs [49]. T1D GRS-2 
significantly improved the discrimination (AUC = 0.93) of 
T1D from T2D and from controls. However, currently most 
T1D PRSs were developed and tested only in populations 
of European ancestry, which could restrict its generalization 
and transferability in non-European populations [43, 52]. Of 
note, non-European populations have ancestry-specific vari-
ants, different frequencies of specific alleles and haplotypes, 
and peculiar subtypes like fulminant T1D reported in China, 
Japan and India [53•].

In parallel, T2D PRSs have also been found to be of use 
for risk stratification in the general population, or help with 
prediction of disease progression in T2D patients [54]. A 
study by Mahajan and colleagues [55], utilizing data from 
UK Biobank, found that individuals in the top 2.5% of the 
PRS distribution were at 9.4-fold increased risk compared 
with the bottom 2.5%. Meanwhile, in a Chinese cohort of 
patients with T2D from the HKDR, a T2D PRS consisting 
of 123 T2D-associated SNPs predicted rapid progression to 
insulin therapy [56]. Further, increasing GWAS from non-
European populations [57–59], large-scale trans-ancestry 
meta GWAS [54, 60] and novel cross-population/trans-
ancestry PRS methods [61] has facilitated the transferability 
of T2D risk prediction in diverse populations. For instance, 
based on a Bayesian polygenic modeling method, PRS-CSx 
[62], Ge and colleagues [61] constructed a trans-ancestry 
T2D PRS by integrating T2D GWAS from European, Afri-
can and East Asian populations and demonstrated that the 
top 2% of the trans-ancestry PRS distribution can identify 
individuals of European, African, Hispanic/Latino and 
East Asian ancestry with an approximately 2.5–4.5-fold 
of increase in T2D risk, which corresponds to a similar 
increased risk of T2D for first degree relatives of someone 
with T2D.

T2D is increasingly recognized as a collage of varied 
pathophysiological states with heterogeneous etiology 
[63]. In a similar vein, T2D PRS, as a unitary sum-
mary score, may not fully capture the complexity of the 
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heritable risk. According to the “palette” model [64••], 
a series of underlying pathophysiological processes 
contribute towards the development of T2D. Therefore, 
increasing attention has been drawn to partition PRS by 
genetic clustering or decomposition, in order to achieve 
more personalized risk prediction. Udler and colleagues 
have decomposed the genetic associations across diabe-
tes-related biomarkers and identified five T2D genetic 
clusters using a “soft” clustering method [65], which 
was further extended into ten clusters in their recent 
work [66]. These clusters/partitioned PRSs showed dis-
tinct patterns of associations with metabolic traits and 
clinical outcomes related to T2D [65–67], suggesting 
the great potential of process-specific PRS to provide 
mechanistic insights into the heterogeneity of T2D and 
advance precision medicine in diabetes. Besides, fine-
mapping, functional annotation and partition of T2D 
loci by integrating the transcriptome and epigenome 
information could help develop mechanism-driven 
tissue-specific PRS. Miguel-Escalada and colleague 
[68] constructed an islet-specific T2D PRS using islet 
enhancer hub variants involved in islet gene regulation 
and insulin secretion and showed its potential in delin-
eating T2D risk profiles from the novel perspective of 
tissue-specific epigenomic mechanisms.

However, one should exercise caution when interpret-
ing the results of risk stratification based on PRS because 
PRS alone may not perform so well on its own, but can be 
improved when PRS are considered in combination with 
existing risk factors [69]. Therefore, the clinical utility 
of PRS for diabetes should be assessed combining other 
clinical risk factors, such as BMI (body mass index), 
GADA (glutamic acid decarboxylase antibodies), and 
fasting glucose and insulin. Besides, diabetes is the prod-
uct of the combination and interaction of genetic (G) and 
environmental (E) factors. It still remains unclear whether 
and how GxE interactions influence the effect of PRS. In 
other words, the effect of the T2D PRS would depend on 
the level of the environmental risk factors like lifestyle, 
socioeconomic status and environment pollutants. Merino 
and colleague [70] explored if T2D PRS and diet quality 
have a synergistic effect on the risk of T2D and found 
only independent associations between the two factors 
and incident T2D. Therefore, evaluating the interactions 
between T2D PRS and environmental factors in diverse 
populations could help improve the transferability of PRS 
and unravel the clinical heterogeneity of diabetes.

Whilst many epidemiological cohorts have contrib-
uted to the identification of genetic factors for diabe-
tes, analyses increasingly require collaborative analy-
ses across many cohorts involving participants from 
different ethnic populations taking into consideration 
the clinical contexts, e.g. ecological anthropology and 

healthcare environment. Nevertheless, genetic studies 
have highlighted the potential of epidemiological cohorts 
to contribute towards biological understanding of com-
mon diseases. Discoveries from WGS/WES and GWAS 
will have different utilities and are complementary. PRS 
from GWAS can be used for prognostication and patient 
segmentation, and can be used as companion diagnostics 
whilst WGS/WES will provide drug targets for modify-
ing disease pathways. Applying these 2 technologies to 
prospective cohorts with detailed phenotyping along with 
interventions provide an important strategy for precision 
medicine.

Epigenomics, miRNA and Other Epigenetic 
Biomarkers

Along with genetics, the regulation of gene expression 
can be achieved through epigenetic modifications without 
altering the DNA sequence [71]. There are multiple mech-
anisms involved in the epigenome including non-coding 
RNA regulation, DNA methylation and histone modifica-
tions. These mechanisms are critical in controlling gene 
expression, cell development and differentiation. As envi-
ronmental exposures and external factors can modify the 
epigenome, dysregulation of the epigenome is thought 
to provide a picture integrating environmental as well as 
germ-line genetic variation which may contribute to the 
development of different chronic diseases, including dia-
betes and related co-morbidities [72, 73]. Furthermore, 
epigenetic changes have been implicated to mediate gly-
caemic or metabolic memory, whereby previous exposure 
to hyperglycaemia may lead to sustained effects on gene 
expression and increased risk of diabetes complications 
[74•, 75].

MicroRNAs (miRNAs) are a class of non-coding and 
single-stranded RNAs with lengths of 18–25 nucleotides 
[76, 77]. MiRNAs play an important role in the post-tran-
scriptional regulation of gene expression by epigenetic 
modulation [78]. Capable of RNA interference, miRNAs 
can bind with target messenger RNAs (mRNAs) to inhibit 
translation or induce mRNA degradation [79]. Since 
miRNAs are involved in an extensive range of biologi-
cal processes including cell development, differentiation, 
proliferation and apoptosis, they have been proposed as 
potential disease biomarkers [76, 80•]. With high stability 
and resistance to degradation in human biofluids, circulat-
ing miRNAs have emerged as promising biomarkers for 
diabetes [76] and diabetic complications [80•, 81].

In a recent sequencing-based analysis of islet miR-
NAs, human pancreatic islet samples were used for RNA 
sequencing, small-RNA sequencing and genotyping. 
Eighty-four miRNAs were found to be highly heritable, and 
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mainly regulated by trans-acting genetic effects. In addi-
tion, the study identified 14 T2D-related miRNAs including 
miR-21-5p and miR-187-3p [82]. High-throughput quan-
titative real-time PCR (qPCR) is another commonly used 
approach in miRNA profiling. OpenArray and Dynamic 
Array are high-throughput qPCR platforms that require 
small reaction volumes (nanoliters) for each reaction. They 
have been applied to validate a miRNA signature generated 
by small-RNA sequencing in diabetic retinopathy [83].

From the HKDR cohort, screening of miRNA mark-
ers for liver cancer in T2D patients was conducted using 
serum-extracted RNA. Applying microarray for discovery 
and qPCR validation, miR-122-5p and miR-455-3p were 
identified to be potential biomarkers to predict the devel-
opment of liver cancer [84]. Circulating miRNAs could 
also be used to predict the development of T2D. Gesta-
tional diabetes mellitus (GDM) is a common pregnancy 
complication and is associated with sevenfold increased 
risk of T2D in later life [85]. Using postpartum plasma, 
an observational study explored the potential of circulat-
ing miRNAs to predict the future development of T2D. 
OpenArray and qPCR were applied for discovery and 
validation, with miR-369-3p identified to be significant 
after validation and multiple comparisons. It is suggested 
that the measurement of this miRNA could improve the 
subsequent prediction of T2D in women with GDM [86].

DNA methylation is another important epigenetic modi-
fication, occurring mainly in the CpG islands [87]. DNA 
methyltransferases (DNMTs) mediate DNA methylation by 
covalently adding a methyl group to the 5′ position of the 
cytosine residue, leading to transcriptional silencing [74•]. 
In an early epigenome-wide association study (EWAS) using 
methylation arrays in the London Life Sciences Prospective 
Population (LOLIPOP) study, 5 methylation markers iden-
tified from methylation profiling of peripheral blood were 
found to be associated with incident T2D, including a site in 
the TXNIP gene, a methylation locus which has consistently 
been replicated since [88]. Interestingly, a methylation score 
constructed from the top 5 loci was strongly associated with 
incident diabetes across cohorts, independent of established 
risk factors [88]. Findings from such EWAS efforts comple-
ment findings from epigenomic profiling of diabetes-related 
tissues such as adipose tissue, which found differential meth-
ylation in some novel loci, in addition to established T2D-
related genes, such as PPARG, KCNQ1 and TCF7L2 [89].

The Diabetes Control and Complications Trial (DCCT) 
and the long-term follow-up in the Epidemiology of Dia-
betes Interventions and Complications (EDIC) Study were 
landmark studies which highlighted the persistent impact 
of a period of suboptimal glucose control, subsequently 
named “metabolic memory”, on the progression of micro-
vascular outcomes in people with T1D [74•, 90]. Profil-
ing of DNA methylation in leukocyte and monocyte DNA 

from participants who experienced metabolic memory and 
microvascular complications, compared to participants in 
the intensive control arm who were free of diabetes com-
plications, identified differential methylation at a number 
of key loci, including hypomethylation at cg19693031 in 
the 3′-untranslated region (3′-UTR) of TXNIP [91]. This is 
particularly interesting given the established role of TXNIP 
in hyperglycaemia [88]. A study conducted in Native Ameri-
cans with T2D identified methylation loci associated with 
baseline renal function and subsequent decline in renal func-
tion [92]. A study in the HKDR, with methylation profil-
ing of 1271 patients with T2D, identified 40 CpG sites sig-
nificantly associated with baseline eGFR, and 8 CpG sites 
associated with decline in eGFR. A prediction model was 
developed to estimate eGFR slope using methylation data, 
which was replicated in the Native American population. 
The model was also useful for improving prediction of end-
stage renal failure among people with diabetes [93]. Interest-
ing, the CpG sites were near genes enriched for functional 
roles in kidney disease, and several of the CpG sites identi-
fied showed association with renal fibrosis [93].

Histone modifications refer to the post-translational cova-
lent addition of functional groups to histone proteins. These 
include histone H3 lysine 4 trimethylation (H3K4me3) and 
H3/H4 lysine acetylation (Kac) associated with active gene 
expression, as well as H3K9me2/3, H3K27me3 and/or DNA 
methylation that are usually associated with repressed gene 
expression [74•]. In participants from DCCT/EDIC who 
experienced metabolic memory and went on to develop 
microvascular complications had enrichment of the active 
chromatin mark H3K9ac, which was associated with the 
mean HbA1c during follow-up. Furthermore, the hyperacety-
lated promoters were enriched for genes involved in inflam-
matory pathways, highlighting the potential role of epigenet-
ics in metabolic memory and diabetes complications [94].

Leukocyte telomere shortening is a biomarker of bio-
logical aging, and may represent another type of epigenetic 
marker in diabetes [95]. In the HKDR, relative leukocyte 
telomere length (rLTL) was found to be inversely associated 
with the risk of incident diabetic cardiovascular and renal 
complications [96, 97].

Summary of some applications of epigenetic biomarkers 
from the above studies are shown in Table 2.

These studies demonstrate the potential of epigenetic 
markers to improve diagnosis and outcome prediction for 
precision medicine in diabetes [2, 98]. Another area where 
epigenetic biomarkers are of particular interest is in the 
developmental origins of diabetes and the potential impact 
of maternal hyperglycaemia and nutrition on epigenetic 
changes [99]. A detailed discussion of this is beyond the 
scope of this review, and readers who are interested in this 
area are referred to review articles which provide more 
details [99–101].
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Applications of Proteomics in Diabetes

Proteomics, an analytical discipline dedicated to exploring 
the dynamic fluctuations in protein composition, expression 
and post-translational modifications, has been instrumental 
in elucidating the pathophysiological mechanisms under-
lying metabolic disorders such as diabetes mellitus [102]. 
Affinity-based assays, which commonly employ either 
monoclonal or polyclonal antibodies tethered to a reporter 
molecule via luminescence, fluorescence, radioactivity or 
enzymatic activity in enzyme-linked immunosorbent assays 
(ELISA), remain the most commonly used approach for 
protein identification and quantification [103]. Neverthe-
less, these assays are inherently constrained by their selec-
tivity for a single analyte of interest, and therefore cannot 
provide an unbiased measure of all proteins in the sample. 
Moreover, the low abundance of most serum proteins poses 
significant challenges to their detectability via traditional 
assays [104]. Mass spectrometry (MS) has emerged as a 
robust alternative, effectively employed in the identifica-
tion and quantification of proteins such as galectin-1 and 
apolipoprotein A-1, both of which exhibit altered expression 
profiles in diabetic individuals [105]. MS methodologies can 
be executed in a targeted or non-targeted modality, affording 
either high specificity in protein identification or simultane-
ous quantification of multiple analytes, even those present 
in low concentrations. Nonetheless, MS entails a laborious 
and temporally extensive workflow, necessitating the deple-
tion of high-abundance plasma proteins, mechanical protein 
separation, trypsin digestion and subsequent verification via 
immunoassays or other confirmatory protocols [106, 107].

Recent advancements in proteomic profiling technolo-
gies have appreciably augmented the efficacy and scope of 
detectable circulating proteins. Affinity-based techniques 
that incorporate antibody multiplexing or innovative affin-
ity reagents have substantially broadened the quantitative 
capabilities of these assays. High-throughput methodologies 
such as nucleic acid affinity reagents (aptamers) or nucleo-
tide-labeled antibodies have become increasingly prevalent. 
The SomaLogic platform employs aptamers, capitalizing on 
the structural versatility of oligonucleotides to specifically 
bind protein epitopes, thereby facilitating protein quan-
tification [108]. Conversely, the Olink platform employs 
nucleic acid–labeled antibodies, enabling the utilization of 
polymerase chain reaction (PCR) technology for protein 
amplification, detection and quantification [108]. Nonethe-
less, the specificity of binding remains an inherent limita-
tion, which can be mitigated through corroborative studies 
employing traditional immunoassays, MS and integrative 
genomic analyses [109, 110].

A Swedish study utilized nucleic acid–labeled anti-
bodies and proximity extension assay to identify seven 

circulating proteins associated with the homeostatic 
model assessment of insulin resistance (HOMA-IR). These 
included the novel association of cathepsin D, as well as 
previously reported proteins such as leptin, renin, IL-1ra 
(interleukin-1 receptor antagonist), hepatocyte growth fac-
tor, FABP4 (FA-binding protein 4) and tPA (tissue-type 
plasminogen activator). However, the associations of IL-
1ra and tPA with incident diabetes were completely attenu-
ated after adjustments for fasting glucose [111]. Mendelian 
randomization analyses also suggested that insulin resist-
ance had a causal effect on tPA levels. In a more recent, 
larger cross-sectional population-based study using the 
EpiHealth study from Sweden, 29 proteins were found to 
be associated with prevalent diabetes mellitus at a false 
discovery rate of less than 5%. Of these, 14 of the reported 
protein associations with T2D were novel [112]. However, 
Mendelian randomization analyses did not find any causal 
relationship between these proteins and diabetes, suggest-
ing they may be more useful as biomarkers. Yazdanpanah 
et al. used proteome-wide Mendelian randomization to 
identify signal regulatory protein γ (SIRPG), interleu-
kin-27 Epstein-Barr virus–induced 3 (IL27.EBI3) and 
chymotrypsinogen B1 (CTRB1) as potential drug targets 
for T1D treatment [113]. In a similar vein, the group uti-
lized available proteomics datasets to identify C-type man-
nose receptor 2 (MRC2), sodium/potassium-transporting 
ATPase subunit β2 (ATP1B2), spermatogenesis-associated 
protein 20 (SPATA20), HP, MANSC domain containing 
4 (MANSC4) and α1–3-galactosyltransferase (ABO) as 
causal proteins for T2D [114].

Overall, proteomics studies have not only led to iden-
tification of novel protein biomarkers, but given the piv-
otal role of proteins in disease pathogenesis, advanced 
the understanding of diabetes. Advancements in protein 
profiling techniques have allowed for the measurement of 
a greater number of circulating proteins with higher speci-
ficity. These developments have the potential to improve 
our understanding of diabetes and other diseases, leading 
to better diagnosis and potential novel treatment options 
in the future.

Application of Metabolomics in Diabetes

Metabolomics, an expanding field of scientific research, 
has its roots in early metabolite analysis and is now pri-
marily used to identify disease biomarkers, including in 
diabetes [115, 116]. Diabetes is associated with metabolic 
disturbances of sugar, protein, fat, water and electrolytes 
that negatively impact organs such as the liver, skeletal 
muscle and adipose tissue [117]. Metabolomics offers a 
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comprehensive view, or “snapshot”, of the metabolic land-
scape, capable of tracking thousands of metabolites across 
cells, tissues or entire organisms [118, 119•]. The technol-
ogy can detect the composition of metabolites and their 
changing trends over time, or after specific perturbations. 
The combination of metabolic and biochemical informa-
tion can also highlight the interaction between relevant 
metabolic and signaling pathways, made possible due to 
improved analytical techniques and data handling systems 
[118, 120, 121]. Various platforms for metabolomic pro-
filing are available, such as nuclear magnetic resonance 
(NMR) spectroscopy, mass spectrometry (MS), Fourier 
transform infrared (FTIR) spectroscopy and high-perfor-
mance liquid chromatography (HPLC), and these have all 
been utilized to advance diabetes research [122, 123].

In the human metabolome, there is a wealth of infor-
mation regarding low molecular weight metabolites 
that originate from diet, such as nutrient intermediates, 
lipids, hormones and other signaling molecules [116]. 
In a nested case–control study of 503 baseline plasma 
samples from the Swedish prospective Västerbotten 
Intervention Programme cohort, taken at a median time 
of 7 years prior to the diagnosis of diabetes, untargeted 
liquid chromatography-MS metabolomics led to identifi-
cation of 46 metabolites associated with incident diabe-
tes, including some novel findings, such as phosphatidy-
cholines (PCs) containing odd-chained lecithins. Many 
of these metabolites exhibited temporal shifts correlated 
with the progression toward diabetes, and 42 of the 46 
remained significant after adjustments for baseline BMI, 
fasting glucose and lifestyle factors [124]. Metabolomic 
studies have also highlighted the potential role of gut 
microbiota in the development of metabolic diseases. 
For instance, higher levels of indole propionic acid, pro-
duced by intestinal microbes, correlated with improved 
insulin sensitivity and a lowered risk of T2D onset in 
the Finnish Diabetes Prevention Study [125]. Large-scale 
NMR metabolomic profiling has also been conducted in 
the large China Kadoorie Biobank. The study identified 
163 metabolites related to the risk of developing T2D, 
and 147 of these remained statistically significant after 
controlling for baseline glucose levels. Elevated levels of 
specific factors, such as the ratio of apolipoprotein B to 
apolipoprotein A-1, triglycerides, and the branched-chain 
amino acids leucine and isoleucine, were all linked to an 
increased risk of incident T2D [126].

Lipidomics, a specialized subfield of metabolomics, 
employs high-throughput methodologies to elucidate 
changes in lipid composition and expression. A study using 
HPLC-multiple reaction monitoring (MRM) measured 
667 serum lipids in subjects with incident diabetes and 
their matched controls, revealing 38 lipids significantly 
correlated with T2D risk. These included triacylglycerols 

(TAGs), lyso-phosphatidyl inositols, phosphatidylcho-
lines, polyunsaturated fatty acid (PUFA)–plasmalogen 
phosphatidylethanolamines (PUFA-PEps) and cholesteryl 
esters. This lipidomic profile enhanced predictive accuracy 
beyond traditional clinical risk factors [127].

In summary, metabolomics represents a powerful tool 
for identifying metabolic disturbances in diabetes and 
potential biomarkers for early diagnosis and targeted 
therapy [103]. As the technology continues to advance, it 
has the potential to considerably expand our understand-
ing of the pathogenesis of diabetes and pave the way for 
precision medicine.

Integrating Omics Research for Novel 
Discoveries and Precision Medicine

Whilst the earlier sections have highlighted recent 
advances to use epidemiological cohorts to identify differ-
ent biomarkers for diabetes and related complications, it 
is the integrative analysis of multiple omics that are likely 
to provide the most useful novel insights towards diabetes 
and related complications. In addition to the integration of 
different layers of omics datasets from different cohorts, 
there should be considerable advantage in leveraging the 
measurement of multiple omics in the same individuals 
(Fig. 1). The UK Biobank, in which the large-scale collec-
tion of detailed information, prospective follow-up, whole 
genome genotyping and exome sequencing, proteomics 
and metabolomics, and the availability of access to the 
data for bona fide researchers, has been transformative 
in its global impact on biomedical research [128, 129]. 
Earlier multi-omics studies have utilized the genetic data 
to integrate the proteomics data for protein quantitative 
trait loci (pQTL) analyses to identify genetic variants that 
regulate protein expression and provide genetic instru-
ments to explore causality between protein biomarkers 
and different diseases using the MR framework [112], and 
likewise for methylation quantitative trait loci (meQTL) 
analyses for methylation markers [88]. In addition, multi-
omics data has been generated in an increasing number 
of cohorts, including the INTERVAL study [110, 130], 
the Fenland cohort [131], China Kadoorie Biobank [126], 
FinnDiane [132] and other cohorts. Similar work is ongo-
ing in the Hong Kong Diabetes Register, Hong Kong Dia-
betes Biobank and the TRansomics ANalysis of Com-
plications and ENdpoints in Diabetes (TRANSCEND) 
Consortium [93, 133–135]. This generation of deep phe-
notyping with multi-omics data in large epidemiological 
cohorts, preferably with prospective follow-up, represents 
another important dimension in “big data” analytics. The 
integration of whole exome sequencing data with metab-
olomics data has facilitated the identification of novel 
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associations implicating rare coding variants, and can 
advance future drug development [136]. Based on first 
principle, genome is the most upstream causal factor (the 
concept underlying MR) with epigenomes, proteome and 
metabolome, being regulators and mediators expressed 
as phenomes further modified by age, sex, exposome, 
demographic microbiome and intervention including 
pharmacological and non-pharmacological. Whilst the 
discovery of biomarkers can be epidemiology-focused, 
unravelling the meaning and applications is very much a 
clinical science, further complicated by the importance 
of health beliefs and behaviour for a chronic disease such 
as diabetes. There are also numerous successful examples 
where the incorporation of omics research into clinical 
trials have helped to identify novel biomarkers for clini-
cal outcomes as well as biomarkers related to treatment 
response [137–141], though there are different limitations 
including the sample sizes of clinical trials being powered 
to detect differences in the primary outcomes in relation 
to the interventions being examined, and relatively short 
duration of the intervention. Given the complexity of the 
subject and the inter-disciplinary nature of this kind of 
work, there are significant advantages for such work to be 
led by physician researchers, epidemiologists or research-
ers with knowledge in epidemiology, human biology and 
medical treatment, in close collaboration with and sup-
ported by allied health professionals (e.g. diet, exercise, 
behavioural), molecular biologists, geneticists, data sci-
entists and members with complementary expertise (e.g. 

chemistry and drug development) to tackle this complex 
subject and advance the field.

In this review, we have provided some representative 
examples of omic studies as applied to the epidemiological 
investigation of diabetes and related outcomes. It is only pos-
sible to provide a snapshot of the most commonly employed 
technologies, and there are numerous other omics platforms 
that we did not have space to discuss in more detail, in par-
ticular radiomics or imaging data, as well as gut microbi-
ome and exposome [142, 143]. For investigators planning 
to embark on epidemiological analyses with biobanking for 
future omics analyses, it is important to be forward-looking, 
and not be limited by currently available technologies. Other 
challenges investigators are likely to encounter in this area of 
work include the capacity and costs for data storage, capa-
bilities for data linkage, methodologies for data analysis, 
integration of data across the different omics platforms and 
clinical phenotypes, and the need for multidisciplinary col-
laboration given the different domains of expertise required. 
Whilst the different omics are tools with the potential utility 
to elucidate disease mechanisms, classify disease subtypes, 
stratify risk and inform targeted treatment, when analyzed in 
an integrated manner, may provide new insights for predict-
ing, preventing, classifying and personalizing care in dia-
betes. Advances in the development of methods, including 
those involving machine learning and artificial intelligence, 
to integrate data from these multi-omics datasets, would also 
be key to future development in this area for precision medi-
cine in diabetes [144, 145, 146••].

Fig. 1   The integration of multi-omics analyses in individuals from 
cohorts can help to drive the development of precision medicine in 
diabetes. Legend: each layer represents increasing complexity which 
have arisen from the genome, epigenome, transcriptome, proteome, 
metabolome and exposome. These information, representing deep 

phenotyping of individuals, may provide information that can help 
inform and guide disease classification and treatment selection, as 
well as predict future risk of complications. Precision Medicine in 
Diabetes reflects the overall efforts to utilize these as well as clinical 
information to guide treatment selection and clinical decisions
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