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Summary
Background Obesity has been positively associated with most molecular subtypes of colorectal cancer (CRC); however,
the magnitude and the causality of these associations is uncertain.

Methods We used Mendelian randomization (MR) to examine potential causal relationships between body size traits
(body mass index [BMI], waist circumference, and body fat percentage) with risks of Jass classification types and
individual subtypes of CRC (microsatellite instability [MSI] status, CpG island methylator phenotype [CIMP] status,
BRAF and KRAS mutations). Summary data on tumour markers were obtained from two genetic consortia (CCFR,
GECCO).

Findings A 1-standard deviation (SD:5.1 kg/m2) increment in BMI levels was found to increase risks of Jass
type 1MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype (odds ratio [OR]: 2.14, 95% confidence interval [CI]: 1.46, 3.13;
p-value = 9 × 10−5) and Jass type 2non-MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype CRC (OR: 2.20, 95% CI: 1.26, 3.86;
p-value = 0.005). The magnitude of these associations was stronger compared with Jass type 4non-MSI-high,CIMP-low/

negative,BRAF-wildtype,KRAS-wildtype CRC (p-differences: 0.03 and 0.04, respectively). A 1-SD (SD:13.4 cm) increment in
waist circumference increased risk of Jass type 3non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-mutated (OR 1.73, 95%
CI: 1.34, 2.25; p-value = 9 × 10−5) that was stronger compared with Jass type 4 CRC (p-difference: 0.03). A higher
body fat percentage (SD:8.5%) increased risk of Jass type 1 CRC (OR: 2.59, 95% CI: 1.49, 4.48; p-value = 0.001),
which was greater than Jass type 4 CRC (p-difference: 0.03).

Interpretation Body size was more strongly linked to the serrated (Jass types 1 and 2) and alternate (Jass type 3)
pathways of colorectal carcinogenesis in comparison to the traditional pathway (Jass type 4).

Funding Cancer Research UK, National Institute for Health Research, Medical Research Council, National Institutes
of Health, National Cancer Institute, American Institute for Cancer Research, Brigham and Women’s Hospital,
Prevent Cancer Foundation, Victorian Cancer Agency, Swedish Research Council, Swedish Cancer Society, Region
Västerbotten, Knut and Alice Wallenberg Foundation, Lion’s Cancer Research Foundation, Insamlingsstiftelsen,
Umeå University. Full funding details are provided in acknowledgements.

Copyright © 2024 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND IGO license
(http://creativecommons.org/licenses/by-nc-nd/3.0/igo/).
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Introduction
Colorectal cancer (CRC) is a heterogeneous disease that
evolves through multiple pathways defined by genetic,
epigenetic and environmental exposure events.1 This
heterogeneity is often characterized by underlying mo-
lecular markers, such as: i) microsatellite instability
(MSI) resulting from alterations in the DNA mismatch
repair system; and ii) CpG island methylator phenotype
www.thelancet.com Vol 101 March, 2024
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Research in context

Evidence before this study
Obesity has been positively associated with most molecular
subtypes of colorectal cancer; however, the magnitude and
the causality of these associations is uncertain.

Added value of this study
Higher body mass index and body fat percentage were
associated with elevated risks of Jass types 1 and 2 cancers
(both originating from the serrated pathway) compared to
Jass type 4 cancers (traditional adenoma-carcinoma pathway).
For waist circumference, we found evidence of a stronger
positive effect on Jass type 3 (alternate pathway) cancer
compared with Jass type 4. The positive risk estimates for

body mass index and Jass types 1 and 2 were stronger than
those reported in observational studies.

Implications of all the available evidence
We found that larger body size had differential effects on
increasing the risk of colorectal cancer subtypes defined by
molecular characteristics. In comparison to the traditional
pathway, body size was more strongly linked to the serrated
and alternate pathways of colorectal carcinogenesis. The
current results suggest also that the impact of elevated
adiposity on colorectal cancer risk for the serrated pathway
may have previously been underestimated.

Articles
(CIMP), which results from hypermethylation of pro-
moter CpG island sites that inactivates several tumour
suppressor or other tumour-related genes. Somatic
mutations in the BRAF and KRAS oncogenes are other
tumour markers that are relevant for CRC etiology and
prognosis.2,3 However, these tumour markers capture
broader tumour phenotypes and can be of greater utility
to clinical research, when combined to proxy specific
pathways (i.e., Jass types) of colorectal carcinogenesis4

(Table 1).
Obesity is an established causal risk factor for

CRC.5–7 However, there is relatively less evidence on the
effect of obesity and other body size traits with molec-
ular subtypes of CRC. A recent pooled observational
study of 11,872 CRC cases and 11,013 controls in the
Genetics and Epidemiology of Colorectal Cancer Con-
sortium (GECCO) and the Colon Cancer Family Regis-
try (CCFR) found consistent positive associations of
body mass index (BMI) across CRC tumour subtypes
defined by individual molecular markers.8 Similarly,
positive associations between BMI and CRC risk were
observed for Jass type classifications 1 to 4 indicating a
role for obesity for most major pathways of CRC
development. In contrast, a null association was found
for Jass type 5, suggesting that BMI may not be a risk
factor for the development of CRC amongst individuals
with familial-like/Lynch syndrome.8
Jass type

Jass type 1

Jass type 2

Jass type 3

Jass type 4

Jass type 5

CIMP, CpG island methylator phenotype; MSI, microsatellite instability.

Table 1: Definition of Jass groups.

www.thelancet.com Vol 101 March, 2024
An important limitation of the current literature on
the role of obesity on molecular subtypes of CRC is that
it is based on evidence from traditional observational
studies.8–12 Causal inference is therefore limited by the
inherent biases of these epidemiological study designs,
such as residual confounding, measurement error, and
reverse causality.13,14 In addition, these observational
studies measured participants body size once in middle
age, so any life course effects of adiposity in the devel-
opment of CRC molecular defined subtypes and path-
ways are uncertain.15 Furthermore, most prior studies
only investigated associations for BMI so how central
adiposity (e.g., waist circumference) or other indicators
of overall adiposity (e.g., body fat percentage) are asso-
ciated with molecularly defined subtypes CRC is largely
unknown.

Mendelian randomization (MR) is an instrumental
variable approach appraising causality using observa-
tional data. MR uses germline genetic variants as prox-
ies (or instrumental variables) for exposures of interest
to allow causal inference between a given exposure and
outcome.16 Unlike traditional observational analyses,
MR analyses should be less susceptible to confounding
and reverse causality due to the random assortment of
alleles at meiosis and germline genetic variants being
fixed at conception, and thus unaffected by the disease
process.17,18 Additionally, MR estimates may better
Components

MSI-high, CIMP-high, BRAF-mutated, KRAS-wildtype

non-MSI-high, CIMP-high, BRAF-mutated, KRAS-wildtype

non-MSI-high, CIMP-low/negative, BRAF-wildtype, KRAS-mutated

non-MSI-high, CIMP-low/negative, BRAF-wildtype, KRAS-wildtype

MSI-high, CIMP-low/negative, BRAF-wildtype, KRAS-wildtype

3

www.thelancet.com/digital-health


Molecular subtype Men Women Total

MS

MSI high 505 660 1165

non-MSI-high 3520 2985 6505

CIMP

CIMP-high 383 617 1000

CIMP-low/negative 2951 2311 5262

KRAS

Mutation 1147 1018 2165

Wildtype 2367 2107 4474

BRAF

Mutation 317 555 872

Wildtype 3526 2900 6426

Jass groups

Type 1 84 258 342

Articles

4

reflect the accumulated exposure to adiposity across the
life course (given that adiposity is proxied by germline
genetics), while correcting for the exposure measure-
ment error related to a single time point body size
measurement.15,19

We used two-sample MR to assess whether BMI,
waist circumference, and body fat percentage are caus-
ally associated with risks of individual molecularly
defined subtypes of CRC (MSI status, CIMP status,
BRAF and KRASmutations) and Jass classification types
(Table 1). Genetic variants associated with body size
traits were identified from recent genome-wide associ-
ation studies (GWAS). We then examined how these
genetic variants related to CRC using GWAS data from
two genetic consortia.20–23
Type 2 51 97 148

Type 3 739 682 1421

Type 4 1446 1023 2469

Type 5 104 83 187

Controls 5180 5292 10,472

CIMP, CpG island methylator phenotype; MSI, microsatellite instability. Type 1
(MSI-high, CIMP-high, BRAF-mutated, KRAS-wildtype). Type 2 (non-MSI-high,
CIMP-high, BRAF-mutated, KRAS-wildtype). Type 3 (non-MSI-high, CIMP-low/
negative, BRAF-wildtype, KRAS-mutated). Type 4 (non-MSI-high, CIMP-low/
negative, BRAF-wildtype, KRAS-wildtype). Type 5 (MSI-high, CIMP-low/negative,
BRAF-wildtype, KRAS-wildtype).

Table 2: Sample size by molecular subtype status and sex.
Methods
Data on body size traits
Summary-level data on BMI was obtained from a recent
meta-analysis of three GWAS of up to 1.1 million in-
dividuals of European ancestry in UK Biobank, Million
Veteran Program, and GIANT consortium.23 This study
identified 1253 genome-wide-significant SNPs (p-value
< 5 × 10−8) using a linkage disequilibrium (LD) R2 of
<0.01. Summary data on waist circumference and body
fat percentage were collected from UK Biobank GWASs
(up to 462,166 participants) through the MRC-IEU
consortium platform (https://gwas.mrcieu.ac.uk/) us-
ing the codes ‘ukb-b-9405’ and ‘ukb-b-8909’. Using a
similar LD cut-off point of ≤0.01, 569 and 671 inde-
pendent and genome-wide-significant SNPs were
retained for waist circumference and body fat percent-
age, respectively (Supplemental Tables S1–S3).

Data on colorectal cancer
Summary data were drawn from a meta-analysis of the
Colon Cancer Family Registry (CCFR), and the Genetics
and Epidemiology of Colorectal Cancer (GECCO) con-
sortia within participants of European descent.24,25 The
current study includes 10,472 controls and 8178 CRC
cases of European ancestry (99.7% of total sample) with
available information on the four molecular markers
from 10 studies within the two consortia (Table 2,
Supplemental Tables S4–S22). Polytomous regressions
were performed for all Jass types (Table 1) and indi-
vidual tumour markers adjusting for age at diagnosis or
recruitment, sex, GWAS set, and 3 principal compo-
nents to adjust for underlying population structures.
Logistic regression was performed for case-only analysis
to compare mutated and wildtype cases with the same
covariates.

Tumour marker data–molecular subtyping and
pathways
The process of data collection and harmonization of the
tumour marker data has been previously described.24,25
In summary, MSI testing was primarily conducted us-
ing polymerase chain reaction (PCR) following accepted
guidelines (CCFR, CPS-II, MCCS, NHS)26 with >4
interpretable markers typically required to classify tu-
mours (Supplemental Materials and Supplemental
Table S23). DACHS used a mononucleotide panel of 3
markers that has high concordance with the Bethesda
Consensus Panel for the detection of MSI-high status.27

Tumours were classified as MSI-high if at least 30% of
the markers showed instability. Other studies used
immunohistochemistry for MSH2, MLH1, MSH6, and
PMS2 and loss of any of those proteins was classified as
“mismatch repair deficiency”, which very highly corre-
lates with MSI-high (NSHDS, EPIC-Sweden and sub-
sets of CCFR and MCCS).28,29

CIMP status was determined using methylation an-
alyses (Supplemental Materials and Supplemental
Table S24). Briefly, MethyLight was used in the CCFR,
CPS-II, HPFS, MCCS, NSHDS, EPIC Sweden and NHS
to determine CIMP status. CPS-II, HPFS, NSHDS,
EPIC Sweden, and NHS used an 8-gene panel; CCFR
and MCCS used a 5-gene panel. DACHS determined
CIMP status using a different 5-gene panel.30 For the
current analysis two CIMP categories were created:
CIMP-high and CIMP-low/negative.

BRAF and KRAS mutations were assessed using
PCR, sequencing, and immunohistochemistry
(Supplemental Materials). Most studies evaluated BRAF
www.thelancet.com Vol 101 March, 2024
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Articles
via c.1799T > A (p.V600E) mutations in exon 15 and
KRAS via mutations in codons 12 and 13.

We defined 5 combined colorectal tumour subtypes
consistent with the Jass classifications (Table 1).4,31

Statistical power
Statistical power (a priori) was calculated using an online
tool at http://cnsgenomics.com/shiny/mRnd/.32 The
selected SNPs explained approximately 8.8%, 4.7%, and
4.0% of the variability for BMI, waist circumference,
and body fat percentage, respectively. Under the sce-
nario of a type 1 error of 5%, the expected odds ratio
(OR) per 1 standard deviation (SD) needed to have
adequate statistical power of 80% ranged from 1.22 for
BMI for the Jass type 4 CRC to 2.40 for body fat per-
centage and Jass type 2 CRC. Supplemental Table S25
details the minimum ORs needed for 80% power for
the different exposures and Jass types and individual
subtypes of CRC.

Statistical analysis
Given the large number of SNPs included in the current
study and the likelihood some of them being pleiotropic,
the random-effects IVW method was used to adjust for
heterogeneity due to horizontal pleiotropy. All results
correspond to an OR per 1-SD increment in BMI (SD:
5.1 kg/m2), waist circumference (SD: 13.4 cm), and
body fat percentage (SD: 8.5%). We investigated the
effect of body size on CRC Jass types (primary analysis)
and individual molecular subtypes (secondary analysis).
Heterogeneity of the causal estimates in the pathway
analysis was measured by conducting an additional MR
analysis using data derived from the cancer cases only
using the Jass type 4 (traditional) pathway as a reference.
Similarly, we evaluated the heterogeneity for each mo-
lecular marker using non-MSI-high, CIMP-low/nega-
tive, BRAF-wildtype, or KRAS-wildtype status as the
reference categories for each marker. We used false
discovery rate (FDR) corrected p-values to assess statis-
tical significance for the cancer case-only analyses across
CRC Jass type pathways and individual markers.33

We also conducted multivariable a MR analysis
adjusting the genetic instruments of the three body size
phenotypes for cigarette smoking and alcohol con-
sumption, two major risk factors associated with
CRC.5,34 The data for lifetime smoking were obtained
from a recent GWAS and MR study on causal effects of
lifetime smoking on risk for depression and schizo-
phrenia.35 Data on alcohol consumption (drinks per
week) were drawn from a GWAS of 2.6 million in-
dividuals36 (Supplemental Tables S26–S28).

MR assumption testing and sensitivity analyses
For the causal estimates to be valid, there are three main
assumptions that must hold: 1) the genetic instrument is
strongly associated with the body size traits; 2) the genetic
instrument is not associated with any potential
www.thelancet.com Vol 101 March, 2024
confounder of the exposure (body size)–outcome (cancer)
association; and 3) the genetic instrument does not affect
outcome (cancer) independently of exposure (body size)
(i.e., exclusion of horizontal pleiotropy) (Supplemental
Fig. S1). The strength of each genetic instrument can be
evaluated through the F-statistic using the following for-
mula: F = R2(N − 2) /(1 − R2), where R2 is the propor-
tion of the variability explained by each instrument for
each adiposity trait and N the sample size of the
GWAS for the SNP-adiposity trait association.37 The
R2 was calculated using the following formula: 2 ×EAF ×
(1 − EAF) × beta2, where EAF is the effect allele frequency,
beta is the estimated genetic effect on the exposure (body
size trait) and N is the sample size of the GWAS for the
SNP-exposure association. Several sensitivity analyses
were done to identify and correct for the presence of
pleiotropy in the main results. Cochran’s Q was computed
to quantify heterogeneity across the individual causal ef-
fects, with a p-value ≤ 0.05 indicating the presence of
pleiotropy.38,39 MR-Egger regression was applied where
deviations from zero for the intercept term denote pres-
ence of horizontal pleiotropic effects across the genetic
variants and the slope provides valid estimates when the
pleiotropic effects of the genetic variants are independent
from the genetic associations with the exposure.40,41 Causal
estimates were also computed using the weighted-median
approach which can give valid MR estimates under the
presence of horizontal pleiotropy when up to 50% of the
included instruments are invalid.42 Signals that appeared
to be outliers were removed using the Radial method, a
simulation based approach and then the analyses were
rerun after excluding any outlying variants.43 Finally, to
satisfy the third MR assumption, we removed cancer-
related SNPs (p < 1 × 10−5) from the analyses.

All the analyses were conducted using the ieugwasr,
Mendelian Randomization, Two Sample MR, and Radial
MR packages and the R programming language.20,43,44

Reporting guidelines for MR studies were followed.45,46

Ethics
All analyses were conducted using summary-level data
generated by previous studies. All participants provided
written informed consent, and each study was approved
by the relevant research ethics committee or institu-
tional review board.

Role of funders
The funders had no role in the design of the study; the
collection, analysis, and interpretation of the data; the
writing of the manuscript; or the decision to submit
the manuscript for publication.
Results
Jass classification CRC types
A 1-SD increment in BMI levels increased the risks of
Jass type 1 (OR per 1-SD: 2.14, 95% confidence interval
5
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[CI]: 1.46, 3.13; p-value = 9 × 10−5) and Jass type 2 CRC
(OR per 1-SD:2.20, 95% CI: 1.26, 3.86; p-value = 0.005)
while a positive effect estimate was observed for Jass
type 4 (OR per 1-SD:1.17, 95% CI: 1.00, 1.36; p-
value = 0.05). After FDR correction, the estimates for
Jass types 1 and 2 were stronger compared to Jass type 4
CRC (Fig. 1; p-differences: 0.03 and 0.04, respectively).

Positive effects of varying strengths were observed
between waist circumference and all CRC Jass types
reaching the threshold of statistical significance for type
1 (OR per 1-SD: 1.77, 95% CI: 1.06, 2.97; p-value = 0.03)
and type 3 CRC (OR per 1-SD: 1.73, 95% CI: 1.34, 2.25;
p-value = 3 × 10−5) only. In the case only analysis,
compared to the type 4 reference group, statistically
significant heterogeneity was found for type 3 CRC only
(Fig. 1; p-difference: 0.03). A 1-SD increment in body fat
percentage level increased risk for Jass type 1 CRC and
which was larger than the effect for type 4 CRC (OR per
1-SD:2.59, 95% CI: 1.49, 4.48; p-difference: 0.03).

Individual molecular CRC markers
Higher BMI, waist circumference, and body fat per-
centage levels were similarly positively related with CRC
tumour subtypes defined by individual molecular
markers (Fig. 2, Supplemental Table S29). The individ-
ual marker results seemed to be more consistent across
the three exposures with the effects being stronger for
MSI-high, CIMP-high and BRAF-mutated tumours than
the counterparts. In the case only analysis, no statisti-
cally significant heterogeneity was found for the rela-
tionship between body size traits and each individual
molecular CRC marker (Supplemental Table S29).

Multivariable MR
The multivariable MR results in which we adjusted for
alcohol consumption and number of cigarettes are
Fig. 1: Association between BMI, waist circumference, and body fat pe
correspond to a 1 SD change in the levels of the exposures. Type 1 (MSI-hig
CIMP-high, BRAF-mutated, KRAS-wildtype); Type 3 (non-MSI-high, CIMP-
CIMP-low/negative, BRAF-wildtype, KRAS-wildtype); Type 5 (MSI-high, C
correspond to the associations of BMI, waist circumference, and fat perce
The p-difference* corresponds to the false discovery rate (FDR) adjusted p
colorectal cancer type 4.
presented in Supplemental Table S30. A similar pattern
of results was found for analyses of BMI, waist
circumference, and body fat percentage with Jass clas-
sification CRC types and individual markers after
adjustment for alcohol consumption and number of
cigarettes.

Sensitivity analyses
Based on the F-statistics, the genetic instruments were
deemed strong (F-statistic all ≥16) (Supplemental
Tables S1–S3). Little evidence of directional pleiotropy
was observed based on the MR-Egger’s test (MR-Egger
intercept p-values > 0.05) and the effect estimates from
the lower powered MR Egger regression model and the
weighted-median approach were generally consistent in
direction and magnitude to the IVW models except of
the analysis of BMI and Jass type 4 CRC where none of
the two methods found similar to the IVW estimates
(Supplemental Table S29). The radial method identified
only a few outlying SNPs, however, their exclusion had
little impact on the original effect estimates
(Supplemental Table S29).
Discussion
This MR study investigated the effects of body size traits
with risk of CRC molecular defined pathways and sub-
types. We found that higher BMI and body fat per-
centage elevated risks of Jass types 1 and 2, suggesting
that overall body adiposity is a stronger risk factor for
CRC risk originating from the serrated pathway than for
Jass type 4 CRC (traditional adenoma-carcinoma
pathway). For waist circumference, we found evidence
of a stronger positive effect on Jass type 3 (alternate
pathway) CRC compared with Jass type 4 CRC. Inter-
estingly, these positive MR risk estimates for Jass types
rcentage and Jass classified types of colorectal cancer. All estimates
h, CIMP-high, BRAF-mutated, KRAS-wildtype); Type 2 (non-MSI-high,
low/negative, BRAF-wildtype, KRAS-mutated); Type 4 (non-MSI-high,
IMP-low/negative, BRAF-wildtype, KRAS-wildtype). The odds ratios
ntage with each Jass colorectal cancer type compared to the controls.
values for heterogeneity comparing Jass types 1,2,3, and 5 with Jass
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Fig. 2: Associations of BMI, waist circumference, and body fat percentage with cancer risk based on the individual molecular markers. All
estimates correspond to a 1 SD change in the levels of the exposures.
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1–2 were stronger than those previously reported from
prior observational studies, suggesting that the impact
of elevated adiposity on CRC risk may have previously
been underestimated.

We found that higher levels of body size traits were
associated with a higher CRC risk originating from the
serrated pathway (Jass types 1 and 2). Consistent with
these results, a US cohort analysis reported that BMI
was more strongly associated with serrated polyps (OR
BMI ≥ 35 kg/m2 vs < 25 kg/m2: 1.34, 95% CI:
1.23–1.46) than conventional adenomas (OR BMI ≥
35 kg/m2 vs <25 kg/m2: 1.07, 95% CI: 0.98, 1.17) (p-
heterogeneity < 0.001).47 Our recent pooled observa-
tional study also found positive associations between
BMI and both Jass type 1 CRC (OR per 5 kg/m2: 1.24,
95% CI: 1.12, 1.36) and Jass type 2 CRC (OR per 5 kg/
m2: 1.33, 95% CI: 1.17, 1.52) with the effect estimates
being stronger than those for Jass type 4 (OR per 5 kg/
m2: 1.18, 95% CI: 1.13, 1.24).8 However, our MR esti-
mates were stronger than those observed in our previ-
ous observational study, which might be a consequence
of the MR estimates better reflecting accumulated
exposure to adiposity across the life course, the avoid-
ance of biases like reverse causation and residual con-
founding in an MR study, and also correcting for
exposure measurement error related to a body size
measurement single time point.15,19

Mechanisms underlying the stronger positive effects
of adiposity on serrated pathway CRC are unclear.
Obesity may promote colorectal tumourigenesis
through chronic inflammation which may play a greater
role in neoplastic progression for serrated polyps than
www.thelancet.com Vol 101 March, 2024
for conventional adenomas as it was found that the
expression levels of inflammatory proteins, COX-2, IL-4
and TNF-α were higher in serrated polyps.48 Addition-
ally, there is growing evidence implicating the gut
microbiota in colorectal carcinogenesis and Fusobacte-
rium nucleatum has been consistently associated with
greater CRC risk.49,50 Fusobacterium nucleatum levels
have been found to be higher among people with obesity
and are more strongly associated with serrated pathway
than conventional pathway CRC.51–54 Additional studies
are needed to gain a better understanding of the bio-
logical pathways underlying the strong positive rela-
tionship found between adiposity and the serrated CRC
pathway.

Positive effect estimates were observed for all three
body size traits and Jass type 3 CRC (alternate pathway)
with waist circumference showing the strongest effect
among the exposure variables. Our recent pooled
observational analysis also found positive associations
between BMI and Jass type 3 CRC (OR per 5 kg/
m2:1.15; 95% CI: 1.09, 1.22).8 KRAS mutation is the
characteristic that separates this cancer type from Jass
type 4. In our KRAS mutation subtype analysis we did
not find any heterogeneity in the effects of body size
traits according to mutation status. However, it has been
found that silencing of the MGMT gene is associated
with KRAS-mutated and CIMP-low status CRC and
therefore MGMT methylation may be another charac-
teristic of this pathway which requires further investi-
gation in relation to obesity.4

For the Jass type 4 defined CRC (traditional
adenoma-carcinoma pathway), we observed positive
7
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effect estimates for BMI and waist circumference (ORs
of 1.17 and 1.12 per SD, respectively) that did not pass
the conventional threshold of statistical significance. It
is important to note that our study was not sufficiently
powered to detect ORs of such magnitude for Jass type 4
CRC. However, our MR effect estimate for BMI was of
similar magnitude to the Jass type 4 CRC result from
our recent pooled observational study (OR per 5 kg/
m2:1.18; 95% CI: 1.13, 1.24).8 Together these results
provide support for a positive association between BMI
and CRC development through the traditional adenoma-
carcinoma pathway.

We observed consistently positive but imprecise and
statistically non-significant effect estimates for body size
traits and risk of CRC Jass type 5 tumours (considered
familial-like/Lynch syndrome), with the largest effect
estimate observed for waist circumference. In our prior
pooled observational study we found no association be-
tween BMI and CRC Jass type 5 tumours.8 Overall, the
MR and observational evidence provide limited support
for a positive association between overall adiposity and
CRC Jass type 5 tumours. However, the non-significant
positive effect estimate we observed for waist circum-
ference requires further investigation as it may suggest
that central adiposity is a risk factor for CRC Jass type 5
tumours.

Our study has several strengths. Compared to prior
observational evidence, our MR analyses are less prone to
bias from reverse causation and residual confounding.17,18

Large-scale summary genetic data from UK Biobank, the
Million Veteran Program, and GIANT consortium was
used to collect the genome-wide significant SNPs for the
three exposures of interest resulting in strong genetic
instruments. Independent datasets for the exposures and
outcome phenotypes were used, thus avoiding potential
bias due to sample overlap.55 Finally, unlike prior obser-
vational studies that focused on BMI only, we were able
to examine relationship also for body fat percentage and
waist circumference.

A limitation of our study was the low CRC case
numbers for some of the Jass type groups thus limiting
our power to identify potential relationships. For the
same reason we did not conduct any sex-specific ana-
lyses; however, in our prior observational study we
found limited evidence of heterogeneity by sex for the
associations between BMI and CRC molecular sub-
types.8 Nevertheless, larger studies are needed to verify
the current results, include additional rarer molecular
subtypes, and investigate potential heterogeneity by sex.
Given the large number of instruments included in the
current study, we cannot exclude potential pleiotropic
effects, meaning that the instruments might affect
cancer risk through other pathways outside their effects
on body size; however, our results were consistent ac-
cording to the comprehensive sensitivity analyses we
conducted. No inference could be made regarding the
effects of cigarettes smoking and alcohol consumption
in the multivariable MR analysis. The complete sum-
mary GWAS data on BMI was not publicly available and
we were not able to conduct a unified multivariable MR
analysis merging the genetic instruments of each of our
exposures with the confounding variables. As previously
mentioned, the measurement of tumour markers
differed slightly across studies which may have intro-
duced some heterogeneity in the tumour marker clas-
sifications. Stratified analyses by contributing study or
by CRC subtype classification methods could potentially
help us quantify this heterogeneity if present. However,
the use of GWAS summary statistics, precluded us
conducting this type of analysis which would also be
prone to loss of statistical power due to the smaller
sample size. Additionally, a high correlation between
the different tumour marker measurement methods has
been reported in the literature of colorectal cancer
research.25,27–29 Furthermore, another recent study using
data from the same consortia as the current investiga-
tion found a high level of consistency between the
classification of MSI, BRAF, and KRAS mutation status
for participants with existing tumour marker and newly
centrally generated tumour sequencing data.25 More
specifically, the tumor classifications from the two ap-
proaches were highly concordant with 98.6% concor-
dance for the 1534 individuals with information on MSI
status, 91.4% concordance for the 1696 individuals with
KRAS mutation data, and 93.1% concordance for the
1738 individuals with BRAF mutation data from both
sources.25 Finally, the results cannot be generalised to
diverse populations due to the lack of ancestral diversity
in the genetic data used for our analyses.

In summary, using MR we found that larger body
size had differential effects on increasing the risk of
CRC subtypes defined by molecular characteristics. In
comparison to the traditional pathway (Jass type 4), body
size was more strongly linked to the serrated (Jass types
1 and 2) and alternate (Jass type 3) pathways of colorectal
carcinogenesis. The positive risk estimates for BMI and
Jass types 1 and 2 were stronger than those reported in
observational studies, suggesting that the impact of
elevated adiposity on CRC risk for the serrated CRC
pathway may have previously been underestimated.
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