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The vacuolar protein sorting 35 ortholog (VPS35) gene encodes a core com-
ponent of the retromer complex essential for the endosomal sorting and
recycling of transmembrane cargo. Endo-lysosomal pathway deficits are
suggested to play a role in the pathogenesis of neurodegenerative diseases,
including Parkinson’s disease (PD). Mutations in VPS35 cause a late-onset,
autosomal dominant form of PD, with a single missense mutation
(D620N) shown to segregate with disease in PD families. Understanding
how the PD-linked D620N mutation causes retromer dysfunction will pro-
vide valuable insight into the pathophysiology of PD and may advance
the identification of therapeutics. D620N VPS35 can induce LRRK2 hyperac-
tivation and impair endosomal recruitment of the WASH complex but is also
linked to mitochondrial and autophagy-lysosomal pathway dysfunction and
altered neurotransmitter receptor transport. The clinical similarities between
VPS35-linked PD and sporadic PD suggest that defects observed in cellular
and animal models with the D620N VPS35 mutation may provide valuable
insights into sporadic disease. In this review, we highlight the current knowl-
edge surrounding VPS35 and its role in retromer dysfunction in PD. We
provide a critical discussion of the mechanisms implicated in VPS35-
mediated neurodegeneration in PD, as well as the interplay between
VPS35 and other PD-linked gene products.

This article is part of a discussion meeting issue ‘Understanding the
endo-lysosomal network in neurodegeneration’.
1. Introduction
Parkinson’s disease (PD) is the most common movement disorder that impacts
approximately 2% of the population over 65 years of age, and increases to
approximately 5% in those over 85 [1,2]. Clinically, PD is characterized by car-
dinal motor symptoms including bradykinesia, rigidity, resting tremor and
often postural instability. PD is neuropathologically characterized by the rela-
tively selective loss of dopaminergic neurons in the nigrostriatal pathway
together with a reduction in dopamine levels in the striatum, in addition to
other neuronal populations [3,4]. Accompanying this neuronal loss is the for-
mation of Lewy bodies and Lewy neurites in the brainstem that contain
protein aggregates, of which α-synuclein is a major component [3,4]. Current
therapies such as pharmacological replacement of dopamine and deep brain
stimulation can aid in disease management and lead to sustained symptom
control and quality of life for decades. To date however, there are no approved
disease-modifying therapies that can slow or stop the progression of PD.

Despite PD primarily being an idiopathic disease with age being the stron-
gest risk factor, up to 10% of PD cases are familial. These monogenic forms of
PD have been linked to mutations in at least 20 distinct genes that are inherited
in an autosomal dominant or recessive manner [1]. Although the exact molecu-
lar mechanisms underpinning PD pathogenesis remain unclear, the
identification of these distinct disease-linked genes has aided our understand-
ing of PD. Accordingly, an array of cellular pathways are known to be
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regulated by these gene products or their disease-linked
mutations, including synaptic function and neurotrans-
mission, mitochondrial turnover and activity, autophagy-
lysosomal pathway and vesicular sorting pathways [5].
Notably, in monogenic forms of PD, many of the implicated
gene products converge in common cellular pathways, par-
ticularly within the endo-lysosomal system [6]. One such
gene of interest is vacuolar protein sorting 35 ortholog
(VPS35), where an aspartic acid to asparagine mutation at
residue 620 (D620N) (p.Asp620Asn, c.1858G >A) causes a
late-onset, autosomal dominant form of PD that was orig-
inally identified in Swiss and Austrian families [7,8]. The
VPS35 protein is a key component of the retromer complex.
The retromer consists of VPS35, VPS26A or VPS26B, and
VPS29, which is associated with distinct sorting nexin
family members, and is essential for receiving, sorting and
recycling transmembrane protein cargo from endosomes to
the trans-Golgi network (TGN) or the plasma membrane
[9]. While disruption of the retromer has been reported to
result in complex cellular phenotypes, impacting degradation
pathways such as mitophagy, autophagy and the lysosome,
as well as the recycling of synaptic receptors [10,11], the
precise nature of retromer dysfunction and its relation to
neurodegeneration in PD remain unclear. Elucidating the
molecular mechanisms underpinning VPS35-linked PD will
provide important insight into the pathophysiology of famil-
ial and sporadic PD and potentially the identification of
targeted therapeutics. For this to occur, however, it is critical
to understand VPS35 function within the retromer complex.
2. VPS35 and the retromer
The retromer was originally identified in yeast and is highly
conserved in mammals, where it acts as a master conductor
to receive, dissociate and sort a diverse set of membrane
cargo proteins to specialized intracellular locations [12]
(figure 1). The retromer controls cellular homeostasis through
the sorting and recycling of cargo to endosomal export path-
ways, thereby preventing their inappropriate lysosomal
degradation [10,20,21]. The retromer assembles on endo-
somes and forms tubular vesicles that sort cargo to the
plasma membrane for recycling or to the TGN via retrograde
pathways (figure 1) [9,22]. Studies on the retrieval of the yeast
vacuole sorting receptor VPS10p identified the necessity of
the retromer for the sorting and retrieval of lysosome/vacu-
ole hydrolase receptors, ultimately leading to the discovery
of the retromer complex [12,23]. Among other known retro-
mer cargos are various membrane proteins including
transporters, ion channels, enzymes, adhesion molecules
and signalling receptors.

In mammals, the retromer can be separated into two
distinct associated complexes, a cargo-selective complex
(CSC) trimer and a sorting nexin (SNX) dimer (figure 1)
[14,19,24,25]. The CSC consists of VPS26, VPS29 and VPS35
and binds to endosomal membranes where it mediates the
recognition and sorting of cargo. The SNX heterodimers con-
sist of SNX1 or SNX2 and SNX5 or SNX6 that bind to the
endosomal membrane and aid the association of the CSC
with endosomal membranes through its phox-homology
(PX) and Bin–Amphiphysin–Rvs (BAR) domains [13,21,26].
Of the CSC proteins, VPS35 is the largest subunit being com-
posed of approximately 800 amino acids, and it is considered
a highly flexible protein, forming an α-solenoid fold extend-
ing throughout the entire protein. Recently, structural
analysis of the yeast retromer via cryo-electron tomography
identified VPS35 homodimers forming an arch, bound by
VPS26 dimers at the base (N-terminal end) and VPS29
dimers at the apex (C-terminal end). The α-solenoid fold is
believed to be important in the binding of VPS29 at the C-
terminal end of VPS35, whereas the N-terminus uses a
PRLYL motif to bind to VPS26 [21,24,27–29]. Structural data
indicate that the PD-linked D620N mutation is located adja-
cent to the VPS35 homodimerization interface, thereby
suggesting that the mutation could reduce VPS35 dimeriza-
tion efficiency and may impact the assembly and function
of retromer multimers. Given this data, it is possible that
the VPS35 D620N mutation also alters the binding stability
between retromer and its accessory proteins, discussed
below. However, the question remains as to the impact of
the D620N VPS35 mutation on arch assembly. Notably, a
similar structural configuration was observed in the mamma-
lian retromer using single-particle cryo-electron microscopy
and suggested that the retromer can form oligomeric species,
although the function of these assemblies is not yet clear
[27,30–32]. Interestingly, while VPS35 and VPS29 are largely
unchanged between the mammalian and yeast retromer,
VPS26 has diverged into two distinct proteins in mammals,
VPS26A and VPS26B. Despite a high degree of sequence
similarity, the VPS26 isoforms can bind and recycle different
cargos by forming distinct retromer complexes [13,33]. Fur-
thermore, the mammalian CSC does not form a stable
interaction with the SNX dimer and requires two additional
proteins, SNX3 and Rab7A, for a sustained interaction with
the endosomal membrane (figure 1). Examination of mam-
malian cells via high-resolution microscopy revealed that
the SNX dimer and CSC often exist in distinct endosomal
regions, which may explain the weak interaction between
these two complexes [14,34,35]. Consequently, the term
’retromer’ will refer to the CSC in this review.

In the endo-lysosomal pathway, the retromer controls
homeostasis through the regulation of endosomal maturation
as well as via protein sorting and transport. Of note, the CSC
has no membrane-binding activity and thus relies upon a
variety of indirect mechanisms to associate with early and
maturing endosomes. For example, in early endosomes
Rab5 promotes PtdIns(3)P (PI3P) synthesis, which is then
bound by the PX domain of SNX3, which in turn targets
the CSC to early endosomes. During the early to late endo-
some transition, however, PI3P is converted to PtdIns(3,5)P2

and Rab5 is supplanted by Rab7A, leading to endosomal
maturation [34–36]. At this juncture, the retromer is respon-
sible for recognizing and sorting distinct cargo away from
lysosomes. In addition to these interactions, the retromer
can associate with accessory proteins that guide cargo into
discrete sorting pathways. One such interaction is with the
Wiskott-Aldrich syndrome protein and SCAR homolog
(WASH) complex via VPS35 (figure 1). The WASH complex
is composed of WASH1, Strumpellin, FAM21, CCDC53 and
SWIP/KIAA1033 [18–20]. The WASH complex interacts
with VPS35 via the unstructured tail of FAM21, and its
recruitment to endosomes drives the formation of F-actin
patches on the endosomal membrane required for generating
distinct domains for cargo sorting to both the TGN and
plasma membrane [18,19,26]. In addition to interacting with
the retromer, the C-terminal domain of FAM21 plays a part



tubule
formation and
scission

endosomal maturation
endosome-to-TGN transport
endosome-to-plasma
membrane transport

endosome-to-cell
surface recyclingF-actin patches

membrane
recruitment 

LC3

VPS26

VPS35

SNX3

Rab7a

TBC1D5

VPS29

Strumpellin

SWIP

CCDC53

FAM21WASH1

Figure 1. Schematic diagram of the mammalian retromer complex and its associated proteins. Depicted are the retromer-interacting proteins from studies in
mammalian cells. The retromer complex consisting of VPS26, VPS29 and VPS35 is essential for recycling of endosomal transmembrane protein cargo [13]. The
retromer is depicted as a single trimer here, and proteins are grouped according to function, e.g. regulators of cargo-selective retromer complex and membrane
association, SNX3, Rab7a and TBC1D5. Binding directly to VPS29, TBC1D5 is a member of Tre2-Bub2-Cdc16 (TBC) family of Rab GTPase-activating proteins (GAPs); it
is believed to be associated with membrane recruitment of the retromer, has been shown to bind to autophagy marker LC3 and it has been implicated to have a
role in mitophagy [14–17]. The retromer facilitates two routes of cargo sorting: endosome-to-plasma membrane transport and endosome-to-trans-Golgi network
(TGN) transport. Retromer-mediated sorting has been shown to be facilitated by association of the retromer with the pentameric WASH complex. Composed of SWIP/
KIAA1033, WASH1, Strumpellin, CCDC53 and FAM21, the WASH complex is important for discrete sorting pathways by forming F-actin patches along endosomal
tubes [10,18,19]. Arrows indicate relationships between respective proteins and colours indicate the cellular pathway involved, while dashed arrows indicate an
interaction that has yet to be experimentally validated.
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in a number of other protein-protein interactions including,
but not limited to, the COMMD/CCDC22/CCDC93 (CCC)
complex, RME-8 and FKBP15 (reviewed in [18,37–39]). Cano-
nically, endosome-to-TGN retromer cargo includes the cation-
independent mannose-6-phosphate receptor (CI-M6PR),
sortilin, Wntless, and SorLA, whereas endosome-to-plasma
membrane cargo includes the glucose transporter GLUT1,
AMPA glutamate receptors (GluR1 and GluR2), insulin-like
growth factor 1 receptor (IGF1R), and the β2 adrenergic
receptor (β2-AR) (figure 1) [19,26,40]. The WASH complex
is primarily involved in the sorting of GLUT1 and β2-AR to
the plasma membrane, which is dependent on its association
with SNX27 [20,26,34,35]. Additionally, the recruitment and
coordination of the WASH complex with the retromer can
promote tubule scission and retrieval of CI-M6PR in endo-
some-to-TGN transport. Interestingly, an impairment of
VPS35–FAM21 binding and WASH complex recruitment to
endosomes is caused by the PD-linked D620N mutation,
and this molecular defect could potentially play a role in
PD pathophysiology [19,20,26,41]. A recent study has
shown that inhibition of TBC1D5, a GTPase-activating
protein for Rab7a, can lead to the activation of Rab7a that
is sufficient to rescue impaired retromer activity due to the
D620N mutation by enhancing retromer recruitment to endo-
somes [25]. It should be noted, however, that both the WASH
complex and TBC1D5 are not conserved in yeast, and thus
are dispensable given that yeast are still able to operate an
efficient endosome-to-Golgi retrieval pathway [14].

Coupling the ubiquitous expression of the retromer with
its role in various cellular processes, such as glucose uptake
and metabolism to maintaining lysosomal hydrolases, it is
evident that the retromer is integral to cellular health and
functioning [42]. Notably, VPS35 mRNA is detected in the
mammalian brain where it is highly expressed in frontal
cortex, hippocampus, striatum and cerebellum, and shows
highest expression in neurons and oligodendrocytes [43].
Moreover, VPS35 is required for various cellular mechanisms,
as evidenced by defects in WASH complex binding, AMPA
receptor sorting, the autophagy–lysosomal pathway, and
mitochondrial dynamics and activity induced by the PD-
linked D620N mutation [44–47]. Interestingly, while the
D620N mutation does not disrupt the interaction of VPS35
with other subunits of the retromer complex, there is some
discordance within the literature surrounding the mechanism
of VPS35-dependent neurodegeneration. For example, over-
expression of wild-type (WT) VPS35 has been reported to
protect dopaminergic neurons exposed to mitochondrial
toxins in vitro [48], whereas a contrasting report indicates
the overexpression of WT or D620N VPS35 to be neurotoxic
in vitro and in vivo [49]. Extending these findings, Tsika
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et al. [49] also reported that, compared to WT VPS35, the
D620N mutation had pathogenic effects leading to enhanced
nigrostriatal pathway degeneration in the adult rat brain.
Taken together, these reports highlight an important role for
VPS35 and the retromer for normal cellular functioning
throughout the body and particularly within the brain. How-
ever, our understanding of the molecular and cellular
mechanisms involved in VPS35-dependent neurodegeneration
in PD is still rather limited.
/journal/rstb
Phil.Trans.R.Soc.B
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3. VPS35 mutations in PD
The D620N mutation in VPS35, initially identified in a large
Swiss PD family in 2011 through exome sequencing, has
enabled the identification of VPS35-PD families from Tunisia,
Israel and the United States, as well as three Austrian families
[7,8,50]. Since its initial discovery, the D620N mutation has
subsequently been identified in several PD families and indi-
viduals worldwide. Interestingly, the D602N mutation is rare
in Asian populations, with the exception of Japanese
populations, and it has been predominantly identified in
individuals of Caucasian decent [51]. Although several
additional rare variants in VPS35 have been reported in indi-
vidual PD subjects (i.e. R32S, P316S, R524W, I560T, H599R
and M607V), only the D620N mutation has been confirmed
as pathogenic owing to its segregation with disease in PD
families [11].

VPS35-PD is clinically similar to sporadic PD with a typi-
cal late-onset of disease accompanied by cardinal motor
symptoms, responsiveness to levodopa therapy and, in
some subjects, mild cognitive impairment [50,52]. Due to
the indistinguishable clinical observations between VPS35-
PD and sporadic PD subjects, it would be beneficial to fully
evaluate the neuropathology of VPS35-PD post-mortem
cases, to understand whether similar mechanisms may
underlie familial and sporadic PD. To date, however, the neu-
ropathology of D620N VPS35-PD cases is unknown, as only
one subject has been assessed including the cortex and
parts of the basal ganglia (but critically lacking the brainstem)
with no signs of Lewy pathology or α-synuclein aggregation
[50]. Despite numerous studies demonstrating the impor-
tance of VPS35 and the retromer for normal cellular
function and viability, the mechanisms underpinning neuro-
degeneration in PD induced by the D620N VPS35 mutation
remains unclear. The D620N mutation has been reported to
disrupt the role of VPS35 in at least three cellular pathways,
including autophagy, neurotransmission and mitochondrial
dynamics/function.
4. Autophagy
Autophagy is a highly conserved intracellular lysosome-
mediated degradative pathway that plays an important role
in cellular homeostasis by sequestering various intracellular
components for lysosomal delivery and degradation. In
mammals, there are three primary types of autophagy: cha-
perone-mediated autophagy (CMA), microautophagy and
macroautophagy. Macroautophagy participates in protein
aggregate and organelle degradation, and can be further
divided into selective autophagy classified by the type of
cargo sequestered (mitophagy and aggrephagy) and non-
selective macroautophagy [53–55]. Given that impaired
mitochondrial turnover and function, as well as increased
protein aggregation, are pathological features of PD, it is
unsurprising that disruptions in autophagic pathways have
been implicated as a major contributing factor to neurodegen-
erative diseases. In PD, several mechanisms have been
proposed to perturb autophagy and lysosomal pathways,
promoting the progression of PD pathology in vulnerable
brain regions [4,10,55]. Notably, the retromer, in association
with its accessory proteins such as the WASH complex, has
been observed to have a crucial role in endosomal protein
sorting and the autophagic process [56–58].

The WASH complex plays an integral role in endosome
sorting and has previously been shown to be necessary
for negatively regulating autophagosome formation, with
WASH complex deficiency resulting in embryonic lethality
and excessive autophagy [41,58]. Extending these initial find-
ings, the D620N mutation was shown to impair retromer–
WASH complex binding and endosomal recruitment through
reduced affinity of VPS35 for FAM21. Additionally, the
D620N mutation was observed to alter GLUT1 localization
from the cell surface to an intracellular location [58]. The
aberrant autophagy resulting from the impaired WASH
complex binding to D620N VPS35 was attributed to the
abnormal sorting of autophagy receptor ATG9A and reduced
autophagosome formation. The multipass transmembrane
protein ATG9A is important for autophagosome formation
that localizes to the TGN and recycling endosomes under
basal conditions, but it undergoes redistribution in the early
stages of autophagy to compartments that become positive
for the autophagosome marker LC3 [58,59]. Perturbed
ATG9A sorting has been reported to result in reduced coloca-
lization with LC3-positive autophagic structures, leading to
impaired autophagosome formation [58,60–63]. Interestingly,
mislocalization of ATG9A has also been observed in an α-
synuclein overexpression model, often used to recapitulate
familial forms of PD caused by SNCA (α-synuclein) gene
multiplication [64]. It is important to note that while the
impact of the D620N mutation on WASH complex binding
in mammalian cells has since been recapitulated by other
groups, it has yet to be demonstrated in brain cells specifi-
cally or directly linked to neurodegenerative processes. As
such, it remains unclear whether impaired WASH complex
binding to the retromer is sufficient to drive PD pathology.

Another well-studied retromer cargo, CI-M6PR, is a criti-
cal transporter of acid hydrolases—such as the aspartyl
protease cathepsin D—from the TGN to the pre-lysosomal
compartment. Newly synthesized lysosomal-bound enzymes
arriving in the Golgi, such as pro-cathepsin D, are specifically
modified with mannose-6-phosphate (M6P) groups for recog-
nition by the CI-M6PR in the TGN and transported to the
pre-lysosomal compartment [10,65]. The proper translocation
of pro-cathepsin D into the late endosomal compartment is
important for its maturation and proper lysosomal function.
Supporting this notion, disrupted cathepsin D sorting, and
consequently lysosomal dysfunction, have been demon-
strated in cell lines and PD patient-derived fibroblasts
expressing D620N VPS35, despite CI-M6PR sorting appear-
ing largely normal [66,67]. Cathepsin D is considered the
main lysosomal endopeptidase for the degradation of long-
lived proteins, including α-synuclein. As such, it has been
suggested that the disrupted lysosomal delivery of cathepsin
D could therefore impair the degradation of α-synuclein, as
well as other aggregation-prone proteins [67–69]. Supporting
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this notion, an increase in α-synuclein was observed in sub-
stantia nigra dopaminergic neurons of mice overexpressing
D620N VPS35; however, cathepsin D sorting was not evalu-
ated [68]. Extending these findings, the authors observed
that sorting and degradation of LAMP2a, a key CMA protein
required for α-synuclein degradation, is regulated by VPS35
[55]. Furthermore, it was seen that VPS35 deficiency
decreased LAMP2a endosome-to-TGN retrieval, accelerated
its degradation, enlarged LAMP1-postive lysosomal vesicles
and increased α-synuclein accumulation. Similarly, LAMP2a
sorting is impaired and its degradation accelerated, and
α-synuclein accumulates, following the overexpression of
D620N VPS35 [68].

Both the retromer and VPS35 have also been linked to the
regulation of the divalent metal transporter 1 (DMT1), a
transporter of Fe(II) ions, via the TGN. Disruption to iron
metabolism has been reported in a variety of neurodegenera-
tive diseases, including PD, wherein iron accumulation is
observed in the dopaminergic neurons of the substantia
nigra [70,71]. While the exact mechanisms are unknown,
alterations in proteins critical for iron uptake have been
observed, including increased expression of DMT1 and
decreased iron exporter FPN1 [71,72]. Consistent with these
findings, impairments to either VPS35 expression or function
have been reported to missort DMT1 to the lysosome, pro-
moting the accumulation of Fe(II) in lysosomes in SH-SY5Y
neural cells [73,74]. Although the total iron content of cells
was not altered by VPS35 dysfunction, VPS35 knockdown
was observed to result in a significant accumulation of
α-synuclein [74]. Previous studies have demonstrated that
metal ions, including copper and iron, can accelerate α-
synuclein aggregation, which has been reported to perturb
lysosomal degradation [75–77].
5. Neurotransmission defects
The efficient recycling and turnover of cellular components
are essential to neuronal function and survival, enabling
them to maintain functional plasticity. The retromer is loca-
lized throughout the neuron, including within the cell
soma, axon and dendrites and is important for neuronal func-
tioning, underlying delivery of various receptors to dendrites
and both extrasynaptic and synaptic sites [10,44]. Conse-
quently, the role of VPS35 and the retromer in this area is
of great interest in neurodegenerative diseases. Normally,
VPS35 and the retromer have been seen to localize to dendri-
tic spines, wherein they facilitate binding and sorting of the
AMPA receptor GluR1 [46].

Overexpression of WT VPS35 in primary rodent neurons
has been shown to impact synapse number and AMPA recep-
tor localization [46]. Overexpression of D620N VPS35
however, was shown to alter VPS35 localization and motility
at the dendrite, disrupt GluR1 sorting and increase colocali-
zation of VPS35 with GluR1, indicating a potential
dysfunction in glutamatergic signalling [46]. Additionally,
human induced pluripotent stem cell (iPSC)-derived dopa-
minergic neurons harbouring the D620N mutation were
also observed to have an increase in GluR1 cluster intensity.
Supporting these findings, a recent study by Kadgein et al.
[45] observed GluR1 association with VPS35 in neurons
derived from a D620N VPS35 knockin mouse model. While
previous studies have used overexpression of VPS35 variants,
D620N VPS35 knockin mice provide a more physiologically
relevant model, expressing VPS35 at endogenous levels.
D620N VPS35 knockin mice models were also observed to
have increased glutamatergic activity in primary neuronal
cultures, which was associated with increased GluR1 surface
expression and glutamate transmission [45]. By contrast,
VPS35 knockout mice have perturbed neurotransmission. In
this model, depletion of VPS35 decreased surface expression
of GluR1 and GluR2, accompanied by impaired dendritic
spine maturation, which is suggested to be a consequence
of abnormal GluR2 sorting [78].

Furthermore, D620N VPS35 knockin mice have been
observed to have increased dopamine release, elevated dopa-
mine metabolites and a significant reduction in dopamine
transporter (DAT) levels in the striatum in mice as young as
3 months old [79]. Other studies using independent knockin
models, however, have reported contrary findings, with one
reporting a decrease in striatal dopamine [80], another an
increase in striatal dopamine but not dopamine metabolites
[81], and an additional study that observed no change in
extracellular striatal dopamine even at 15 months [56].
While genetic background or age could have a significant
contribution to the discrepancies between these D620N
VPS35 knockin mice, as well as the methodology used for
detecting dopamine, it is evident that further investigations
are required.
6. Impaired mitochondrial dynamics and
function

Perturbed mitochondrial homeostasis has been consistently
implicated in the pathogenesis of familial and sporadic PD.
Impairments in several mitochondrial processes have been
reported in a range of PD models including defects in mito-
phagy, dynamics, biogenesis, defective calcium homeostasis
and mitochondrial DNA mutations [10,11,40]. The retromer
complex has previously been implicated in mediating vesicle
transport from mitochondria to lysosomes and peroxisomes
by facilitating the formation of mitochondrial-derived ves-
icles (MDVs). MDV formation and delivery ultimately
enables the removal and recycling of mitochondrial contents
[82]. MDV formation and delivery were shown to be
reliant upon interactions of VPS35 and VPS26A with the
mitochondrial-anchored protein ligase (MAPL). MAPL is a
mitochondrial small ubiquitin-like modifier (SUMO) E3
ligase that is reported to positively regulate the mitochondrial
fission GTPase Drp1 [82,83]. VPS35 and the retromer have
also been suggested to have a broader role in mitochondrial
maintenance, wherein they may regulate mitochondrial fis-
sion and fusion events potentially directly or indirectly, yet
endogenous VPS35 has not been convincingly demonstrated
to exhibit localization to mitochondria in different cell types.

Recently, VPS35 has been observed to interact with Drp1
and regulate mitochondrial fission. Using rodent primary
neurons it was observed that overexpression of human
VPS35 led to mitochondrial fragmentation and neuronal
cell death. These phenotypes were further enhanced in the
presence of the D620N mutation relative to WT or R524W
VPS35 [84]. Moreover, these effects were seen in fibroblasts
derived from PD subjects harbouring the D620N mutation,
as well as in VPS35 knockdown and rescue experiments in
M17 neural cells, indicating that the effects of D620N
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VPS35 are independent of potential overexpression artefacts
[84]. Increased mitochondrial fragmentation has also been
observed following WT or D620N VPS35 overexpression in
mouse substantia nigra neurons in vivo [84], as well as in
the substantia nigra of heterozygous D620N VPS35 knockin
mice at 16 months of age [85]. Accompanying this mitochon-
drial fragmentation, VPS35 mutations were observed to
impair mitochondrial respiration, decrease membrane poten-
tial, reduce ATP levels and increase reactive oxygen species
production [84]. Notably, use of mdivi-1, a selective inhibitor
of dynamin-related GTPases including Drp1, was able to
rescue the observed mitochondrial fragmentation in mice
expressing D620N VPS35 and patient-derived D620N PD
fibroblasts, as well as restore the defects in mitochondrial res-
piration [84]. While further investigation is still required,
these studies highlight a potential role for altered mitochon-
drial dynamics in D620N VPS35-induced neurotoxicity,
although it remains unclear whether these effects occur
directly or result indirectly as a consequence of altered
autophagy (mitophagy) and lysosomal activity.

Extending these findings, ablation of VPS35, both in vitro
and in vivo, has been observed to increase mitochondrial frag-
mentation and lead to abnormal mitochondrial morphology
[47]. These VPS35 knockout neurons were reported to have
an increase in the levels of the mitochondrial E3 ubiquitin
protein ligase 1 (MUL1) (MAPL) and a resultant decrease in
the mitochondrial fusion protein, mitofusin 2 (Mfn2). These
mitochondrial dynamic changes were accompanied by altered
mitochondrial respiration and function [47]. Increased MUL1
levels and decreased Mfn2 were also observed following the
overexpression of PD-linked VPS35 mutants. Notably, the
mitochondrial defects in VPS35 knockout neurons were res-
cued by exogenous expression of WT VPS35, but not the
D620N mutant [47]. Although this study suggests that
VPS35 mutations act through a loss-of-function mechanism
in the context of mitochondrial dynamics, several of the
known functions of the retromer are not compromised by
these PD-linked mutations [10,41,46,49,58]. Furthermore,
while the loss of nigral dopaminergic neurons in conditional
VPS35 knockout mice recapitulates PD-like pathology, the rel-
evance of this model to VPS35-linked PD is questionable due
to the subtle effects of the D620Nmutation compared to global
retromer impairment in VPS35 knockout mice. This is perhaps
best exemplified by the observation that germline homozy-
gous VPS35 knockout mice are early embryonic lethal
whereas D620N VPS35 knockin mice are viable and exhibit a
normal lifespan [56,86].
7. VPS35 and other PD-linked genes
Given the diverse interactions of VPS35 and the retromer, it is
unsurprising that they have been linked to the products
of other PD genes, including LRRK2, parkin and α-synuclein,
which may converge on common pathways to augment neu-
rodegeneration in PD [11]. Previous studies have identified a
genetic interaction between VPS35 and parkin [87], including
a link to MDV formation [82,88]. Studies in Drosophilamodels
posited that due to their shared role in MDV formation, an
interaction may exist between VPS35 and parkin, and/or
PINK1. While it was established that VPS35 and parkin
have a genetic interaction, with VPS35 likely downstream of
parkin, how parkin contributes to the pathogenicity of
VPS35 mutations in PD remains unclear [87,88]. In this
regard, it has been shown that VPS35 can serve as a substrate
for the E3 ubiquitin ligase activity of parkin, which modifies
VPS35 with non-degradative poly-ubiquitin chains [89]. The
knockdown of parkin in primary neurons led to the modu-
lation of WASH complex components and abnormal sorting
of ATG9A [89], a retromer cargo. Consistent with Drosophila
studies, parkin expression was not required for dopaminergic
neuronal degeneration induced by human D620N VPS35
expression in mice [89], instead supporting a role for parkin
upstream of VPS35.

As mentioned, VPS35 deficiency has been reported to
increase α-synuclein accumulation via impaired lysosomal
function [46,68,76]. VPS35 depletion can impair the lysosomal
degradation of α-synuclein through the abnormal sorting of
cathepsin D and DMT1, while overexpression of the D620N
VPS35 mutant impairs CMA of α-synuclein by disrupting
LAMP2a sorting [66,68,73,74]. Additionally, VPS35 loss-of-
function has been implicated in increasing the toxicity induced
by human α-synuclein variants in yeast andwormmodels [90].
In addition, hippocampal neuronal loss observed in transgenic
mice expressing human WT α-synuclein was rescued by the
overexpression of WT VPS35, but not by the PD-linked P316S
variant, or by VPS35 silencing [90]. By contrast, a recent
study demonstrated that overexpression of WT VPS35 failed
to protect against nigral dopaminergic neurodegeneration
induced by the viral-mediated expression of human WT α-
synuclein in a rat model of PD [91]. Furthermore, it was
shown that endogenous α-synuclein was not required
for nigrostriatal pathway dopaminergic neurodegeneration
induced by the viral-mediated expression of human D620N
VPS35 in mice. In contrast to reports from simpler models,
the authors also reported that the lethal neurodegenerative
phenotype exhibited by human A53T-α-synuclein transgenic
mice was not altered by the germline heterozygous deletion
of VPS35, and that A53T-α-synuclein transgenic mice did not
exhibit evidence for a retromer deficiency in vulnerable brain
regions of symptomatic mice [91]. Collectively, these data
suggest a rather limited interaction between α-synuclein and
VPS35 in neurodegenerativemodels of PD, but it remains poss-
ible that both proteins may indirectly converge on a common
pathophysiological pathway such as lysosomal degradation.

VPS35 and LRRK2 have previously been reported to
interact with each other through co-immunoprecipitation
assays in SH-SY5Y cells [92]. It is also suggested that these
two proteins are involved in a similar pathogenic
mechanism because the CI-M6PR sorting defect induced by
D620N VPS35 is phenocopied by G2019S LRRK2 overexpres-
sion and can be rescued by WT but not D620N VPS35. In
addition, overexpression of WT VPS35 has been demon-
strated to rescue retinal degeneration in a Drosophila model
of PD induced by PD-linked LRRK2 mutants [93]. These
studies support a mechanism whereby PD-linked LRRK2
mutations may induce a downstream retromer deficiency.
More recently, PD-linked VPS35 mutations have been
reported to lie upstream of LRRK2 as the D620N mutation
can induce robust LRRK2 kinase hyperactivation. Specifically,
this was observed as a 2–6-fold increase in the LRRK2-
mediated phosphorylation of its substrates Rab8a, Rab10
and Rab12 in mouse embryonic fibroblasts (MEFs) and mul-
tiple tissues from D620N VPS35 knockin mice. Increased Rab
phosphorylation was shown to be dependent on LRRK2
kinase activity, as it was reversed in D620N knockin MEFs
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and tissues by treatment with the selective LRRK2 kinase
inhibitor, MLi-2 [94]. Notably, heterozygous D620N PD
patient-derived neutrophils and monocytes also exhibit
increased LRRK2-dependent Rab10 phosphorylation [94].
As the retromer does not possess catalytic activity, the
increased LRRK2 substrate phosphorylation induced by the
D620N mutation may indicate an altered subcellular localiz-
ation of LRRK2 and its Rabs leading to increased substrate
access, and/or the recruitment of an unknown LRRK2
regulator via an unclear mechanism.
rnal/rstb
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8. Conclusion and future perspectives
While the molecular mechanisms underlying neurodegenera-
tion induced by the PD-linked D620N VPS35 mutation have
yet to be fully elucidated, they have firmly established a role
for endosomal retromer sorting in the pathogenesis of PD.
With only a single missense mutation so far confirmed to
be pathogenic (i.e. D620N), numerous experimental models
have been developed to understand the mechanisms
involved in VPS35-linked PD. The use of VPS35 knockout
or overexpression in rodents has proven useful, but it can
complicate the identification of specific disease mechanisms
as both approaches can often lead to severe phenotypes
and susceptibilities unrelated to PD [43,95,96]. Accordingly,
the development of VPS35 knockin mouse models has
suggested that the D620N mutation may have rather subtle
and/or selective effects on overall retromer function and
neuronal damage, when compared to knockout models.
Notably however, most rodent models of PD-linked
mutations based on knockout or knockin approaches have
largely failed to reproduce key aspects of human PD neuro-
pathology, and thus findings from these VPS35 models
should still be taken with some caution.

Retromer dysfunction in PD may culminate in abnormal
mitochondrial turnover and activity, neurotransmission and/
or macroautophagy. The use of human iPSC-derived brain
cell models has also contributed to our understanding of PD
pathobiology, and for the D620N VPS35 mutation these
models have initially suggested altered autophagy-lysosomal
pathway activity, α-synuclein accumulation, abnormal
AMPA receptor sorting and mitochondrial dysfunction in
neurons [46,97,98]. While iPSCs can be used to study human
brain cells, there are several limitations to consider. One
such limitation is the association of PD and ageing, which con-
sequently requires the development of an aged iPSC model to
recapitulate hallmark phenotypes of PD such as dopaminergic
neuronal degeneration [99]. Although several studies have
used factors to accelerate ageing and better represent the dis-
ease, such as progerin or telomerase inhibitor 2-[(E)-3-
naphthalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532),
these factors may not capture all aspects of normal ageing
[100,101]. Further limiting iPSC modelling is the lack of neur-
onal complexity as compared to studies in the rodent brain.
This is partially due to the two-dimensional monolayer
system of iPSCs coupled with the efficiency of different differ-
entiation protocols [99]. Regardless of these limitations, the
use of PD patient-derived iPSCs will likely provide novel
insights into disease progression and gene-specific mechan-
isms of PD pathogenesis, including for VPS35.

Emerging from studies of VPS35 so far, is the notion that
the PD-linked D620N VPS35 protein appears to be largely
functional, and does not confer a complete loss-of-function
effect unlike VPS35 depletion models [10,56,66,87,91]. How-
ever, whether the D620N VPS35 mutation acts via a toxic
gain-of-function or partial loss-of-function mechanism remains
unclear. For example, D620N VPS35 can promote LRRK2
hyperactivation yet also exhibits an impaired interaction and
endosomal recruitment of the WASH complex [25,94], but
neither phenotype has been shown to drive neuronal
damage. As such, it is not yet clear how best to selectively
target the retromer in PD for therapeutic development, but
this could potentially involve LRRK2 kinase inhibition [94],
promoting the WASH complex interaction (via TBC1D5
inhibition) [25], or boosting retromer stability via pharmaco-
logical chaperones [102]. Although the exact pathogenic
mechanisms underlying D620N VPS35-mediated neurodegen-
eration are not yet clear, several cellular pathways downstream
of retromer dysfunction have been implicated, including
mitochondrial fusion and fission [47,84], autophagy
defects [58,67,68], altered neuronal signalling/transmission
[45,46,78] and interactions with other PD-linked gene
products [10,64,85,87,92,93]. Future studies elucidating such
mechanisms will be beneficial in the development of thera-
peutics for VPS35-linked PD and potentially sporadic PD.
Retromer dysfunction has also been implicated in other neuro-
degenerative diseases (i.e. Alzheimer’s disease, tauopathies,
amyotrophic lateral sclerosis) [10], so insights from studying
PD-specific mechanisms may also contribute to our under-
standing and therapeutic development for these devastating
diseases.
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