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Abstract

Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the
deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen.
This literature review summarizes the development of gene therapy for the GSDs. The abnormal
accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms
based upon the enzyme step and tissues involved, such as liver and kidney involvement associated
with severe hypoglycemia during fasting and the risk of long-term complications including
hepatic adenoma/carcinoma and end stage kidney disease in GSD la from glucose-6-phosphatase
deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/-
cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are
present to a variable degree in animal models for the GSDs, which have been utilized to evaluate
new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and
GSD la has progressed to Phase | and Phase 111 clinical trials, respectively, and are evaluating

the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the
natural history and progression of the GSDs provides invaluable outcome measures that serve as
endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing
face challenges with regard to clinical implementation, including immune responses and toxicities
that have been revealed during clinical trials of gene therapy that are underway.

Take home message: Gene therapy for the glycogen storage diseases is under development,

addressing an unmet need for specific, stable therapy for these conditions.
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Background

Glycogen metabolism involves a series of coordinated enzymatic reactions that includes the
synthesis and breakdown of glycogen polymers (Supplementary Figure S1).1 Deficiencies in
any of the enzymes or transport proteins involved in the glycogen synthesis and degradation
pathways can result in a GSD (Table 1; types 0a, Ob, la, Ib, II, III, 1V, V, VI, 1X).23

In addition, deficiencies in enzymes whose actions are external to the canonical glycogen
metabolism pathways can result in excessive glycogen accumulation and thus are classified
as a GSD (types VII, X, XI-LDHA, XI-FBS, XIl, XIII).Z'3 Furthermore, there are several
disorders that are classified as both a GSD and another disorder, including Lafora disease
and RBCK1 deficiency which are polyglucosan storage disorders, and Pompe and Danon
disease which are lysosomal storage disorders. Therefore, the list of GSDs included in Table
1 is selective and not considered to be a comprehensive list of all known GSDs. PGM1
deficiency was historically referred to as GSD X1V but has been re-classified as a congenital
disorder of glycosylation® and is not discussed further in this review.

The liver and skeletal muscle normally store large quantities of glycogen and therefore are
the most commonly affected tissues. For this reason, GSDs are classified by the primary
organs involved — liver, muscle, or both — though additional organs may be involved.
Individuals with liver GSDs often present in infancy or early childhood with fasting
hypoglycemia due to the inability to produce sufficient free glucose to maintain euglycemia
as well as hepatomegaly due to the accumulation of glycogen in hepatocytes. Glycogen

in the skeletal muscle provides substrates for muscle contraction, and therefore GSDs

that principally affect the skeletal muscle are characterized by skeletal myopathy, muscle
pain and weakness, cramps, and exercise intolerance. Cardiomyopathy and arrythmias are
commonly observed in GSDs that involve the cardiac muscle. The overall incidence of all
GSDs is approximately 1:10,000-25,000 live births.>~ The severity of symptoms along with
the lack of standardized management strategies have driven the discovery and development
of new therapies including enzyme replacement therapy (ERT) and gene therapy, which

are still under development and have been shown to be efficacious in preventing disease
progression and reversing disease involvement.

The purpose of this review is to summarize recent developments in a review of current
literature relevant to the topic of gene therapy for GSDs, while acknowledging previous
reviews of some aspects of the field.8-10 Specialized considerations and the stage of
development for gene therapy or related technologies will be described. Animal models
being used for gene therapy or with potential to be used for gene therapy are included (Table

2); a comprehensive review of all GSD animal models can be found in Almodévar-Paya et
al.10

Natural history and animal models for the GSDs

Given the lack of specific, effective therapy in general for GSD, gene therapy has been
developed for several of the individual GSDs.8 However, the preclinical research done in
advance of clinical trials requires the availability of authentic animal models to evaluate
safety and efficacy. Furthermore, natural history studies are critical for characterizing
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disease progression and providing endpoints and biomarkers for clinical trials. To date,
natural history data has been published for GSD la, Ib, I, Il1, 1V, VI, and IX, yet many

are limited to retrospective chart reviews with small patient numbers from specific countries
or populations, and thus additional comprehensive natural history studies with inclusion

of larger patient cohorts and representation from across the world are warranted. Several
retrospective and prospective natural history studies on GSDs have been conducted or are
ongoing, providing the much-needed characterization of these disorders for current and
future gene therapy investigations. Herein, we summarize the available natural history data
and animal models briefly by GSD type, and compare the phenotypes of animal models to
those of affected patients.

i. GSD Oa and Ob

GSD 0a is associated with deficiency in glycogen synthase 2 (GYS2), disrupting glycogen
synthesis in the liver. Patients often present with fasting ketotic hypoglycemia, short stature,
postprandial hyperglycemia, lactic acidosis, and hyperalaninemia with normal insulin levels.
There are limited published reports on affected adolescent and adult individuals, and
therefore long-term disease sequelae is not clear. Current management strategies include
dietary intervention to prevent fasting hypoglycemia.ll No animals models are available for
GSD 0Oa.

GSD 0b is associated with deficiency in glycogen synthase 1 (GYS1) which disrupts
glycogen synthesis in the muscle, causing cardiomyopathy, cardiac arrythmia, muscle
weakness, and exercise intolerance.12:13 Patients are managed symptomatically and there
is a long-term risk of cardiac arrest. A GysZ™~ mouse model features impaired cardiac
function, edema, pooling of blood, and hemorrhagic liver.1* It has a poor survival rate, yet
~10% survive birth and live through late adulthood with no apparent functional differences
despite exhibiting significant cardiac fibrosis.

ii. GSDlaandlIb

GSD la and Ib result in a defect in glycogenolysis and gluconeogenesis as a result

of deficient glucose-6-phosphatase a or glucose-6-phosphate translocase, respectively.
Guidelines for the management of GSD | have been previously published.2®-17 The natural
history of hepatocellular adenoma (HCA) formation in GSD | has been detailed in several
retrospective chart reviews, including the ages when HCA develops and the relationship of
HCA with metabolic control.18-21 A cohort of affected individuals from the Netherlands
(N=39), both with optimal and non-optimal metabolic control, were assessed for the natural
course of renal disease.22 A 2021 review details the current management options, burden,
and unmet needs in GSD la,23 providing support for clinical trials targeting GSD la.
Findings from a retrospective, observational study on individuals with GSD Ib in England
(N=35) was published in 2021,2* and key findings include the impact of GSD Ib on

growth, fasting tolerance, bone health, as well as renal, endocrine, and gastrointestinal
manifestations. That study was limited in conclusions it could draw on the natural history in
adulthood due to limited adult cases (N=7). The natural history of GSD Ib is continuously
evolving with the utility of pharmaceuticals to treat neutropenia and neutrophil dysfunction,
including granulocyte colony-stimulating factor and empagliflozin.2>26 Additional natural
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history data on GSD Ib is needed to better define future gene therapy clinical trials and
should include data on affected individuals from around the world. Lastly, patient-reported
outcomes and psychosocial impacts of disease are now being detailed in GSD 1,27-31
improving our understanding of disease natural history.

A naturally occurring GSD la dog model features a missense variant resulting in a
methionine to isoleucine substitution in codon 121 of G6PC, which causes hepatomegaly,
hypoglycemia, renomegaly, lactic acidemia hypercholesterolemia, hypertriglyceridemia,
hepatocellular carcinoma and renal disease (Table 2).32-3% A GSD la mouse model was
developed by disruption of the G6pcI gene in exon 3 by a neomycin cassette. These mice
demonstrated slow growth, hypoglycemia, hyperlipidemia, hepatomegaly, renomegaly and
generalized dysplasia of cartilage.3¢ Tamoxifen inducible G6oc™'~ mice models specific to
liver, kidney or intestines have been developed (Table 2).37-40 A G6pr’~ mouse model
featured the expected neutropenia in addition to other features of GSD 1.41 A tamoxifen-
inducible G6pr'~ mouse model demonstrated the expected phenotype, albeit milder and
with increased survival.42

iii. GSD Il (Pompe disease)

GSD 11, more often referred to as Pompe disease, is caused by deficiency in acid a-
glucosidase within the lysosome and primarily affects the skeletal muscle, cardiac muscle,
and diaphragm. Patients are classified as infantile-onset Pompe disease (IOPD) and late-
onset Pompe disease (LOPD) based on age of symptom onset.#3 A natural history study

on disease progression in IOPD was conducted using clinical data from 20 affected Dutch
infants and 133 cases reported in the literature.** A retrospective, multinational, multicenter
natural history study on IOPD (N=168 cases) detailed the progression of disease, including
the characterization and onset of cardiorespiratory involvement, muscle weakness, feeding
difficulties, as well as survival curves and prognosis.*> Additional natural history data

on adults with LOPD has been published, with a prospective observational study (N=94)
detailing the clinical features and pattern of muscle weakness as well as prognostic factors
for disease progression.#® An additional prospective international observational study on
LOPD (N=268 from 15 countries) reported higher mortality than the general population

in untreated adults with Pompe disease and identified levels of disability and impact

on participation as factors associated with mortality.4” ERT with alglucosidase alfa was
approved for patients with Pompe disease in Europe and the United States in 2006, with

the next generation ERT avalglucosidase alfa gaining approval for use in the United States
in 2021 for individuals with LOPD one year of age or older, and in 2022 was approved

for use in Europe for all patients with Pompe disease. Immunomodulation strategies have
since been employed to induce immune tolerance to ERT in affected individuals who are
cross-reactive immunologic material (CRIM)-negative and would otherwise develop an 1gG
antibody immune response to the ERT, leading to a deeper understanding of the natural
history of CRIM-negative individuals that otherwise would have succumbed to the disease
despite ERT.48 ERT for Pompe disease has drastically improved the survival rates in affected
individuals,*®-53 resulting in the emergence of new phenotypes, including variable central
nervous system involvement in children with IOPD%4-61 and progression of disease in
individuals with LOPD treated with ERT, including respiratory function and functional
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outcomes.*9:62:63 Fyrthermore, the addition of Pompe disease to newborn screening (NBS)
programs in Taiwan in 200554 and the United States Recommended Uniform Screening
Panel in 2015 has permitted early diagnosis of patients with 10PD, as well as those with
LOPD who otherwise appear healthy.8° Natural history of patients who are detected on
newborn screening is continuing to evolve; studies in Taiwan and the United States are
shedding light on the early involvement and a characteristic phenotype in infants and
children with LOPD diagnosed via NBS.5465

There are numerous animal models for Pompe disease (Table 2). A GAA knockout

mouse model has been used most commonly for gene therapy development which displays
progressive muscle weakness from glycogen accumulation in heart and skeletal muscle.%6
Another potentially useful model for gene therapy development is a naturally occurring
dog model found in Swedish Lapphunds which had clinical signs of vomiting, progressive
muscular weakness, loss of condition and myocardial hypertrophy caused by generalized
glycogen accumulation in skeletal, esophageal, cardiac and smooth muscles.5”

GSD 11 is caused by deficient glycogen debranching enzyme (GDE) activity, resulting in
disrupted glycogenolysis. Affected patients are classified as GSD llla if they experience
liver and muscle involvement or GSD Il1b if they exhibit liver involvement only.
Management guidelines for GSD 11 have been previously published®8 and the liver, skeletal
muscle, and heart involvement in GSD |11 has been characterized in various reports. The
International Study on GSD |1l (ISGSDIII) was conducted and included a multi-center
retrospective review of growth and development and hepatic, neuromuscular, and cardiac
complications in individuals with GSD 111 (175 cases with follow-up into adulthood in 91
cases).% Yet, the data was largely cross-sectional rather than longitudinal and thus may not
fully represent the breadth of long-term complications in GSD Ill. The natural course of
liver disease in affected pediatric and adult individuals (N=26) was described and revealed
key findings on liver pathology, imaging, and biochemistry, including support for using Glcy
as a biomarker of liver disease progression.” The extent of cardiomyopathy in GSD Il1
(N=33) was described in a retrospective review which detailed the increase in wall thickness
and left ventricular mass through adulthood in affected individuals with GSD Illa compared
to GSD I11b.” A retrospective, longitudinal natural history study detailed the clinical,
biochemical, radiological, functional, and histopathological aspects of the disease course in
adults with GSD 111 (N=25) as well as confirmed the use of Glc, as a biomarker of GSD
[11.72 Furthermore, the musculoskeletal manifestations in GSD Illa from affected pediatric
and adult individuals (N=22) were detailed, providing support for monitoring performance
on functional assessments in future clinical trials.”3

Four GSD Il mouse models with different Ag/gene variants have been described, all
demonstrating glycogen accumulation in the muscle and liver (Table 2).74-77 There is also

a naturally occurring curly-coated retriever dog model that demonstrates initial elevations

of liver enzymes, muscle enzymes, and urine Glcy, as well as hepatomegaly with glycogen
accumulation in liver and muscle. With disease progression, there was an increase in hepatic
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fibrosis and eventual cirrhosis in some dogs with a contaminant decease in liver and muscle
enzymes as well as urine Glc, (Table 2).78:79

GSD 1V is caused by reduced or deficient glycogen branching enzyme (GBE) activity

and results in abnormal glycogen synthesis and the formation of polyglucosan. The

clinical spectrum of GSD IV is heterogenous and encompasses severe neurological and
neuromuscular manifestations, myopathy, cardiomyopathy, and progressive liver fibrosis,
and can present in the neonatal period, infancy, early childhood, adolescence, or adulthood
(Adult Polyglucosan Body Disease, APBD). A summary of management for all GSD IV
phenotypes, including APBD, was previously published.89 Additionally, a recent review

of all published cases with GSD 1V that had symptom onset before the age of 25 years
(N=179) evaluated the extent of multisystem tissue involvement and revealed the pitfalls of
the traditional subtype classification system.81 Rather than classifying patients into discrete
hepatic or neuromuscular subtypes, Kiely et al®l recognized that GBE deficiency can
cause a spectrum of manifestations across multiple tissue systems and affected individuals
may exhibit differing degrees of hepatic, neuromuscular, and/or cardiac involvement over
time. An additional natural history study focused on APBD (N=50 cases) defined the
cardinal signs of the disease and the typical stages of disease progression.82 Long-term
clinical surveillance and natural history data on GSD 1V is needed for future gene therapy
investigations to better catalog the phenotypic variation in a granular manner. As of May
2023, there is an active retrospective and prospective natural history study on GSD 1V,
including the adult-onset form APBD (NCT02683512).

There are two naturally occurring large animals displaying clinical features more similar to
early onset GSD IV with early mortality; these are the Norwegian Forest Cat and American
Quarter Horse (Table 2).83-8% Three mouse models for GSD 1V are described, with clinical
signs consistent with early, juvenile and adult onset (Table 2).99-91 The adult-onset model
used homologous recombination to knock in the most common variant found in patients

of Ashkenazi Jewish descent with APBD, ¢.986A>C (p.Y329S), and has been used in a
previous gene therapy study.91

GSD V, commonly referred to as McArdle disease, is caused by deficient muscle glycogen
phosphorylase (myophosphorylase) which disrupts glycogenolysis in the muscle. Patients
typically present as adults with muscle cramping and rhabdomyolysis during exercise,

and the ability to resume moderate, aerobic exercise after resting — the “second wind
phenomenon”. No natural history study of McArdle disease has been published to date.
Management strategies for GSD V have been reviewed.?2 There are naturally occurring
Charolais cattle and Merino sheep models for McArdle disease, with the sheep being

used for gene therapy to date (Table 2).93-95 The affected sheep exhibited exercise
intolerance and muscle biopsy samples showed a lack of myophosphorylase and the
accumulation of excessive glycogen.%> A knock-in mouse model for GSD V was generated
by introducing the common p.R50X mutation in exon 1 of the Pygm gene.%8 The
homozygous (Pygm/*?0X/R50X) mice exhibit similar phenotypes as shown in human patients,
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including lack of myophosphorylase expression and massive glycogen accumulation in
skeletal muscles, elevated plasma creatine kinase activity, exercise-induced myoglobinuria,
exercise intolerance, and progressive muscle degeneration, fibrosis and inflammation (Table
2).96-98 A zebrafish model for GSD V is also described (Table 2).%°

GSD Vland IX

GSD IX is caused by deficient phosphorylase kinase (PhK) activity in the liver and/or the
muscle, whereas GSD VI is caused by deficient liver glycogen phosphorylase activity. PhK
in the liver phosphorylates and activates glycogen phosphorylase, and therefore patients with
GSD VI and GSD IX experience disruption in glycogenolysis and can present very similarly
with fasting hypoglycemia and hepatomegaly. The first natural history review of GSD VI
and GSD IX was a retrospective chart review of affected individuals in Canada (N=4 GSD
VI, N=17 GSD 1X).190 Thijs report highlighted the long-term complications of GSD VI and
GSD IX, including HCA and progressive fibrosis. A follow-up retrospective chart review

of individuals with GSD VI and GSD IX in England (N=9 GSD VI, N=13 GSD IX) was
conducted to determine the extent of liver involvement at presentation versus the most recent
follow up, highlighting that although GSD VI and IX are often considered “mild” clinically,
chronic histological changes could be seen in all liver biopsies.10> However, published data
from these retrospective natural history studies are limited to that of affected children and
young adults, emphasizing the need for longitudinal data on affected adults. Additional
systemic literature reviews have further detailed clinical data on cases with GSD VI (N=63),
GSD IX a2 (N=183), GSD IX B (N=17), and GSD IX 2 (N=30).102103 The reviews were
conducted in a complementary manner so that findings can be compared to one another,
including the age at initial presentation, frequency of clinical findings, and pathology
findings on liver biopsy. Both reviews were not able to fully address the long-term outcomes
and complications on GSD VI or GSD IX due to limited published follow-up reports,
emphasizing the need for studies with longitudinal data to guide future clinical trials.
Moreover, there has been no publication of natural history data for GSD IX al. Therefore,
the critical need for comprehensive, longitudinal natural history study data on GSD VI and
all subtypes of GSD IX remains. As of May 2023, there is an active retrospective and
prospective natural history study on GSD VI and GSD 1X (NCT04454216).

There are no known naturally occurring large animal models for GSD VI, but there is
promise for use in future gene therapy development with a GSD VI mouse model (C57BL/
6N-Pygfm1a(KOMP)WIsi o py/a/-/-) (Table 2).104 Pyg//~ mice have enlarged hepatocytes
from glycogen accumulation with progression to hepatic fibrosis accompanied by increased
transaminase concentrations in older Pyg//~ mice.104

There are no known naturally occurring large animal models for GSD 1X, but two

murine models exist, y2 and p (Table 2). A GSD IX -y2 mouse model (C57BL/6 N-
PhkgAmML1KOMP)VIcg sMmucd or Phkg27'~) has massive glycogen accumulation in the liver
leading to hepatomegaly, early liver fibrosis with elevations in serum liver transaminases,
and hypoglycemia.195 A rat model (gsd/gsd) has also been described.196-108 A GSD IX

B mouse model (C57BL/6NJ-PhktF™LIMPCY/Mmijax or Phkb~) developed mild fasting
hypoglycemia with elevated blood ketones in the fed and fasting state and histology revealed
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enlarged, glycogen-filled hepatocytes with minimal collagen deposition at 40 weeks of
age.109

viii. GSD VII

GSD VIl is caused by deficient muscle phosphofructokinase activity, resulting in a block

in muscle glycolysis. GSD VI typically presents similarly to GSD V with exercise-induced
muscle cramping; however, patients do not experience a second wind phenomenon. A

high carbohydrate meal aggravates symptoms, which has been termed the “out of wind
phenomenon”. The management strategies for GSD VII have been reviewed.92

A naturally occurring nonsense mutation in exon 21 of the PFKM gene has been described
in English Springer Spaniels, Cocker Spaniels, and Whippet dogs (Table 2).110-112 The
affected dogs demonstrated mild exercise intolerance, rare muscle cramps, increased serum
creatine kinase activity, but had no myoglobinuria.119 A new missense point mutation
(c.550 C>T) in the PFKM gene associated with muscle phosphofructokinase deficiency was
later described in Wachtelhunds dogs presenting with exercise intolerance and hemolytic
anemia.113.114 The knockout mouse model of GSD V11 (Pfkm™") developed hemolysis,
increased erythropoiesis, and exercise intolerance, as well as high glycogen accumulation
and increased vascularization and fiber necrosis in the skeletal muscles. High lethality (about
60%) in the Afkm ™~ mice was observed at around weaning age and those surviving mostly
died before 6 months of age (Table 2).11°

ix. GSD XV

GSD XV is caused by deficient glycogenin-1 activity which results in abnormal glycogen
synthesis and the formation of polyglucosan in the skeletal muscle and heart. To date,
literature on GSD XV is limited to case reports describing the clinical presentation

either with skeletal myopathy or cardiomyopathy.116-129 Rodents carry a single Gyg gene
compared to humans and other mammals that carry two glycogenin isoforms: GygZ and
Gyg2. A knock-out mouse model of GSD XV (Gyg™") has been characterized with
deficient GYG activity in the muscle, heart, liver, and brain.139 This model recapitulates
the patient phenotype with skeletal muscle weakness and glycogen accumulation in skeletal
muscle and heart. However, an important distinction is affected patients accumulate
polyglucosan (diastase-resistant glycogen) whereas the Gyg™~ mice accumulate diastase-
sensitive glycogen in skeletal muscle and heart tissue.

Preclinical research in GSD gene therapy

Gene therapy has been defined as viral vector-mediated gene delivery, or gene replacement
therapy, which has been adapted to deliver the components needed for genome editing.131
This review will focus on viral vector-mediated gene therapy and genome editing

that achieve stable benefits from transgene delivery. However, other clinically relevant
therapeutic methods utilizing nucleotides, including encapsulated mRNA, are summarized
briefly in Table 1.
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GSD laand Ib

Preclinical development of gene therapy and genome editing for GSD la—
While dietary therapy has succeeded in prolonging lifespan of people with this condition,

it fails to reliably prevent long-term complications of GSD la including hepatocellular
adenoma or carcinoma formation, as well as end-stage kidney disease. Preclinical studies
have demonstrated the correction of G6Pase deficiency in the liver and hypoglycemia (Table
3), although only AAV1, AAV?2 with adenovirus, and AAV9 vectors have corrected kidney
abnormalities. AAV vector-mediated gene therapy has achieved long-term efficacy in GSD
la in multiple studies;® however, the duration of efficacy in these studies was limited as
hepatic AAV vector genome abundance declined rapidly followed by a more gradual loss

of biochemical correction.132-134 General approaches to this problem have included higher
vector dosages!3°:136 and re-administration of the vector, prior to the formation of anti-AAV
antibodies.137 These approaches have not comprehensively addressed the loss of efficacy
due to the loss of AAV vector genomes in animal models for genetic disease. For example,
a recent study in neonatal G6pc —/— mice revealed that despite the correction of G6Pase
deficiency by AAV vector-mediated gene therapy, autophagy was only partially restored in
liver.138 Similarly, gradual loss of efficacy from gene therapy has been shown in canine
models of GSD 1a.13%-141 puppies treated with gene therapy vectors have increased G6épase
expression and decreased glycogen in the liver. However, the effect is transient and the dogs
required re-administration of vector and constant dietary monitoring. Gene therapy was able
to improve the dogs blood glucose during fasting but ultimately failed to prevent kidney
failure and liver adenoma and carcinoma, which developed over multiple years following
initial treatment.34 In contrast, treatment with AAV vector-mediated gene therapy combined
with continuous nutrition prevented long-term complications of gene therapy in the canine
model, confirming the value of good metabolic control in the successful treatment of GSD la
that has also been reported in patients.20:142

Genome editing promises to address the limitations of gene therapy by stably integrating the
therapeutic sequence in chromosomal DNA. Genome editing has been initiated to correct a
mutation or integrate a transgene as a method to stably treat liver metabolic diseases and
hemophilia, including GSD la, hemophilia B, ornithine transcarbamylase deficiency, and
phenylketonuria.143-146 The underlying strategy depends upon the stable transduction of
hepatocytes through genome editing, which prevents the loss of episomal AAV genomes
due to cell division that limits the efficacy of gene replacement therapy. Increasingly
genome editing studies use CRISPR/Cas9 as a nuclease, due to its flexibility and high
nuclease activity. An initial genome editing study used a zinc finger nuclease (ZFN)
mediated genome editing method, which demonstrated an advantage for genome editing

in comparison with gene replacement therapy.143 Intriguingly, the addition of bezafibrate to
induce autophagy during genome editing of G6pc —/— mice more effectively corrected the
liver abnormalities of GSD la, achieving normal G6Pase activity in liver and widespread
transduction of hepatocytes.14’ More recently, CRISPR/Cas9 based genome editing has been
used to correct a mutation causing GSD la in mice.1#8 Instead of inserting a full length
transgene, they targeted the most common mutation in GSD la patients, G6PC-p.R83C,
which represents 32% of all diseased alleles in humans. Two AAV vectors were used, one
expressing Cas9 and a single guide RNA, and a second containing the repair template
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sequence. GSD la mice treated with the CRISPR/Cas9 based editing vectors had 0.7% of
alleles edited and G6pase expression was 4% of WT after 8 weeks of treatment. The edited
mice had serum triglycerides, cholesterol, lactic acid, and uric acid levels comparable to
wild type controls and showed improved blood glucose levels during fasting. All treated
mice survived, while none of the untreated GSD la mice survived to 16 weeks. A recent
study of CRISPR/Cas9-medatied genome editing in the canine model for GSD la revealed
the integration of a G6PC transgene in up to 1% of alleles for over 16 months.149 These
preclinical studies with CRISPR/Cas9 or with ZFN-mediated genome editing demonstrated
that correcting mutations causing GSD la or inserting a fully functional transgene hold
promise for more stably treating GSD la, in comparison with gene replacement therapy.

Gene therapy for GSD Ib corrected liver, but not hematologic abnormalities—
GSD Ib is caused by glucose-6-phosphate transporter deficiency, and features neutropenia
in addition to the liver and kidney involvement seen in GSD 1a.150 AAV vector-mediated
gene therapy has corrected the liver involvement of mice with GSD Ib without impacting
neutropenia and its consequences.1®1 Notably, an AAV vector containing the G6PC
promoter/enhancer driving G6PT expression corrected liver glycogen and prevented
hypoglycemia. However, neutropenia was not corrected, indicating a lack of hematologic
cell transduction. Similarly, mice with GSD Ib were treated with an adenoviral vector
expression G6PT benefited from correction of liver involvement and hypoglycemia
transiently, without impacting neutropenia.152

ii. Pompe disease

The availability of ERT has decreased mortality among patients with infantile-onset Pompe
disease, facilitating a greater understanding of the natural history of these patients.>2
However, muscle weakness (neck flexor weakness, dorsiflexor weakness, myopathic facies,
ptosis and strabismus) has persisted despite treatment with ERT.23:153.154 There remains a
high risk for patients with IOPD to develop anti-GAA antibodies that decrease benefits from
ERT, 155 especially those that are CRIM-negative and a subset of CRIM-positive patients.
The limitations of ERT have driven the development of gene therapy as an alternative (Table
4). Preclinical studies have generally confirmed both a lower dose requirement and higher
degree of efficacy from liver-based expression of GAA, or liver depot gene therapy that

can induce immune tolerance to GAA that prevents and/or suppresses anti-GAA antibody
formation.®8 Studies with muscle-based GAA expression required higher vector dosages
(Table 4).157.158 A unique strategy of intracerebroventricular administration of an AAV
vector decreased glycogen in the brain and spinal cord, but not in the muscles.1>® Overall,
studies have demonstrated that liver depot gene therapy with an AAV vector corrected GAA
deficiency in the heart and skeletal muscle, and improved muscle function testing in GAA
—/- mice with Pompe disease.160-163

It is expected that gene therapy with AAV vectors will be less effective early in life due

to the accelerated loss of episomal vector genomes from rapid growth accompanied by cell
division, which especially affected liver-targeted gene therapy.135:137.164.165 AJthough AAV
vectors have advanced to successful clinical trials based upon liver transgene expression,166
the loss of vector genomes during infancy has exceeded the rate expected solely from
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cell division in the liver.164.165 Approaches to this problem have included higher vector
dosages, 135136 and early re-administration of the vector, prior to the formation of anti-AAV
antibodies.137 These approaches have not comprehensively addressed the loss of efficacy

in animal models for genetic disease following neonatal administration of AAV vectors.
However, the long-term benefits of gene therapy in infant mice with Pompe disease
confirmed the potential value of treatment early in life,163.167.168

Preclinical data have suggested the early treatment with gene therapy might be successful

in Pompe disease; however, the dose requirements will be higher for treatment very early

in life. One study directly compared the efficacy of a potentially clinically feasible dose of
an rAAV8 vector in infant and adult GAA-KO mice.163 Biochemical correction and muscle
function were evaluated 50 weeks following intravenous administration of the same absolute
vector dosages at 10 days or 2 months of age to assess the effects of gene therapy either
early or later in life. Unsurprisingly the degree of biochemical correction was greater in the
adult-treated mice, because AAV vector transduction is more stable in older animals that
have completed the rapid growth phase of infancy. Furthermore, the weight-based vector
dose for treatment of infants was approximately 3-fold higher than for adults.162 Given these
data, the dose requirement to achieve similar efficacy will be higher for the treatment of
young patients and the benefits from gene replacement therapy early in life will be relatively
less than those from later treatment.

Genome editing has been demonstrated in an 7 vitro experiment with human induced
pluripotent stem cells from a patient with Pompe disease.16° This study confirmed that
integration of a GAA-expressing transgene in the AAVSI locus corrected GAA deficiency
and decreased glycogen content of patient cells. Nuclease-free strategies have been
developed for genome editing in hemophilia B,179 which might decrease the risks from
genome editing by eliminating the need for double-stranded DNA breaks; however, the
transgene integration efficiency was less than 1% and potentially too low to treat liver
metabolic diseases. Thus, nuclease-mediated genome editing to create a liver depot for the
treatment of Pompe disease could enhance the treatment of very young patients with Pompe
disease.

iii. GSD Il

GSD Il is categorized based upon tissue involvement, either liver and muscle (GSD Illa)
or only the liver (GSD Illb). Currently no curative treatment is available for the disease.
Symptomatic treatment does not prevent ongoing disease progression, including liver
involvement and variable myopathy or cardiomyopathy (see “Natural history and animal
models for the GSDs” section) and dietary interventions do little to alter the long-term
course and morbidity of the disease.171173 In the absence of an effective therapy, patients
with GSD I11 will continue to experience progressive liver failure and muscle damage
accompanied by increased morbidity and mortality.

ERT is not a feasible treatment approach for GSD Il1 due to the lack of a natural receptor-
mediated uptake of the therapeutic enzyme from the blood into target tissues. Chronic daily
administration of rapamycin, an inhibitor of the mammalian target of rapamycin (mMTOR),
partially prevented glycogen accumulation in skeletal muscle and liver and reversed hepatic
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fibrosis in a canine model of GSD I11a,174 but this treatment is not ideal given the toxicity

of chronic rapamycin use. Liver-targeted gene silencing of glycogen synthase 2 (GYS2) by
lipid nanoparticle mediated delivery siRNA prevented progression of glycogen accumulation
and fibrosis in the liver, but this treatment had no effect on the muscle in a GSD Illa mouse
model.175> Gene therapy with AAV vectors, AAV9 in particular, could provide a treatment
strategy for GSD Il as AAV9 vectors can reliably transduce both liver and muscle tissues.
However, a major challenge of using this approach for GSD I11 is the inability to package
the large (4.6 kb) human GDE cDNA into a single AAV vector due to the size limitation of
AAV. To overcome this limitation, Vidal et al. reported that liver-restricted overexpression of
secretable human GAA with an AAV vector in GSD Illa mice reduced glycogen content in
liver but not in muscle.”® In the same study, the authors used a dual overlapping AAV vector
system to split the human GDE cDNA into two halves and package them into two separate
AAV vectors. Upon co-administration of the two AAV vectors, functional hGDE expression
was achieved in liver and muscle tissues of GSD I11a mice.”® However, this dual vector
approach requires administration of very high doses of the two AAV vectors, which may
potentially lead to adverse hepatotoxicity or even liver failure in patients.176.177 Recently,
Lim et al. reported an innovative gene therapy approach with AAV vectors expressing

a small bacterial GDE (Pullulanase derived from Bacillus subtilis) in a mouse model of
GSD Il1a.”” Intravenous injection of an AAV9 vector containing a 2.2-kb codon-optimized
Pullulanase cDNA driven by the ubiquitous CMV enhancer/chicken p-actin (CB) promoter
(AAV-CB-Pull) into infant GSD Illa mice significantly decreased (by 75-80%) glycogen
accumulation in the heart and skeletal muscles (not in the liver) and significantly improved
muscle function after 10 weeks.’” Subsequent treatment with an AAV8 vector (AAV-LSP-
Pull) containing an immunotolerant liver-specific promoter (LSP) further reduced liver
glycogen content by 75%, significantly decreased liver size, and completely reversed hepatic
fibrosis.”” In a follow-up study, Lim et al. demonstrated that intravenous injection of

an AAV vector containing a tandem LSP-CB dual promoter (AAV-dual-Pull) into adult
GSD Illa mice effectively decreased Pullulanase-induced cytotoxic T lymphocyte (CTL)
response and enabled persistent therapeutic Pullulanase expression in liver and muscle,
accompanied by the reversal of liver fibrosis and improved muscle function.1’8 In contrast,
the AAV-CB-Pull vector elicited a strong transgene-related CTL response, resulting in only
transient Pullulanase expression in adult GSD Illa mice. This study emphasized the value

of liver-restricted transgene expression using a LSP in preventing immune responses to gene
therapy.

To date, gene therapy has only been investigated in the GbeZ’*’¥* mouse model. In 2019, Yi
and colleagues reported on a gene therapy study where 14-day-old Gbe2’¥ mice received
a single intravenous injection of AAV9 vector containing a CB promoter and human GBE
expression cassette (AAV9-CB-hGBE).179 At 3 months of age (10 weeks post-treatment),
treated mice exhibited increased GBE activity in the brain, heart, and skeletal muscles, but
not the liver, yet this effect waned and only the heart retained increased GBE expression by
9 months. Consistent with the GBE activity levels, the AAV copy numbers (copies/nucleus)
were reduced by 90% in the liver, heart, brain, and skeletal muscles. At 3 months of age,
treated mice exhibited glycogen levels comparable to wild type levels in the quadricep

J Inherit Metab Dis. Author manuscript; available in PMC 2025 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Koeberl et al. Page 13

and gastrocnemius muscles, and reduced glycogen levels in the brain and liver. This trend
was consistent in treated mice evaluated at 9 months, despite the lack of detectable GBE
activity in those tissues. Plasma biochemistry at treated mice at 9 months of age revealed
reduction of liver transaminase and creatine kinase, suggesting alleviation of tissue damage
in the liver and skeletal muscle. Additional studies are warranted to determine the functional
improvements as a result of gene therapy in the GbeZ’*¥S mouse.

v. GSDV

The ovine model for GSD V has recently been used to develop treatments in two

ways: first, by using gene therapy to express muscle glycogen phosphorylase and second,

by using pharmaceuticals to cause regeneration of muscles leading to re-expression of
myophosphorylase in muscles. Intramuscular injection of an adenovirus 5 and/or an AAV2
vector expressing myophosphorylase caused expression of functional myophosphorylase in
sheep affected with GSD V.180 Interestingly, in the same study, it was noted that damage

to muscle fibers caused by injection with positive control vectors expressing LacZ caused re-
expression of non-muscle isoforms of glycogen phosphorylase. Other studies in the GSD V
ovine model have shown similar re-expression of non-muscle isoforms of myophosphorylase
using valproate and notexin.181.182 Recently, an AAV-mediated gene therapy was tested in
the Pygm/*50X/R50X mice. Intraperitoneal injection of an AAV8 vector expressing mouse
muscle glycogen phosphorylase driven by a synthetic muscle-specific promoter (AAV8-
tMCK-Pygm) into early post-natal Pygm/?0X/R50X mice led to therapeutic levels of gene
expression in hind limb skeletal muscles at 8 weeks of age, accompanied by reduced muscle
glycogen levels, improved skeletal muscle pathology, and enhanced functional performance
in voluntary wheel running.183

Clinical trials investigating gene therapy for GSD
i. GSDla

A Phase I/11 clinical trial investigating the safety and efficacy of a single intravenous
injection of an AAV8-mediated G6PC replacement (DTX401) at various doses (2.0x1012
GCl/kg or 6.0x1012 GC/kg with or without a prophylactic steroid regimen) in adults with
GSD la was completed in 2021 (Table 1; NCT03517085) with an ongoing follow-up
extension study monitoring the long-term safety and efficacy in individuals that received
the DTX401 infusion (Table 1; NCT03970278). As of April 2023, there is an active Phase
111 randomized, double-blind, placebo-controlled clinical trial to determine the efficacy and
safety of DTX401 in individuals 8 years and older with GSD la (Table 1; NCT05139316).

ii. Pompe disease

The minimum effective dose for a liver-expressing AAV8 vector, AAV2/8-LSPhGAA, was
only 2x101/kg body weight in mice with Pompe disease,162:184 supporting the potential
benefits of a low dose appropriate for early phase clinical trials. A Phase I clinical trial

with AAV2/8-LSPhGAA vector administered intravenously (Table 1; NCT03533673) has
enrolled adults with late-onset Pompe disease.18% The first cohort of that study demonstrated
preliminary safety as well as bioactivity, based upon the absence of any related serious
adverse events and upon the presence of significantly increased muscle GAA activity after
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52 weeks.186 As of January 2023, one additional study of AAV vector gene therapy is
currently recruiting infants with Pompe disease (Table 1; NCT05567627). One previous
clinical trial enrolled 5 participants (age 18-180 months old) in a study of an AAV1 vector
injected in the diaphragm, and showed stable effects on tidal volume for 180 days.187
Although promising, this approach has been considered too invasive and localized in its
benefits to be developed as an effective therapy for all patients. Consequently, there is an
unmet need for the development of genetic therapies to stably treat Pompe disease. Two
additional studies have enrolled subjects, although no data have been published (Table 1;
NCT04174105 and NCT04093349). In the absence of an effective gene therapy for infants
with Pompe disease, this population will continue to experience progressive loss of muscle
function accompanied by increased morbidity and mortality.

Current challenges for gene therapy in GSD

The challenges to the field that affect gene therapy are also an issue for the GSDs. These
mainly involve the limitations of gene therapy with regard to efficacy and safety. These
challenges include dose requirements and immune responses, which are linked, as well

as other toxicities that are specific to the vector systems. For example, T cell mediated
immunity against AAV capsid proteins has been associated with the generally asymptomatic
elevation of liver transaminases; however, transgene expression has been eliminated

when immune suppression was not effective against these immune responses.188 Such
hepatotoxicity could be more problematic in GSDs that have liver-directed gene therapies
and/or GSDs that involve the liver, including GSD 111.18% Another risk is the potential

for liver tumorigenesis, currently limited to rodent studies with AAV vectors;1%0 however,
GSD | has been associated with hepatocellular adenoma and carcinoma formation.191 To
date preclinical experiments demonstrated that tumorigenesis was disease-related and not
related to gene therapy in GSD 1a.192 Higher dosages will be required to treat muscle
involvement in some GSDs, which has been associated with acute toxicity in clinical trials
of AAV9 vector-mediated gene therapy for muscular dystrophy.193 Pre-existing antibodies
against the viral vector will prevent some patients from being treated with gene therapy,
until methods to deplete antibodies and allow successful transduction of tissues in these
individuals are available.1%* A recent study demonstrated the ability to re-administer an
AAV vector efficaciously following an immune suppression consisting of bortezimib and
an anti-CD20 monoclonal antibody in mice with Pompe disease.1% Finally, other vector
systems have unique risks, including bone marrow ablation for lentiviral gene therapy,196
and hepatotoxicity for adenoviral vector gene therapy.1®7 In summary, each of these
potential risks must be considered and weighed versus anticipated benefits during the
planning of clinical trials for GSDs, including disease-specific risks.

Conclusions regarding the state of the art

Progress toward comprehensive understanding of the genetic and biochemical bases of
the GSDs has allowed the development of resources needed to develop gene therapy
for these disorders, including animal models and vectors for gene therapy. An extension
of gene replacement therapy to perform genome editing holds promise for the stable
correction of enzyme deficiencies underlying GSDs, which will be critical to treatment
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early in life. The limitations of these therapies have been recognized during preclinical
development, including the loss of transgene expression due to cell division and the risks

of cytotoxic immune responses. Any AAV vector might pose risks from integrating into

an oncogene, which could be increased from genome editing. Furthermore, new risks have
been recognized during clinical trials, including unexpected toxicities that could complicate
clinical trials enrolling patients with GSDs. Despite these limitations, gene therapy and
genome editing hold great promise for the treatment of GSDs and could address the unmet
need for new therapies for these conditions.
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