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Abstract

Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the 

deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. 

This literature review summarizes the development of gene therapy for the GSDs. The abnormal 

accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms 

based upon the enzyme step and tissues involved, such as liver and kidney involvement associated 

with severe hypoglycemia during fasting and the risk of long-term complications including 

hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase 

deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/− 

cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are 

present to a variable degree in animal models for the GSDs, which have been utilized to evaluate 

new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and 

GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating 

the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the 

natural history and progression of the GSDs provides invaluable outcome measures that serve as 

endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing 

face challenges with regard to clinical implementation, including immune responses and toxicities 

that have been revealed during clinical trials of gene therapy that are underway.

Take home message: Gene therapy for the glycogen storage diseases is under development, 

addressing an unmet need for specific, stable therapy for these conditions.
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Background

Glycogen metabolism involves a series of coordinated enzymatic reactions that includes the 

synthesis and breakdown of glycogen polymers (Supplementary Figure S1).1 Deficiencies in 

any of the enzymes or transport proteins involved in the glycogen synthesis and degradation 

pathways can result in a GSD (Table 1; types 0a, 0b, Ia, Ib, II, III, IV, V, VI, IX).2,3 

In addition, deficiencies in enzymes whose actions are external to the canonical glycogen 

metabolism pathways can result in excessive glycogen accumulation and thus are classified 

as a GSD (types VII, X, XI-LDHA, XI-FBS, XII, XIII).2,3 Furthermore, there are several 

disorders that are classified as both a GSD and another disorder, including Lafora disease 

and RBCK1 deficiency which are polyglucosan storage disorders, and Pompe and Danon 

disease which are lysosomal storage disorders. Therefore, the list of GSDs included in Table 

1 is selective and not considered to be a comprehensive list of all known GSDs. PGM1 

deficiency was historically referred to as GSD XIV but has been re-classified as a congenital 

disorder of glycosylation4 and is not discussed further in this review.

The liver and skeletal muscle normally store large quantities of glycogen and therefore are 

the most commonly affected tissues. For this reason, GSDs are classified by the primary 

organs involved – liver, muscle, or both – though additional organs may be involved. 

Individuals with liver GSDs often present in infancy or early childhood with fasting 

hypoglycemia due to the inability to produce sufficient free glucose to maintain euglycemia 

as well as hepatomegaly due to the accumulation of glycogen in hepatocytes. Glycogen 

in the skeletal muscle provides substrates for muscle contraction, and therefore GSDs 

that principally affect the skeletal muscle are characterized by skeletal myopathy, muscle 

pain and weakness, cramps, and exercise intolerance. Cardiomyopathy and arrythmias are 

commonly observed in GSDs that involve the cardiac muscle. The overall incidence of all 

GSDs is approximately 1:10,000–25,000 live births.5–7 The severity of symptoms along with 

the lack of standardized management strategies have driven the discovery and development 

of new therapies including enzyme replacement therapy (ERT) and gene therapy, which 

are still under development and have been shown to be efficacious in preventing disease 

progression and reversing disease involvement.

The purpose of this review is to summarize recent developments in a review of current 

literature relevant to the topic of gene therapy for GSDs, while acknowledging previous 

reviews of some aspects of the field.8–10 Specialized considerations and the stage of 

development for gene therapy or related technologies will be described. Animal models 

being used for gene therapy or with potential to be used for gene therapy are included (Table 

2); a comprehensive review of all GSD animal models can be found in Almodóvar-Payá et 

al.10

Natural history and animal models for the GSDs

Given the lack of specific, effective therapy in general for GSD, gene therapy has been 

developed for several of the individual GSDs.8 However, the preclinical research done in 

advance of clinical trials requires the availability of authentic animal models to evaluate 

safety and efficacy. Furthermore, natural history studies are critical for characterizing 
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disease progression and providing endpoints and biomarkers for clinical trials. To date, 

natural history data has been published for GSD Ia, Ib, II, III, IV, VI, and IX, yet many 

are limited to retrospective chart reviews with small patient numbers from specific countries 

or populations, and thus additional comprehensive natural history studies with inclusion 

of larger patient cohorts and representation from across the world are warranted. Several 

retrospective and prospective natural history studies on GSDs have been conducted or are 

ongoing, providing the much-needed characterization of these disorders for current and 

future gene therapy investigations. Herein, we summarize the available natural history data 

and animal models briefly by GSD type, and compare the phenotypes of animal models to 

those of affected patients.

i. GSD 0a and 0b

GSD 0a is associated with deficiency in glycogen synthase 2 (GYS2), disrupting glycogen 

synthesis in the liver. Patients often present with fasting ketotic hypoglycemia, short stature, 

postprandial hyperglycemia, lactic acidosis, and hyperalaninemia with normal insulin levels. 

There are limited published reports on affected adolescent and adult individuals, and 

therefore long-term disease sequelae is not clear. Current management strategies include 

dietary intervention to prevent fasting hypoglycemia.11 No animals models are available for 

GSD 0a.

GSD 0b is associated with deficiency in glycogen synthase 1 (GYS1) which disrupts 

glycogen synthesis in the muscle, causing cardiomyopathy, cardiac arrythmia, muscle 

weakness, and exercise intolerance.12,13 Patients are managed symptomatically and there 

is a long-term risk of cardiac arrest. A Gys1−/− mouse model features impaired cardiac 

function, edema, pooling of blood, and hemorrhagic liver.14 It has a poor survival rate, yet 

~10% survive birth and live through late adulthood with no apparent functional differences 

despite exhibiting significant cardiac fibrosis.

ii. GSD Ia and Ib

GSD Ia and Ib result in a defect in glycogenolysis and gluconeogenesis as a result 

of deficient glucose-6-phosphatase α or glucose-6-phosphate translocase, respectively. 

Guidelines for the management of GSD I have been previously published.15–17 The natural 

history of hepatocellular adenoma (HCA) formation in GSD I has been detailed in several 

retrospective chart reviews, including the ages when HCA develops and the relationship of 

HCA with metabolic control.18–21 A cohort of affected individuals from the Netherlands 

(N=39), both with optimal and non-optimal metabolic control, were assessed for the natural 

course of renal disease.22 A 2021 review details the current management options, burden, 

and unmet needs in GSD Ia,23 providing support for clinical trials targeting GSD Ia. 

Findings from a retrospective, observational study on individuals with GSD Ib in England 

(N=35) was published in 2021,24 and key findings include the impact of GSD Ib on 

growth, fasting tolerance, bone health, as well as renal, endocrine, and gastrointestinal 

manifestations. That study was limited in conclusions it could draw on the natural history in 

adulthood due to limited adult cases (N=7). The natural history of GSD Ib is continuously 

evolving with the utility of pharmaceuticals to treat neutropenia and neutrophil dysfunction, 

including granulocyte colony-stimulating factor and empagliflozin.25,26 Additional natural 
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history data on GSD Ib is needed to better define future gene therapy clinical trials and 

should include data on affected individuals from around the world. Lastly, patient-reported 

outcomes and psychosocial impacts of disease are now being detailed in GSD I,27–31 

improving our understanding of disease natural history.

A naturally occurring GSD Ia dog model features a missense variant resulting in a 

methionine to isoleucine substitution in codon 121 of G6PC, which causes hepatomegaly, 

hypoglycemia, renomegaly, lactic acidemia hypercholesterolemia, hypertriglyceridemia, 

hepatocellular carcinoma and renal disease (Table 2).32–35 A GSD Ia mouse model was 

developed by disruption of the G6pc1 gene in exon 3 by a neomycin cassette. These mice 

demonstrated slow growth, hypoglycemia, hyperlipidemia, hepatomegaly, renomegaly and 

generalized dysplasia of cartilage.36 Tamoxifen inducible G6pc−/− mice models specific to 

liver, kidney or intestines have been developed (Table 2).37–40 A G6pt−/− mouse model 

featured the expected neutropenia in addition to other features of GSD I.41 A tamoxifen-

inducible G6pt−/− mouse model demonstrated the expected phenotype, albeit milder and 

with increased survival.42

iii. GSD II (Pompe disease)

GSD II, more often referred to as Pompe disease, is caused by deficiency in acid α-

glucosidase within the lysosome and primarily affects the skeletal muscle, cardiac muscle, 

and diaphragm. Patients are classified as infantile-onset Pompe disease (IOPD) and late-

onset Pompe disease (LOPD) based on age of symptom onset.43 A natural history study 

on disease progression in IOPD was conducted using clinical data from 20 affected Dutch 

infants and 133 cases reported in the literature.44 A retrospective, multinational, multicenter 

natural history study on IOPD (N=168 cases) detailed the progression of disease, including 

the characterization and onset of cardiorespiratory involvement, muscle weakness, feeding 

difficulties, as well as survival curves and prognosis.45 Additional natural history data 

on adults with LOPD has been published, with a prospective observational study (N=94) 

detailing the clinical features and pattern of muscle weakness as well as prognostic factors 

for disease progression.46 An additional prospective international observational study on 

LOPD (N=268 from 15 countries) reported higher mortality than the general population 

in untreated adults with Pompe disease and identified levels of disability and impact 

on participation as factors associated with mortality.47 ERT with alglucosidase alfa was 

approved for patients with Pompe disease in Europe and the United States in 2006, with 

the next generation ERT avalglucosidase alfa gaining approval for use in the United States 

in 2021 for individuals with LOPD one year of age or older, and in 2022 was approved 

for use in Europe for all patients with Pompe disease. Immunomodulation strategies have 

since been employed to induce immune tolerance to ERT in affected individuals who are 

cross-reactive immunologic material (CRIM)-negative and would otherwise develop an IgG 

antibody immune response to the ERT, leading to a deeper understanding of the natural 

history of CRIM-negative individuals that otherwise would have succumbed to the disease 

despite ERT.48 ERT for Pompe disease has drastically improved the survival rates in affected 

individuals,49–53 resulting in the emergence of new phenotypes, including variable central 

nervous system involvement in children with IOPD54–61 and progression of disease in 

individuals with LOPD treated with ERT, including respiratory function and functional 
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outcomes.49,62,63 Furthermore, the addition of Pompe disease to newborn screening (NBS) 

programs in Taiwan in 200564 and the United States Recommended Uniform Screening 

Panel in 2015 has permitted early diagnosis of patients with IOPD, as well as those with 

LOPD who otherwise appear healthy.65 Natural history of patients who are detected on 

newborn screening is continuing to evolve; studies in Taiwan and the United States are 

shedding light on the early involvement and a characteristic phenotype in infants and 

children with LOPD diagnosed via NBS.54,65

There are numerous animal models for Pompe disease (Table 2). A GAA knockout 

mouse model has been used most commonly for gene therapy development which displays 

progressive muscle weakness from glycogen accumulation in heart and skeletal muscle.66 

Another potentially useful model for gene therapy development is a naturally occurring 

dog model found in Swedish Lapphunds which had clinical signs of vomiting, progressive 

muscular weakness, loss of condition and myocardial hypertrophy caused by generalized 

glycogen accumulation in skeletal, esophageal, cardiac and smooth muscles.67

iv. GSD III

GSD III is caused by deficient glycogen debranching enzyme (GDE) activity, resulting in 

disrupted glycogenolysis. Affected patients are classified as GSD IIIa if they experience 

liver and muscle involvement or GSD IIIb if they exhibit liver involvement only. 

Management guidelines for GSD III have been previously published68 and the liver, skeletal 

muscle, and heart involvement in GSD III has been characterized in various reports. The 

International Study on GSD III (ISGSDIII) was conducted and included a multi-center 

retrospective review of growth and development and hepatic, neuromuscular, and cardiac 

complications in individuals with GSD III (175 cases with follow-up into adulthood in 91 

cases).69 Yet, the data was largely cross-sectional rather than longitudinal and thus may not 

fully represent the breadth of long-term complications in GSD III. The natural course of 

liver disease in affected pediatric and adult individuals (N=26) was described and revealed 

key findings on liver pathology, imaging, and biochemistry, including support for using Glc4 

as a biomarker of liver disease progression.70 The extent of cardiomyopathy in GSD III 

(N=33) was described in a retrospective review which detailed the increase in wall thickness 

and left ventricular mass through adulthood in affected individuals with GSD IIIa compared 

to GSD IIIb.71 A retrospective, longitudinal natural history study detailed the clinical, 

biochemical, radiological, functional, and histopathological aspects of the disease course in 

adults with GSD III (N=25) as well as confirmed the use of Glc4 as a biomarker of GSD 

III.72 Furthermore, the musculoskeletal manifestations in GSD IIIa from affected pediatric 

and adult individuals (N=22) were detailed, providing support for monitoring performance 

on functional assessments in future clinical trials.73

Four GSD III mouse models with different Agl gene variants have been described, all 

demonstrating glycogen accumulation in the muscle and liver (Table 2).74–77 There is also 

a naturally occurring curly-coated retriever dog model that demonstrates initial elevations 

of liver enzymes, muscle enzymes, and urine Glc4, as well as hepatomegaly with glycogen 

accumulation in liver and muscle. With disease progression, there was an increase in hepatic 
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fibrosis and eventual cirrhosis in some dogs with a contaminant decease in liver and muscle 

enzymes as well as urine Glc4 (Table 2).78,79

v. GSD IV

GSD IV is caused by reduced or deficient glycogen branching enzyme (GBE) activity 

and results in abnormal glycogen synthesis and the formation of polyglucosan. The 

clinical spectrum of GSD IV is heterogenous and encompasses severe neurological and 

neuromuscular manifestations, myopathy, cardiomyopathy, and progressive liver fibrosis, 

and can present in the neonatal period, infancy, early childhood, adolescence, or adulthood 

(Adult Polyglucosan Body Disease, APBD). A summary of management for all GSD IV 

phenotypes, including APBD, was previously published.80 Additionally, a recent review 

of all published cases with GSD IV that had symptom onset before the age of 25 years 

(N=179) evaluated the extent of multisystem tissue involvement and revealed the pitfalls of 

the traditional subtype classification system.81 Rather than classifying patients into discrete 

hepatic or neuromuscular subtypes, Kiely et al81 recognized that GBE deficiency can 

cause a spectrum of manifestations across multiple tissue systems and affected individuals 

may exhibit differing degrees of hepatic, neuromuscular, and/or cardiac involvement over 

time. An additional natural history study focused on APBD (N=50 cases) defined the 

cardinal signs of the disease and the typical stages of disease progression.82 Long-term 

clinical surveillance and natural history data on GSD IV is needed for future gene therapy 

investigations to better catalog the phenotypic variation in a granular manner. As of May 

2023, there is an active retrospective and prospective natural history study on GSD IV, 

including the adult-onset form APBD (NCT02683512).

There are two naturally occurring large animals displaying clinical features more similar to 

early onset GSD IV with early mortality; these are the Norwegian Forest Cat and American 

Quarter Horse (Table 2).83–89 Three mouse models for GSD IV are described, with clinical 

signs consistent with early, juvenile and adult onset (Table 2).90,91 The adult-onset model 

used homologous recombination to knock in the most common variant found in patients 

of Ashkenazi Jewish descent with APBD, c.986A>C (p.Y329S), and has been used in a 

previous gene therapy study.91

vi. GSD V

GSD V, commonly referred to as McArdle disease, is caused by deficient muscle glycogen 

phosphorylase (myophosphorylase) which disrupts glycogenolysis in the muscle. Patients 

typically present as adults with muscle cramping and rhabdomyolysis during exercise, 

and the ability to resume moderate, aerobic exercise after resting – the “second wind 

phenomenon”. No natural history study of McArdle disease has been published to date. 

Management strategies for GSD V have been reviewed.92 There are naturally occurring 

Charolais cattle and Merino sheep models for McArdle disease, with the sheep being 

used for gene therapy to date (Table 2).93–95 The affected sheep exhibited exercise 

intolerance and muscle biopsy samples showed a lack of myophosphorylase and the 

accumulation of excessive glycogen.95 A knock-in mouse model for GSD V was generated 

by introducing the common p.R50X mutation in exon 1 of the Pygm gene.96 The 

homozygous (PygmR50X/R50X) mice exhibit similar phenotypes as shown in human patients, 
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including lack of myophosphorylase expression and massive glycogen accumulation in 

skeletal muscles, elevated plasma creatine kinase activity, exercise-induced myoglobinuria, 

exercise intolerance, and progressive muscle degeneration, fibrosis and inflammation (Table 

2).96–98 A zebrafish model for GSD V is also described (Table 2).99

vii. GSD VI and IX

GSD IX is caused by deficient phosphorylase kinase (PhK) activity in the liver and/or the 

muscle, whereas GSD VI is caused by deficient liver glycogen phosphorylase activity. PhK 

in the liver phosphorylates and activates glycogen phosphorylase, and therefore patients with 

GSD VI and GSD IX experience disruption in glycogenolysis and can present very similarly 

with fasting hypoglycemia and hepatomegaly. The first natural history review of GSD VI 

and GSD IX was a retrospective chart review of affected individuals in Canada (N=4 GSD 

VI, N=17 GSD IX).100 This report highlighted the long-term complications of GSD VI and 

GSD IX, including HCA and progressive fibrosis. A follow-up retrospective chart review 

of individuals with GSD VI and GSD IX in England (N=9 GSD VI, N=13 GSD IX) was 

conducted to determine the extent of liver involvement at presentation versus the most recent 

follow up, highlighting that although GSD VI and IX are often considered “mild” clinically, 

chronic histological changes could be seen in all liver biopsies.101 However, published data 

from these retrospective natural history studies are limited to that of affected children and 

young adults, emphasizing the need for longitudinal data on affected adults. Additional 

systemic literature reviews have further detailed clinical data on cases with GSD VI (N=63), 

GSD IX α2 (N=183), GSD IX β (N=17), and GSD IX γ2 (N=30).102,103 The reviews were 

conducted in a complementary manner so that findings can be compared to one another, 

including the age at initial presentation, frequency of clinical findings, and pathology 

findings on liver biopsy. Both reviews were not able to fully address the long-term outcomes 

and complications on GSD VI or GSD IX due to limited published follow-up reports, 

emphasizing the need for studies with longitudinal data to guide future clinical trials. 

Moreover, there has been no publication of natural history data for GSD IX α1. Therefore, 

the critical need for comprehensive, longitudinal natural history study data on GSD VI and 

all subtypes of GSD IX remains. As of May 2023, there is an active retrospective and 

prospective natural history study on GSD VI and GSD IX (NCT04454216).

There are no known naturally occurring large animal models for GSD VI, but there is 

promise for use in future gene therapy development with a GSD VI mouse model (C57BL/

6N-Pygltm1a(KOMP)Wtsi or Pygl−/−) (Table 2).104 Pygl−/− mice have enlarged hepatocytes 

from glycogen accumulation with progression to hepatic fibrosis accompanied by increased 

transaminase concentrations in older Pygl−/− mice.104

There are no known naturally occurring large animal models for GSD IX, but two 

murine models exist, γ2 and β (Table 2). A GSD IX γ2 mouse model (C57BL/6 N-

Phkg2tm1.1(KOMP)Vlcg/JMmucd or Phkg2−/−) has massive glycogen accumulation in the liver 

leading to hepatomegaly, early liver fibrosis with elevations in serum liver transaminases, 

and hypoglycemia.105 A rat model (gsd/gsd) has also been described.106–108 A GSD IX 

β mouse model (C57BL/6NJ-Phkbem1(IMPC)J/Mmjax or Phkb−/−) developed mild fasting 

hypoglycemia with elevated blood ketones in the fed and fasting state and histology revealed 

Koeberl et al. Page 7

J Inherit Metab Dis. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT04454216


enlarged, glycogen-filled hepatocytes with minimal collagen deposition at 40 weeks of 

age.109

viii. GSD VII

GSD VII is caused by deficient muscle phosphofructokinase activity, resulting in a block 

in muscle glycolysis. GSD VII typically presents similarly to GSD V with exercise-induced 

muscle cramping; however, patients do not experience a second wind phenomenon. A 

high carbohydrate meal aggravates symptoms, which has been termed the “out of wind 

phenomenon”. The management strategies for GSD VII have been reviewed.92

A naturally occurring nonsense mutation in exon 21 of the PFKM gene has been described 

in English Springer Spaniels, Cocker Spaniels, and Whippet dogs (Table 2).110–112 The 

affected dogs demonstrated mild exercise intolerance, rare muscle cramps, increased serum 

creatine kinase activity, but had no myoglobinuria.110 A new missense point mutation 

(c.550 C>T) in the PFKM gene associated with muscle phosphofructokinase deficiency was 

later described in Wachtelhunds dogs presenting with exercise intolerance and hemolytic 

anemia.113,114 The knockout mouse model of GSD VII (Pfkm−/−) developed hemolysis, 

increased erythropoiesis, and exercise intolerance, as well as high glycogen accumulation 

and increased vascularization and fiber necrosis in the skeletal muscles. High lethality (about 

60%) in the Pfkm−/− mice was observed at around weaning age and those surviving mostly 

died before 6 months of age (Table 2).115

ix. GSD XV

GSD XV is caused by deficient glycogenin-1 activity which results in abnormal glycogen 

synthesis and the formation of polyglucosan in the skeletal muscle and heart. To date, 

literature on GSD XV is limited to case reports describing the clinical presentation 

either with skeletal myopathy or cardiomyopathy.116–129 Rodents carry a single Gyg gene 

compared to humans and other mammals that carry two glycogenin isoforms: Gyg1 and 

Gyg2. A knock-out mouse model of GSD XV (Gyg−/−) has been characterized with 

deficient GYG activity in the muscle, heart, liver, and brain.130 This model recapitulates 

the patient phenotype with skeletal muscle weakness and glycogen accumulation in skeletal 

muscle and heart. However, an important distinction is affected patients accumulate 

polyglucosan (diastase-resistant glycogen) whereas the Gyg−/− mice accumulate diastase-

sensitive glycogen in skeletal muscle and heart tissue.

Preclinical research in GSD gene therapy

Gene therapy has been defined as viral vector-mediated gene delivery, or gene replacement 

therapy, which has been adapted to deliver the components needed for genome editing.131 

This review will focus on viral vector-mediated gene therapy and genome editing 

that achieve stable benefits from transgene delivery. However, other clinically relevant 

therapeutic methods utilizing nucleotides, including encapsulated mRNA, are summarized 

briefly in Table 1.
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i. GSD Ia and Ib

Preclinical development of gene therapy and genome editing for GSD Ia—
While dietary therapy has succeeded in prolonging lifespan of people with this condition, 

it fails to reliably prevent long-term complications of GSD Ia including hepatocellular 

adenoma or carcinoma formation, as well as end-stage kidney disease. Preclinical studies 

have demonstrated the correction of G6Pase deficiency in the liver and hypoglycemia (Table 

3), although only AAV1, AAV2 with adenovirus, and AAV9 vectors have corrected kidney 

abnormalities. AAV vector-mediated gene therapy has achieved long-term efficacy in GSD 

Ia in multiple studies;9 however, the duration of efficacy in these studies was limited as 

hepatic AAV vector genome abundance declined rapidly followed by a more gradual loss 

of biochemical correction.132–134 General approaches to this problem have included higher 

vector dosages135,136 and re-administration of the vector, prior to the formation of anti-AAV 

antibodies.137 These approaches have not comprehensively addressed the loss of efficacy 

due to the loss of AAV vector genomes in animal models for genetic disease. For example, 

a recent study in neonatal G6pc −/− mice revealed that despite the correction of G6Pase 

deficiency by AAV vector-mediated gene therapy, autophagy was only partially restored in 

liver.138 Similarly, gradual loss of efficacy from gene therapy has been shown in canine 

models of GSD Ia.139–141 Puppies treated with gene therapy vectors have increased G6pase 

expression and decreased glycogen in the liver. However, the effect is transient and the dogs 

required re-administration of vector and constant dietary monitoring. Gene therapy was able 

to improve the dogs blood glucose during fasting but ultimately failed to prevent kidney 

failure and liver adenoma and carcinoma, which developed over multiple years following 

initial treatment.34 In contrast, treatment with AAV vector-mediated gene therapy combined 

with continuous nutrition prevented long-term complications of gene therapy in the canine 

model, confirming the value of good metabolic control in the successful treatment of GSD Ia 

that has also been reported in patients.20,142

Genome editing promises to address the limitations of gene therapy by stably integrating the 

therapeutic sequence in chromosomal DNA. Genome editing has been initiated to correct a 

mutation or integrate a transgene as a method to stably treat liver metabolic diseases and 

hemophilia, including GSD Ia, hemophilia B, ornithine transcarbamylase deficiency, and 

phenylketonuria.143–146 The underlying strategy depends upon the stable transduction of 

hepatocytes through genome editing, which prevents the loss of episomal AAV genomes 

due to cell division that limits the efficacy of gene replacement therapy. Increasingly 

genome editing studies use CRISPR/Cas9 as a nuclease, due to its flexibility and high 

nuclease activity. An initial genome editing study used a zinc finger nuclease (ZFN) 

mediated genome editing method, which demonstrated an advantage for genome editing 

in comparison with gene replacement therapy.143 Intriguingly, the addition of bezafibrate to 

induce autophagy during genome editing of G6pc −/− mice more effectively corrected the 

liver abnormalities of GSD Ia, achieving normal G6Pase activity in liver and widespread 

transduction of hepatocytes.147 More recently, CRISPR/Cas9 based genome editing has been 

used to correct a mutation causing GSD Ia in mice.148 Instead of inserting a full length 

transgene, they targeted the most common mutation in GSD Ia patients, G6PC-p.R83C, 

which represents 32% of all diseased alleles in humans. Two AAV vectors were used, one 

expressing Cas9 and a single guide RNA, and a second containing the repair template 
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sequence. GSD Ia mice treated with the CRISPR/Cas9 based editing vectors had 0.7% of 

alleles edited and G6pase expression was 4% of WT after 8 weeks of treatment. The edited 

mice had serum triglycerides, cholesterol, lactic acid, and uric acid levels comparable to 

wild type controls and showed improved blood glucose levels during fasting. All treated 

mice survived, while none of the untreated GSD Ia mice survived to 16 weeks. A recent 

study of CRISPR/Cas9-medatied genome editing in the canine model for GSD Ia revealed 

the integration of a G6PC transgene in up to 1% of alleles for over 16 months.149 These 

preclinical studies with CRISPR/Cas9 or with ZFN-mediated genome editing demonstrated 

that correcting mutations causing GSD Ia or inserting a fully functional transgene hold 

promise for more stably treating GSD Ia, in comparison with gene replacement therapy.

Gene therapy for GSD Ib corrected liver, but not hematologic abnormalities—
GSD Ib is caused by glucose-6-phosphate transporter deficiency, and features neutropenia 

in addition to the liver and kidney involvement seen in GSD Ia.150 AAV vector-mediated 

gene therapy has corrected the liver involvement of mice with GSD Ib without impacting 

neutropenia and its consequences.151 Notably, an AAV vector containing the G6PC 
promoter/enhancer driving G6PT expression corrected liver glycogen and prevented 

hypoglycemia. However, neutropenia was not corrected, indicating a lack of hematologic 

cell transduction. Similarly, mice with GSD Ib were treated with an adenoviral vector 

expression G6PT benefited from correction of liver involvement and hypoglycemia 

transiently, without impacting neutropenia.152

ii. Pompe disease

The availability of ERT has decreased mortality among patients with infantile-onset Pompe 

disease, facilitating a greater understanding of the natural history of these patients.52 

However, muscle weakness (neck flexor weakness, dorsiflexor weakness, myopathic facies, 

ptosis and strabismus) has persisted despite treatment with ERT.53,153,154 There remains a 

high risk for patients with IOPD to develop anti-GAA antibodies that decrease benefits from 

ERT,155 especially those that are CRIM-negative and a subset of CRIM-positive patients. 

The limitations of ERT have driven the development of gene therapy as an alternative (Table 

4). Preclinical studies have generally confirmed both a lower dose requirement and higher 

degree of efficacy from liver-based expression of GAA, or liver depot gene therapy that 

can induce immune tolerance to GAA that prevents and/or suppresses anti-GAA antibody 

formation.156 Studies with muscle-based GAA expression required higher vector dosages 

(Table 4).157,158 A unique strategy of intracerebroventricular administration of an AAV 

vector decreased glycogen in the brain and spinal cord, but not in the muscles.159 Overall, 

studies have demonstrated that liver depot gene therapy with an AAV vector corrected GAA 

deficiency in the heart and skeletal muscle, and improved muscle function testing in GAA 
−/− mice with Pompe disease.160–163

It is expected that gene therapy with AAV vectors will be less effective early in life due 

to the accelerated loss of episomal vector genomes from rapid growth accompanied by cell 

division, which especially affected liver-targeted gene therapy.135,137,164,165 Although AAV 

vectors have advanced to successful clinical trials based upon liver transgene expression,166 

the loss of vector genomes during infancy has exceeded the rate expected solely from 
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cell division in the liver.164,165 Approaches to this problem have included higher vector 

dosages,135,136 and early re-administration of the vector, prior to the formation of anti-AAV 

antibodies.137 These approaches have not comprehensively addressed the loss of efficacy 

in animal models for genetic disease following neonatal administration of AAV vectors. 

However, the long-term benefits of gene therapy in infant mice with Pompe disease 

confirmed the potential value of treatment early in life.163,167,168

Preclinical data have suggested the early treatment with gene therapy might be successful 

in Pompe disease; however, the dose requirements will be higher for treatment very early 

in life. One study directly compared the efficacy of a potentially clinically feasible dose of 

an rAAV8 vector in infant and adult GAA-KO mice.163 Biochemical correction and muscle 

function were evaluated 50 weeks following intravenous administration of the same absolute 

vector dosages at 10 days or 2 months of age to assess the effects of gene therapy either 

early or later in life. Unsurprisingly the degree of biochemical correction was greater in the 

adult-treated mice, because AAV vector transduction is more stable in older animals that 

have completed the rapid growth phase of infancy. Furthermore, the weight-based vector 

dose for treatment of infants was approximately 3-fold higher than for adults.163 Given these 

data, the dose requirement to achieve similar efficacy will be higher for the treatment of 

young patients and the benefits from gene replacement therapy early in life will be relatively 

less than those from later treatment.

Genome editing has been demonstrated in an in vitro experiment with human induced 

pluripotent stem cells from a patient with Pompe disease.169 This study confirmed that 

integration of a GAA-expressing transgene in the AAVS1 locus corrected GAA deficiency 

and decreased glycogen content of patient cells. Nuclease-free strategies have been 

developed for genome editing in hemophilia B,170 which might decrease the risks from 

genome editing by eliminating the need for double-stranded DNA breaks; however, the 

transgene integration efficiency was less than 1% and potentially too low to treat liver 

metabolic diseases. Thus, nuclease-mediated genome editing to create a liver depot for the 

treatment of Pompe disease could enhance the treatment of very young patients with Pompe 

disease.

iii. GSD III

GSD III is categorized based upon tissue involvement, either liver and muscle (GSD IIIa) 

or only the liver (GSD IIIb). Currently no curative treatment is available for the disease. 

Symptomatic treatment does not prevent ongoing disease progression, including liver 

involvement and variable myopathy or cardiomyopathy (see “Natural history and animal 

models for the GSDs” section) and dietary interventions do little to alter the long-term 

course and morbidity of the disease.171–173 In the absence of an effective therapy, patients 

with GSD III will continue to experience progressive liver failure and muscle damage 

accompanied by increased morbidity and mortality.

ERT is not a feasible treatment approach for GSD III due to the lack of a natural receptor-

mediated uptake of the therapeutic enzyme from the blood into target tissues. Chronic daily 

administration of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), 

partially prevented glycogen accumulation in skeletal muscle and liver and reversed hepatic 
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fibrosis in a canine model of GSD IIIa,174 but this treatment is not ideal given the toxicity 

of chronic rapamycin use. Liver-targeted gene silencing of glycogen synthase 2 (GYS2) by 

lipid nanoparticle mediated delivery siRNA prevented progression of glycogen accumulation 

and fibrosis in the liver, but this treatment had no effect on the muscle in a GSD IIIa mouse 

model.175 Gene therapy with AAV vectors, AAV9 in particular, could provide a treatment 

strategy for GSD III as AAV9 vectors can reliably transduce both liver and muscle tissues. 

However, a major challenge of using this approach for GSD III is the inability to package 

the large (4.6 kb) human GDE cDNA into a single AAV vector due to the size limitation of 

AAV. To overcome this limitation, Vidal et al. reported that liver-restricted overexpression of 

secretable human GAA with an AAV vector in GSD IIIa mice reduced glycogen content in 

liver but not in muscle.76 In the same study, the authors used a dual overlapping AAV vector 

system to split the human GDE cDNA into two halves and package them into two separate 

AAV vectors. Upon co-administration of the two AAV vectors, functional hGDE expression 

was achieved in liver and muscle tissues of GSD IIIa mice.76 However, this dual vector 

approach requires administration of very high doses of the two AAV vectors, which may 

potentially lead to adverse hepatotoxicity or even liver failure in patients.176,177 Recently, 

Lim et al. reported an innovative gene therapy approach with AAV vectors expressing 

a small bacterial GDE (Pullulanase derived from Bacillus subtilis) in a mouse model of 

GSD IIIa.77 Intravenous injection of an AAV9 vector containing a 2.2-kb codon-optimized 

Pullulanase cDNA driven by the ubiquitous CMV enhancer/chicken β-actin (CB) promoter 

(AAV-CB-Pull) into infant GSD IIIa mice significantly decreased (by 75–80%) glycogen 

accumulation in the heart and skeletal muscles (not in the liver) and significantly improved 

muscle function after 10 weeks.77 Subsequent treatment with an AAV8 vector (AAV-LSP-

Pull) containing an immunotolerant liver-specific promoter (LSP) further reduced liver 

glycogen content by 75%, significantly decreased liver size, and completely reversed hepatic 

fibrosis.77 In a follow-up study, Lim et al. demonstrated that intravenous injection of 

an AAV vector containing a tandem LSP-CB dual promoter (AAV-dual-Pull) into adult 

GSD IIIa mice effectively decreased Pullulanase-induced cytotoxic T lymphocyte (CTL) 

response and enabled persistent therapeutic Pullulanase expression in liver and muscle, 

accompanied by the reversal of liver fibrosis and improved muscle function.178 In contrast, 

the AAV-CB-Pull vector elicited a strong transgene-related CTL response, resulting in only 

transient Pullulanase expression in adult GSD IIIa mice. This study emphasized the value 

of liver-restricted transgene expression using a LSP in preventing immune responses to gene 

therapy.

iv. GSD IV

To date, gene therapy has only been investigated in the Gbe1ys/ys mouse model. In 2019, Yi 

and colleagues reported on a gene therapy study where 14-day-old Gbe1ys/ys mice received 

a single intravenous injection of AAV9 vector containing a CB promoter and human GBE 

expression cassette (AAV9-CB-hGBE).179 At 3 months of age (10 weeks post-treatment), 

treated mice exhibited increased GBE activity in the brain, heart, and skeletal muscles, but 

not the liver, yet this effect waned and only the heart retained increased GBE expression by 

9 months. Consistent with the GBE activity levels, the AAV copy numbers (copies/nucleus) 

were reduced by 90% in the liver, heart, brain, and skeletal muscles. At 3 months of age, 

treated mice exhibited glycogen levels comparable to wild type levels in the quadricep 
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and gastrocnemius muscles, and reduced glycogen levels in the brain and liver. This trend 

was consistent in treated mice evaluated at 9 months, despite the lack of detectable GBE 

activity in those tissues. Plasma biochemistry at treated mice at 9 months of age revealed 

reduction of liver transaminase and creatine kinase, suggesting alleviation of tissue damage 

in the liver and skeletal muscle. Additional studies are warranted to determine the functional 

improvements as a result of gene therapy in the Gbe1ys/ys mouse.

v. GSD V

The ovine model for GSD V has recently been used to develop treatments in two 

ways: first, by using gene therapy to express muscle glycogen phosphorylase and second, 

by using pharmaceuticals to cause regeneration of muscles leading to re-expression of 

myophosphorylase in muscles. Intramuscular injection of an adenovirus 5 and/or an AAV2 

vector expressing myophosphorylase caused expression of functional myophosphorylase in 

sheep affected with GSD V.180 Interestingly, in the same study, it was noted that damage 

to muscle fibers caused by injection with positive control vectors expressing LacZ caused re-

expression of non-muscle isoforms of glycogen phosphorylase. Other studies in the GSD V 

ovine model have shown similar re-expression of non-muscle isoforms of myophosphorylase 

using valproate and notexin.181,182 Recently, an AAV-mediated gene therapy was tested in 

the PygmR50X/R50X mice. Intraperitoneal injection of an AAV8 vector expressing mouse 

muscle glycogen phosphorylase driven by a synthetic muscle-specific promoter (AAV8-

tMCK-Pygm) into early post-natal PygmR50X/R50X mice led to therapeutic levels of gene 

expression in hind limb skeletal muscles at 8 weeks of age, accompanied by reduced muscle 

glycogen levels, improved skeletal muscle pathology, and enhanced functional performance 

in voluntary wheel running.183

Clinical trials investigating gene therapy for GSD

i. GSD Ia

A Phase I/II clinical trial investigating the safety and efficacy of a single intravenous 

injection of an AAV8-mediated G6PC replacement (DTX401) at various doses (2.0×1012 

GC/kg or 6.0×1012 GC/kg with or without a prophylactic steroid regimen) in adults with 

GSD Ia was completed in 2021 (Table 1; NCT03517085) with an ongoing follow-up 

extension study monitoring the long-term safety and efficacy in individuals that received 

the DTX401 infusion (Table 1; NCT03970278). As of April 2023, there is an active Phase 

III randomized, double-blind, placebo-controlled clinical trial to determine the efficacy and 

safety of DTX401 in individuals 8 years and older with GSD Ia (Table 1; NCT05139316).

ii. Pompe disease

The minimum effective dose for a liver-expressing AAV8 vector, AAV2/8-LSPhGAA, was 

only 2×1011/kg body weight in mice with Pompe disease,162,184 supporting the potential 

benefits of a low dose appropriate for early phase clinical trials. A Phase I clinical trial 

with AAV2/8-LSPhGAA vector administered intravenously (Table 1; NCT03533673) has 

enrolled adults with late-onset Pompe disease.185 The first cohort of that study demonstrated 

preliminary safety as well as bioactivity, based upon the absence of any related serious 

adverse events and upon the presence of significantly increased muscle GAA activity after 
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52 weeks.186 As of January 2023, one additional study of AAV vector gene therapy is 

currently recruiting infants with Pompe disease (Table 1; NCT05567627). One previous 

clinical trial enrolled 5 participants (age 18–180 months old) in a study of an AAV1 vector 

injected in the diaphragm, and showed stable effects on tidal volume for 180 days.187 

Although promising, this approach has been considered too invasive and localized in its 

benefits to be developed as an effective therapy for all patients. Consequently, there is an 

unmet need for the development of genetic therapies to stably treat Pompe disease. Two 

additional studies have enrolled subjects, although no data have been published (Table 1; 

NCT04174105 and NCT04093349). In the absence of an effective gene therapy for infants 

with Pompe disease, this population will continue to experience progressive loss of muscle 

function accompanied by increased morbidity and mortality.

Current challenges for gene therapy in GSD

The challenges to the field that affect gene therapy are also an issue for the GSDs. These 

mainly involve the limitations of gene therapy with regard to efficacy and safety. These 

challenges include dose requirements and immune responses, which are linked, as well 

as other toxicities that are specific to the vector systems. For example, T cell mediated 

immunity against AAV capsid proteins has been associated with the generally asymptomatic 

elevation of liver transaminases; however, transgene expression has been eliminated 

when immune suppression was not effective against these immune responses.188 Such 

hepatotoxicity could be more problematic in GSDs that have liver-directed gene therapies 

and/or GSDs that involve the liver, including GSD III.189 Another risk is the potential 

for liver tumorigenesis, currently limited to rodent studies with AAV vectors;190 however, 

GSD I has been associated with hepatocellular adenoma and carcinoma formation.191 To 

date preclinical experiments demonstrated that tumorigenesis was disease-related and not 

related to gene therapy in GSD Ia.192 Higher dosages will be required to treat muscle 

involvement in some GSDs, which has been associated with acute toxicity in clinical trials 

of AAV9 vector-mediated gene therapy for muscular dystrophy.193 Pre-existing antibodies 

against the viral vector will prevent some patients from being treated with gene therapy, 

until methods to deplete antibodies and allow successful transduction of tissues in these 

individuals are available.194 A recent study demonstrated the ability to re-administer an 

AAV vector efficaciously following an immune suppression consisting of bortezimib and 

an anti-CD20 monoclonal antibody in mice with Pompe disease.195 Finally, other vector 

systems have unique risks, including bone marrow ablation for lentiviral gene therapy,196 

and hepatotoxicity for adenoviral vector gene therapy.197 In summary, each of these 

potential risks must be considered and weighed versus anticipated benefits during the 

planning of clinical trials for GSDs, including disease-specific risks.

Conclusions regarding the state of the art

Progress toward comprehensive understanding of the genetic and biochemical bases of 

the GSDs has allowed the development of resources needed to develop gene therapy 

for these disorders, including animal models and vectors for gene therapy. An extension 

of gene replacement therapy to perform genome editing holds promise for the stable 

correction of enzyme deficiencies underlying GSDs, which will be critical to treatment 
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early in life. The limitations of these therapies have been recognized during preclinical 

development, including the loss of transgene expression due to cell division and the risks 

of cytotoxic immune responses. Any AAV vector might pose risks from integrating into 

an oncogene, which could be increased from genome editing. Furthermore, new risks have 

been recognized during clinical trials, including unexpected toxicities that could complicate 

clinical trials enrolling patients with GSDs. Despite these limitations, gene therapy and 

genome editing hold great promise for the treatment of GSDs and could address the unmet 

need for new therapies for these conditions.
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