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Abstract

Assuming stationarity is unrealistic in many time series applications. A more realistic alternative 

is to assume piecewise stationarity, where the model can change at potentially many change 

points. We propose a three-stage procedure for simultaneous estimation of change points and 

parameters of high-dimensional piecewise vector autoregressive (VAR) models. In the first step, 

we reformulate the change point detection problem as a high-dimensional variable selection one, 

and solve it using a penalized least square estimator with a total variation penalty. We show 

that the penalized estimation method over-estimates the number of change points, and propose 

a selection criterion to identify the change points. In the last step of our procedure, we estimate 

the VAR parameters in each of the segments. We prove that the proposed procedure consistently 

detects the number and location of change points, and provides consistent estimates of VAR 

parameters. The performance of the method is illustrated through several simulated and real data 

examples.
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1 Introduction

Emerging applications in biology (Smith 2012; Fujita et al. 2007) and finance (De Mol 

et al. 2008; Fan et al. 2011) have sparked an interest in methods for analyzing high-

dimensional time series. Recent work includes new regularized estimation procedures for 

vector autoregressive (VAR) models (Basu and Michailidis 2015; Nicholson et al. 2017), 

high-dimensional generalized linear models (Hall et al. 2016) and high-dimensional point 

processes (Hansen et al. 2015; Chen et al. 2017). Related methods have also focused on 

joint estimation of multiple time series (Qiu et al. 2016), estimation of (inverse) covariance 

matrices (Xiao and Wu 2012; Chen et al. 2013; Tank et al. 2015), and estimation of 

high-dimensional systems of differential equations (Lu et al. 2011; Chen et al. 2016).
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Despite considerable progress on both computational and theoretical fronts, the vast majority 

of existing work on high-dimensional time series assumes that the underlying process is 

stationary. However, multivariate time series observed in many modern applications are 

non-stationary. For instance, Clarida et al. (2000) show that the effect of inflation on 

interest rates varies across Federal Reserve regimes. Similarly, as pointed out by Ombao 

et al. (2005), electroencephalograms (EEGs) recorded during an epileptic seizure display 

amplitudes and spectral distribution that vary over time. This nonstationarity in EEG signals 

is illustrated in Figure 1, which shows the signals recorded at 18 EEG channels during an 

epileptic seizure from a patient diagnosed with left temporal lobe epilepsy (Ombao et al. 

2005). The sampling rate in this data is 100 Hz and the total number of time points per EEG 

is T = 22,768 over ~228 seconds. Based on the neurologist’s estimate, the seizure took place 

at t = 85s. Figure 1 also suggests that the magnitude and the variability of EEG signals 

change around that time.

Detecting structural break points in high-dimensional time series and obtaining reliable 

estimates of model parameters are important from multiple perspectives. First, structural 

breaks often reveal important changes in the underlying system and are scientifically 

important. In our EEG example, automatic detection of structural breaks can assist clinicians 

in identifying seizures. Second, changes in model parameters before and after break points 

often provide important scientific insight. For instance, the occurrence of epileptic seizure is 

expected to change the mechanism of interactions among brain regions. Such changes can 

be seen in Figure 2. The figure shows networks of interactions among EEG channels before 

and after seizure. These networks are obtained from estimates using our proposed method, 

as described in Section 8. Briefly, edges in the first two networks correspond to Granger 
causal relations (Granger 1969) among EEG channels before and after the period of seizure; 

the occurrence of seizure is also automatically detected using our proposed method. It can be 

seen that while the two networks share many edges, they also exhibit important differences. 

Perhaps most notable are changes in connectivity patterns of channels T5, P3 and Pz, which 

measure brain activity in the left temporal lobe, the cite of epilepsy in the patient. Without 

reliable estimates of model parameters, gaining such scientific insight may not be feasible. 

Third, identifying structural breaks in time series is crucial for proper data analysis. The last 

plot in Figure 2 shows the network of interactions obtained from the full EEG data, ignoring 

the structural break due to seizure. This network is much more dense than the other two, 

and is almost fully connected, which is rather unexpected (Achard et al. 2006). This example 

underscores that ignoring the break points and assuming stationarity when analyzing times 

series can result in severe estimation bias.

In this paper, we develop a regularized estimation procedure to simultaneously detect the 

structural break points, and estimate the model parameters in high-dimensional piecewise 

stationary VARs with possibly many break points. We show that our proposed three-stage 

procedure is consistent for identifying the number and location of structural breaks in the 

covariance structure of multivariate time series, and for estimating the model parameters. 

To the best of our knowledge, ours is the first method that can simultaneously identify 

the change points and estimate the model parameters in high-dimensional non-stationary 

time series with growing number of break points. In fact, while change point detection in 
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multivariate time series has been an active area of recent research (see the review in Section 

1.1), existing procedures do not provide consistent estimates of model parameters. This is 

in part due to the difficulty of change point detection, especially in high dimensions. More 

specifically, high-dimensional change point detection methods, including ours, only provide 

consistent estimates of the relative location of change points. As a result, a naïve approach 

based on using the estimated change points to break the time series into ‘stationary’ pieces, 

and then using high-dimensional parameter estimation procedures, may lead to inferior, or 

even inconsistent, estimates of model parameters. This point is formalized at the end of 

Section 5 (Remark 6) and is illustrated in our simulation studies, where it can be seen that 

combining the state-of-the-art change point detection procedure with regularized parameter 

estimation methods results in inferior estimates of model parameters. The third step of 

our procedure circumvent this difficulty by utilizing our improved rates of consistency of 

change point detection to remove a small number of observations around the estimated 

change points in order to obtain stationary segments at which we could perform usual 

high-dimensional parameter estimation.

Another advantage of our method is that it can handle high-dimensional VAR models with 

diverging number of structural breaks, where the number of time series components can 

grow exponentially fast with respect to the number of time points. This is in contrast 

to most existing methods for change point detection, which can only handle univariate 

or multivariate processes where the number of time series components grows at most 

polynomially with the number of time points (see, e.g., Chan et al. 2014; Cho and 

Fryzlewicz 2015). The high-dimensionality of time series brings new challenges in deriving 

asymptotic results, compared to univariate or finite-dimensional cases. We derive rates of 

consistency that are better than the previously established rates, and require less stringent 

assumptions in some cases; see Section 4.1 for detailed comparison of our method with 

existing procedures.

The rest of this paper is organized as follows. Before describing the piecewise stationary 

model in Section 2, we review related procedures for non-stationary time series in Section 

1.1. An initial estimation procedure and its asymptotic properties are discussed in Section 

3. In Section 4, we show that under reasonable assumptions, structural breaks in high-

dimensional VAR models can be consistently estimated. Our procedure for consistent 

parameter estimation is presented in Section 5 and finite sample tuning parameters selection 

for the procedure are discussed in Section 6. Results of simulation experiments are presented 

in Section 7. In Section 8, we illustrate the utility of the proposed method by applying it 

to identify structural break points in two multivariate time series. We conclude the paper 

with a discussion in Section 9. Technical lemmas, proofs, algorithmic details and additional 

simulation results are gathered in the Appendix.

1.1 Related Methods for Non-Stationary Time Series

Non-stationary VAR models have been primarily studied in univariate or low-dimensional 

settings. Existing approaches include models that fully parameterize the evolution of the 

transition matrices of time-varying VARs, or enforce a Bayesian prior on the structure of the 

time dependence (Primiceri 2005).
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A popular approach for analyzing non-stationary time series is assuming local stationarity, 

which means that in each small time interval, the process is well-approximated by a 

stationary one. This notion has been studied in low dimensions by, e.g., Dahlhaus (2012); 

Sato et al. (2007) proposed a wavelet-based method for estimating time-varying VAR 

coefficients. Recently, Ding et al. (2016) considered estimation of high-dimensional time-

varying VARs by solving time-varying Yule-Walker equations based on kernelized estimates 

of auto-covariance matrices.

Methods based on local stationarity are theoretically appealing and suitable in certain 

applications. However, local stationarity may not hold in many applications. For instance, 

in the above EEG example, assuming that the process can be locally approximated by a 

stationary one at the time of seizure may be unrealistic. A more natural assumption in 

such settings is that the process is piecewise stationary — i.e., it is stationary in each of 

(potentially many) regions, e.g., before and after seizure.

A number of methods have been proposed for analyzing univariate piecewise stationary 

time series. For instance, Davis et al. (2006), Chan et al. (2014) and Bai (1997) propose 

different methods for identifying structural break points in univariate time series. Various 

methods have also been proposed for detecting changes in multivariate time series. One of 

the early contributions to this literature was the SLEX method of Ombao et al. (2005), which 

uses time-varying wavelets to detect changes in the covariance structure of multivariate time 

series. The test procedure of Aue et al. (2009) addresses a similar problem in possibly 

nonlinear time series, whereas Aue et al. (2017) takes a functional data perspective in order 

to identify changes in the mean structure of multivariate time series. More recent approaches 

by Cho and Fryzlewicz (2015) and Cho (2016) use variants of CUSUM statistic in order to 

detect structural break points in high-dimensional time series.

Despite significant progress, existing multivariate approaches do not provide estimates of 

model parameters. For instance, to deal with the large number of time series, Ombao 

et al. (2005) apply a dimension reduction step, whereas Aue et al. (2009), Cho and 

Fryzlewicz (2015) and Cho (2016) use some variation of CUSUM statistic. Consequently, 

these methods only estimate the structural break points. In the EEG example, these methods 

can identify the structural breaks, but do not reveal mechanisms of interactions among 

brain regions, which is of key interest for understanding changes in brain function before 

and after seizure. As discussed in Section 5, consistent estimation of model parameters in 

high-dimensional piecewise stationary VAR models introduces new challenges. Addressing 

these challenges and providing interpretable estimates of parameters in high-dimensional 

piecewise stationary VAR models are two key contributions of the current paper.

2 Piecewise Stationary VAR Models

A piecewise stationary VAR model can be viewed as a collection of separate VAR 

models concatenated at multiple break points over the observed time period. More 

specifically, suppose there exist m0 break points 0 = t0 < t1 < ⋯ < tm0 < tm0 + 1 = T + 1 such that 

for tj − 1 ≤ t < tj, j = 1, …, m0 + 1,
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yt = Φ 1, j yt − 1 + ⋯ + Φ q, j yt − q + Σj
1/2εt .

(1)

Here, yt is the p-vector of observed time series at time t; Φ l, j ∈ ℝp × p is the (sparse) 

coefficient matrix corresponding to the lth lag of a VAR process of order q during for the jth 

segment, where j = 1, ⋯, m0 + 1; εt is a multivariate Gaussian white noise with independent 

components, and Σj is the covariance matrix of the noise for the jth segment. To simplify the 

notations, we sometime denote the noise as εt without specifying the covariance Σj; however, 

throughout the paper, we allow for different covariance matrices in each segment. Note that 

the first few observations in each segment are, in fact, affected by the last few observations 

from the previous segment. Thus, the break points do not really divide the time series into 

stationary segments; hence, strictly speaking, model (1) is not piecewise stationary. This 

feature can, in general, lead to additional challenges when estimating the parameters, but is 

circumvented by the third step of our procedure discussed in Section 5.

Our goal is to detect the break points, tj, together with estimates of the coefficient parameters 

Φ l, j  in the high-dimensional case, where p > T . To this end, we generalize the change-

point detection ideas of Harchaoui and Lévy-Leduc (2010) and Chan et al. (2014) to the 

multivariate, high-dimensional setting, and extend them to obtain consistent estimates of 

model parameters. More specifically, our estimation procedure utilizes the following linear 

regression representation of the VAR process

yq
′

yq + 1
′

⋮
yT

′

=

yq − 1
′ … y0

′ 0 … 0
yq

′ … y1
′ yq

′ … y1
′ 0

⋮ ⋱
yT − 1

′ … yT − q
′ yT − 1

′ … yT − q
′ … yT − 1

′ … yT − q
′

θ1
′

θ2
′

⋮
θn

′

+

εq
′

εq + 1
′

⋮
εT

′

,

(2)

where n = T − q + 1. Throughout the paper, the transpose of a matrix A is denoted by A′. 
Denoting Φ . , j = Φ 1, j …Φ q, j ∈ ℝp × pq, we set θ1 = Φ . , 1 ; for i = 2,3, …, n, we let

θi = Φ . , j + 1 − Φ . , j , when i = tj for some  j
0, otherwise.

(3)

Note that in this parameterization, θi ≠ 0 for i ≥ 2 implies a change in the VAR coefficients. 

Therefore, for j = 1, …, m0, the structural break points tj can be estimated as time points i ≥ 2, 

where θi ≠ 0.

Noting that (2) is a linear regression of the form Y = XΘ + E, and letting Y = vec Y , 

Z = Ip ⊗ X, and E = vec E , we rewrite it in vector form as
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Y = ZΘ + E,

(4)

where ⊗ denotes the tensor product of two matrices. Denoting 

π = np2q, Y ∈ ℝnp × 1, Z ∈ ℝnp × π,  Θ ∈ ℝπ × 1, and E ∈ ℝnp × 1.

3 An Initial Estimator

The linear regression representation in (4) suggests that the model parameters Θ can be 

estimated via regularized least squares. The regularization is necessary to both handle the 

growing number of parameters corresponding to potential change points, as well as the 

number of time series p. A simple initial estimate of parameters Θ can thus be obtained by 

using an ℓ1-penalized least squares regression of the form

Θ = argminΘ
1
n ∥ Y − ZΘ ∥2

2 + λ1, n ∥ Θ ∥1 + λ2, n ∑
k = 1

n
∑

j = 1

k
θj

1

.

(5)

Problem (5) uses a fused lasso penalty (Tibshirani et al. 2005), with two ℓ1 penalties 

controlling the number of break points and the sparsity of the VAR model. The problem is 

convex and can be solved efficiently. In fact, by Proposition 1 of Friedman et al. (2007), it 

can be solved by first finding a solution, Θ 0 , for λ2, n = 0 and then applying element-wise 

soft-thresholding to the partial sums of Θ 0  in order to obtain the final estimate for λ2, n ≠ 0. 

Details of this algorithm are described in Appendix C.

Despite its convenience and computational efficiency, estimates from (5) do not correctly 

identify the structural break points in the piecewise VAR process. In fact, our theoretical 

analysis in the next section shows that the number of estimated break points from (5), i.e., 

the number of nonzero θi ≠ 0, i ≥ 2, over-estimates the true number of break points. This is 

because the design matrix Z may not satisfy the restricted eigenvalue condition (Bickel et al. 

2009) needed for consistent estimation of parameters. However, as we show in Section 3.1, 

the model from (5) does achieve prediction consistency. In Section 4 we show that this initial 

estimator can be refined in order to obtain consistent estimates of structural break points.

3.1 Asymptotic Properties

Let An = i ≥ 2:θi ≠ 0  be the set of estimated change points from (5). The total number of 

estimated change points is then the cardinality of the set An; denote m = An . Let t j be the 

estimated break points for j = 1, …, m. Then, the relationship between θj and Φ . , j  in each of 

the estimated segments can be seen as:
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Φ . , 1 = θ 1, and Φ . , j = ∑
i = 1

t j
θ i, j = 1, 2, …, m .

(6)

In this section, we show that with high probability m ≥ m0, and that there exist m0 points 

within An that are ‘close’ to the true break points. To this end, we first establish the 

prediction consistency of the estimator (5). Using a more careful analysis, we then show 

that the penalized least squares in (5) identifies a larger set of candidate break points. These 

result justify the second step of our estimation procedure described in the Section 4, which 

searches over the break points in An to find an optimal set of break points.

Before stating our assumptions, we define a few notations. Denote the number of nonzero 

elements in the k-th row of Φ . , j  by dkj, k = 1,2, …, p and j = 1,2, …, m0. Further, for each 

j = 1,2, …, m0 + 1 and k = 1, …, p, let ℐkj be the set of all column indexes of Φk
. , j  at which 

there is a nonzero term, where Φk
. , j  denotes the k-th row of Φ . , j . Let ℐ = ∪k, j ℐkj, and 

define dn = max1 ≤ k ≤ p, 1 ≤ j ≤ m0 + 1 ℐkj . Further, let dn
⋆ = ∑j = 1

m0 + 1 ∑k = 1
p dkj be the total sparsity of the 

model. Note that our theoretical analysis concerns the high-dimensional case with many 

break points, where p, m0 and the network sparsity increase with the number of time points, 

T . More specifically, p ≡ p n  and m0 ≡ m0 n  and dkj ≡ dkj n , where n = T − q + 1. To simplify 

the notation, we suppress the n-index.

A1 For each j = 1,2, …, m0 + 1, the process yt
j = Φ 1, j yt − 1

j + ⋯ + Φ q, j yt − q
j + Σj 1/2εt is 

a stationary Gaussian time series. Denote the covariance matrices Γj ℎ = cov yt
j , yt + ℎ

j

for t, ℎ ∈ ℤ. Also, assume that for κ ∈ − π, π , the spectral density matrices 

fj κ = 2π −1∑l ∈ ℤ Γj l e− −1κl exist; moreover,

max
1 ≤ j ≤ m0 + 1

ℳ fj = max
1 ≤ j ≤ m0 + 1

sup
κ ∈ − π, π

Λmax fj κ < + ∞,

min
1 ≤ j ≤ m0 + 1

m fj = min
1 ≤ j ≤ m0 + 1

sup
κ ∈ − π, π

Λmin fj κ > 0,

where Λmax A  and Λmin A  are the largest and smallest eigenvalues of the symmetric or 

Hermitian matrix A, respectively.

A2 The matrices Φ . , j  are sparse. More specifically, for all k = 1,2, …, p and 

j = 1,2, …, m0,  dkj ≪ p, i.e., dkj/p = o 1 . Moreover, there exists a positive constant MΦ > 0
such that
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max
1 ≤ j ≤ m0 + 1

∥ Φ . , j ∥∞ ≤ MΦ .

A3 There exists a positive constant v such that

min
1 ≤ j ≤ m0

∥ Φ . , j + 1 − Φ . , j ∥2 ≥ v > 0 .

Moreover, there exists a vanishing positive sequence γn such that, as n ∞,

min
1 ≤ j ≤ m0 + 1

tj − tj − 1 / nγn + ∞, , and dn
⋆ log p

nγn
0 .

Assumption A1 allows us to obtain appropriate probability bounds in high dimensions. 

This assumption does not restrict the applicability of the method since it is valid for large 

families of VAR models (Basu and Michailidis 2015). The second part of A1 will also be 

needed in the proof of consistency of VAR parameters once the break points are detected. 

The first part of Assumption A2 characterizes the sparsity of the model, and is common 

in the high-dimensional linear regression literature. The second part bounds the ℓ∞-norm of 

transition matrices, and is needed to quantify the effect of misspecification in the model, 

which arises because we are not able to exactly locate the break points. Since this effect 

needs to be accounted for in the sum of squared errors, the magnitude of elements in the 

true transition matrices becomes important. See Remark 3 for further discussions on the 

necessity of this assumption and potential relaxations. The sequence γn is directly related to 

the detection rate of the break points tj; j = 1, …, m0. Assumption A3 connects this detection 

rate to the tuning parameter chosen in the estimation procedure. Also, this assumption puts 

a minimum distance-type requirement on the coefficients in different segments. This can 

be regarded as the extension of Assumption H2 in Chan et al. (2014) for univariate time 

series to the high-dimensional case. Finally, the last part of this assumption restricts the 

total sparsity of the model, in order to accommodate the high-dimensional regime p > T . 

While somewhat common in the high-dimensional time series literature (see, e.g., Basu 

and Michailidis 2015), this assumption may be restrictive in some applications, if the 

network corresponding to the transition matrices is dense. As discussed in Appendix E, this 

assumption can be relaxed using a secondary analysis.

As pointed out earlier, and discussed in Chan et al. (2014) and Harchaoui and Lévy-Leduc 

(2010), the design matrix Z in (5) may not satisfy the restricted eigenvalue condition needed 

for parameter estimation consistency (Bickel et al. 2009). Thus, as a first step towards 

establishing the consistency of the proposed procedure, we next establish the prediction 

consistency of the estimator from (5).
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Theorem 1. Suppose A1 and A2 hold. Choose λ1, n = 2C log n + 2log p + log q
n  for some 

C > 0 and λ2, n = o ndn
⋆ −1 , and assume m0 ≤ mn with mn = o λ1, n

−1 . Then, with high probability 

approaching 1 as n + ∞,

1
n ∥ Z Θ − Θ ∥2

2 ≤ 2MΦλ1, nmn max
1 ≤ j ≤ m0 + 1

∑
k = 1

p
dkj + dk j − 1 + λ2, nndn

⋆ .

(7)

Theorem 1 is proved in Appendix B. Note that this theorem imposes an upper bound on 

the model sparsity, as the right hand side of (7) must go to zero as n ∞. In Section 4, 

we specify the limit on the sparsity needed for consistent identification of structural break 

points.

We now turn to the original problem of estimating the number of break points and locating 

them. The next result shows that the number of selected change points, m, based on (5) will 

be at least as large as the true number, m0. Moreover, there exists at least one estimated 

change point in nγn-radius neighborhood of each each true change point. Before stating the 

theorem, we need some additional notation. Let An = t1, t2, …, tm0  be the set of true change 

points. Following Boysen et al. (2009) and Chan et al. (2014), define the Hausdorff distance 

between two countable sets in real line as

dH A, B = max
b ∈ B

min
a ∈ A

b − a .

Note that the above definition is not symmetric and therefore not a real distance. However, 

this is the version of function dH A, B  used in our next theorem.

Theorem 2. Suppose A1–A3 hold. Choose λ1, n = 2C1
log n + 2log p + log q

n , and 

λ2, n = C2
n

logp
nγn

 for some large constants C1, C2 > 0. Then, as n + ∞,

ℙ An ≥ m0 1, and ℙ dH An, An ≤ nγn 1 .

For this theorem, λ1, n could be as large as λ1, n = O γnlogp
n . However, for compatibility, we 

use the same rate as in Theorem 1. The rate of consistency for break point detection in 

Theorem 2 is nγn, which can be chosen as small as possible assuming that Assumptions 

A2 and A3 hold. γn also depends on the minimum distance between consecutive true 

break points, as well as the number of time series, p. When m0 is finite, one can 

choose γn = lognlog p /n or γn = loglogn log p /n. This means that the convergence rate for 

estimating the relative locations of the break points, i.e., tj/T  using t j/T , could be as low 

as log  log nlog p /n. In Section 4.1, we compare these rates with those obtained in related 

procedures.
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Remark 1. When m0 is known, arguments similar to the proof of Theorem 2 lead to the 

same consistency rate, i.e., nγn, for locating the break points. In Theorem 3, we consider 

the case of unknown m0 and show that the consistency rate for this general case is of 

order O m0nγndn
⋆ 2 . Compared to the known m0 case, the additional term m0dn

⋆ 2 quantifies the 

additional complexity of estimating the number of break points.

The second part of Theorem 2 shows that even though we select more points than needed, 

there exists a subset of the estimated points, with cardinality m0 that and estimates the true 

break points at the same rate as if m0 was known. This result motivates the second stage of 

our estimation procedure, discussed in the next section, which removes the redundant break 

points.

4 Consistent Estimation of Structural Breaks

Theorem 2 shows that the penalized estimation procedure (5) over-estimates the number of 

break points. A second stage screening is thus needed to remove the redundant estimated 

change points and consistently estimate the true change points. To this end, we propose 

a screening procedure, based on a modification of the procedure in Chan et al. (2014). 

The main idea is to develop an information criterion based on a new penalized least 

squares estimation procedure, in order to screen the candidate break points found in the 

first estimation stage. Formally, for a fixed m and estimated change points s1, …, sm, let 

X ℓmin, ℓmax = Y ℓmin
′ , …, Y ℓmax

′ ′, and consider the linear regression

yq
′

yq + 1
′

⋮
yT

′

=

X q − 1, s1 − 1 0 … 0
0 X s1, s2 − 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … X sm, T − 1

θ q, s1
′

θ s1, s2
′

⋮
θ sm, T

′

+

ξq
′

ξq + 1
′

⋮
ξT

′

,

(8)

or, more compactly,

Y = Xs1, …, smθs1, …, sm + Ξ,

where Xs1, …, sm ∈ ℝn × πm, θs1, …, sm = θ q, s1
′ , θ s1, s2

′ , …, θ sm, T
′ ′ ∈ ℝπm × p, with πm = m + 1 pq. We 

estimate θs1, …, sm as the solution of a penalized regression,

θ s1, …, sm = argminθs1, …, sm ∑
i = 1

m + 1 1
si − si − 1

∑
t = si − 1

si − 1
yt − θ si − 1, si Y t − 1

2

2

+ η si − 1, si θ si − 1, si
1

,

(9)

with tuning parameters ηn = η s0, s1 , …, η sm, sm + 1 , where s0 = q and sm + 1 = T .

Now, let
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Ln s1, s2, …, sm; ηn = Y − Xs1, …, smθ s1, …, sm F
2 + ∑

i = 1

m + 1
η si − 1, si θ si − 1, si 1,

(10)

where ∥ . ∥F is the Frobenius norm of the matrix. Then, for a suitably chosen sequence ωn, 

specified in Assumption A4 below, consider the following information criterion:

IC s1, …, sm; ηn = Ln s1, s2, …, sm; ηn + mωn .

(11)

The second stage of our procedure selects a subset of initial m break points from (5) by 

solving

m, t j; j = 1, …, m = argmin0 ≤ m ≤ m, s = s1, …, sm ∈ An IC s; ηn .

(12)

To establish the consistency of the screening procedure (12), we need two additional 

assumptions, involving the total sparsity of the model, dn
⋆ = ∑j = 1

m0 + 1 ∑k = 1
p dkj.

A4 Let Δn = min1 ≤ j ≤ m0 tj + 1 − tj . Then, m0nγndn
⋆ 2/ωn 0, and Δn/ m0ωn + ∞.

A5 There exist a large positive constant c > 0 such that (a) if si − si − 1 ≤ nγn, then 

η si − 1, si = c nγnlog p; (b) if there exist tj and tj + 1 such that si − 1 − tj ≤ nγn and si − tj + 1 ≤ nγn, 

then, η si − 1, si = 2 c logp
si − si − 1

+ MΦdn
⋆ nγn

si − si − 1
; (c) otherwise, η si − 1, si = 2 c logp

si − si − 1
+ MΦdn

⋆ .

Assumption A4 plays an important role in characterizing the rate of consistency of locating 

the break points by connecting the rate of the minimum spacing between consecutive break 

points, Δn, the detection rate quantity, γn, and the penalty term needed in the screening 

step, ωn. Since Δn ≤ n/m0, this assumption implicitly restricts the total number of change 

points. More specifically, the assumption translates to n m0
2ωn

−1 + ∞, as n + ∞, which 

requires m0 = o n/ωn ; this restricts the rate of m0, but still allows m0 to diverge with n.

Assumption A5 specifies the rates of tuning parameters in the second step of our 

procedure. While somewhat involved, the segment-specific tuning parameters specified in 

this assumption help achieve sharp rates of consistency. A more comprehensive discussion 

on this assumption is provided in Remark 5.

We can now state our main result on consistency of change point detection.

Theorem 3. Suppose A1 − A5 hold. Then, as n + ∞, the minimizer m, t j, j = 1, …, m  of 

(12) satisfies
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ℙ m = m0 1 .

Moreover, there exists a positive constant B > 0 such that

ℙ max
1 ≤ j ≤ m0

t j − tj ≤ Bm0nγndn
⋆ 2 1 .

The proof of Theorem 3, given in Appendix B, relies heavily on the result presented in 

Lemma 4, which is stated and derived in Appendix A. While the statement of Lemma 4 is 

similar to Lemma 6.4 in Chan et al. (2014), its proof has important differences to address 

the additional challenges that arise in our setting. The first difference is due to our definition 

of information criterion (IC). The IC in (11) includes three parts: the sum of squared errors, 

the L1 norm of the estimated VAR parameters in (9), and the penalty on the number of break 

points, ωn. In contrast, the IC in Equation 2.9 of Chan et al. (2014) does not include an 

L1 penalty. The reason for including this additional penalty is the high-dimensional nature 

of our problem. Specifically, when the distance between two consecutive estimated break 

points in the first step is less than nγn, the restricted eigenvalue condition cannot be verified 

for the segment defined by these two break points. Therefore, the behavior of the estimated 

VAR parameters within this segment cannot be controlled. This makes the evaluation of the 

effect of wrong estimation in the sum of squared term more difficult. The addition of the 

L1 penalty circumvents this problem. The second key difference is that the proof of Lemma 

6.4 in Chan et al. (2014) relies on the fact that for each candidate segment, the least squared 

estimator of the AR parameter has a closed-form representation, which can be utilized to 

quantify the effect of missing a true break point on the sum of squared error. In contrast, 

in our high-dimensional setting, there is no closed form solution for (9). Thus, in proof of 

Lemma 4, each candidate segment in the first step may need a different treatment; also, for 

some segments, specific restricted eigenvalue and deviation bounds need to be verified in 

order to characterize the asymptotic behavior of VAR parameters.

Remark 2. For the case when m0 is finite, we can set γn = log nlog p /n, λn = o log nlog p /np , 

and ωn = log nlog p 1 + ν for some positive ν > 0. For these rates, the model can have total 

sparsity dn
⋆ = o log nlog p ν/2 .

Remark 3. The second part of Assumption A2 puts an upper bound on the ℓ∞-norm 

of transition matrices. This assumption is needed in Theorems 1 and 3 in order to 
quantify the effect of misspecification in our model—due to the inaccuracy in locating 
the break points. The magnitude of elements in the true transition matrices becomes 
important when accounting for this effect in the sum of squared errors. Nonetheless, 
it is possible to relax this assumption and allow the ℓ∞-norm of transition matrices 

to diverge at a certain rate at the price of worsening the rate of consistency of 
break points detection by the same magnitude. For example, when m0 is finite, we 

can assume max1 ≤ j ≤ m0 + 1 ∥ Φ . , j ∥∞ = O log nlog p r
, set γn = log nlog p /n and total sparsity 
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dn
⋆ = o log nlog p ν/2 , and achieve the consistency rate of order O log nlog p 1 + r + ν . Here, 

the consistency rate is not affected severely, but the ℓ∞-norm of transition matrices can 

diverge with the sample size.

Remark 4. The proposed procedure can be also applied to low-dimensional time series. 

For example, with p = cna for positive constants c and a, the probability bounds derived in 
Lemma 3 would be sharp enough to achieve the desired consistency results similar to those 
for the high-dimensional case in Theorem 3.

Remark 5. Selecting the tuning parameter η in Assumption A5 is challenging in practice, 
since the distance between candidate break points from the initial estimation to the true 
break points is unknown. Thus, while the specified tuning parameters achieve optimal 
consistency rates for locating the break points, they are not practical in finite sample 
settings and applications. To overcome this challenge, we can instead consider a fixed 

tuning parameter η in all the candidate segments as η = Cm0 Δn
⋆log p/n for some large enough 

positive constant C > 0, where Δn
⋆ = max1 ≤ j ≤ m0 tj + 1 − tj . We can still show the consistency of 

the proposed procedure in (12) with this fixed η. However, the consistency rate for locating 
the break points using this fixed rate would be different from that achieved in Theorem 3. 

For finite m0, the rate would be of order nlog p 1/2 + ν for some positive ν > 0 as compared 

to the rate log nlog p 1 + ν when the tuning parameters are selected as in Assumption A5. In 
all simulation studies and real data applications, η was selected according to the fixed rate 
mentioned in this remark.

When the number of change points at the first stage m = An  is large, the second screening 

step for finding the minimizer of the information criterion IC could be computationally 

demanding. In order to reduce the computational cost, we can use a backward elimination 

algorithm (BEA), similar to Chan et al. (2014), to approximate the optimal point at a lower 

computational cost. The idea of this algorithm is to start with the full set of selected points, 

An, and remove an unnecessary point in each step, until no further reduction is possible. See 

Appendix C for details.

While the proposed BEA algorithm is not guaranteed to achieve the minimizer of (12), it 

only requires to search m2 sets in order to find the break points. The algorithm thus results 

in a significant reduction in the computational time when m is large. The proposed BEA 

algorithm was used in simulation studies of Section 7 and real data examples of Section 8, 

and seems to perform very well in all cases.

4.1 Comparison with Other Methods

Before discussing the parameter estimation consistency in Section 5, in this section, we 

compare our rates of consistency for break point estimation with related methods. That is 

because existing approaches do not provide consistent parameter estimation. By Theorem 3, 

our rate is of order m0nγndn
⋆ 2. Thus, the exact rate depends on values of m0, γn, and dn

⋆, which 

are governed by Assumptions A1–A5.
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Chan et al. (2014) consider structural break detection in univariate AR processes. When 

m0 is finite, their rate of consistency for estimating the location of break points is of order 

log n under the assumption that the distance between two consecutive break points is at least 

log n 1 + ν for some positive ν > 0. Our method can be seen as an extension of this work to 

high dimensions: choosing γn = log nlog p/n, our rate of consistency is of order log nlog pdn
⋆ 2

assuming that consecutive break point distances are at least of the same order. The additional 

factor log pdn
⋆ 2 quantifies the complexity of the problem in the high-dimensional setting. In 

the univariate case, or even in multivariate case with fixed dimension p, our method achieves 

the same rates of consistency as Chan et al., i.e., log n.

The test procedure of Aue et al. (2009) can locate break points in the covariance structure 

of multivariate time series, and achieve a rate of consistency of order log log n. Interestingly, 

we can also set γn = log log nlog p/n. In this case, for finite number of break points, our rates 

for consistently locating the break points can be log log nlog pdn
⋆ 2, which differs with the rate 

derived in Aue et al. (2009) by a factor of order log pdn
⋆ 2. This factor is, again, due to the 

fact in our analysis the number of time series, p, is allowed to grow exponentially with n. 

In contrast, the analysis in Aue et al. (2009) does not directly take the rate of increase in p
into account. For fixed p, both methods give similar rates for locating the break points, i.e., 

log log n.

The recent proposal of Cho and Fryzlewicz (2015) uses a CUSUM statistic to identify the 

number of break points together with their locations. The proposal of Cho and Fryzlewicz 

(2015) is the closest in spirit to our approach as it also identifies structural breaks in high-

dimensional time series. However, aside from consistent estimation of model parameters 

discussed in the Introduction, the two methods have a number of differences. First, in Cho 

and Fryzlewicz (2015), the number of time series p is allowed to grow polynomially with 

the number of time points T . In contrast, we allow p to grow exponentially with T . Second, 

the minimum distance between two consecutive break points allowed in Cho and Fryzlewicz 

(2015) is of order Δn = T ψ for some ψ ∈ 6/7,1 . In our setting, depending on the sparsity 

of the model, this rate could be as low as Δn = log nlog p 1 + νdn
⋆ 2 for some positive ν > 0. 

Therefore, for sparse enough VARs, our method can detect considerably closer break points. 

Finally, our rate of consistency for estimating the break point locations is of order m0nγndn
⋆ 2, 

which could be as low as log nlog p 1 + ν if we set γn = log nlog p/n and dn
⋆ = O log nlog p ν/2 . 

Cho and Fryzlewicz (2015) can achieve a similar rate when Δn is of order T . However, 

when Δn is smaller and is of order T ψ for some ψ ∈ 6/7,1 , Cho and Fryzlewicz’s rate 

of consistency will be of order T 2 − 2ψ, which is larger than our logarithmic rate. More 

generally, comparing our rate of consistency with the rate in Cho and Fryzlewicz (2015) is 

difficult, since our rate explicitly depends on the sparsity of the model while this sparsity 

level does not appear in their analysis.
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5 Consistent Parameter Estimation

Theorems 2 and 3 suggest that we can consistently estimate the location (and number) 

of change points in high-dimensional time series. However, even with such estimates, 

consistent estimation of Φ . , j  parameters in non-stationary high-dimensional VAR models 

remains challenging. This challenge primarily stems from the inexact nature of structural 

break estimation. More specifically, while we know that the estimated break points are in 

some neighborhood of the true break points, they are not guaranteed to segment the time 

series into stationary components. A more careful analysis is thus needed to ensure the 

consistency of VAR parameters.

The key to our approach for consistent parameter estimation is that Theorems 2 and 3 imply 

that removing the selected break points together with large enough Rn-radius neighborhoods 

will also remove the true break points. We can thus obtain stationary segments at the cost 

of discarding some portions of the observed time series. Theorem 2 suggests that the radius 

Rn can be as small as nγn. However, based on Theorem 3, in order not to keep any redundant 

break points, Rn needs to be at least Bm0nγndn
⋆ 2 for a large value B > 0.

Given the results in Theorems 3, suppose, without loss of generality, that we have selected 

m0 break points using the procedure developed in Section 4. Denote these estimated break 

points by t1, …, tm0. Then, by Theorem 3,

ℙ max
1 ≤ j ≤ m0

tj − tj ≤ Rn 1

as n ∞. Denote rj1 = tj − Rn − 1, rj2 = tj + Rn + 1 for j = 1, …, m0, and set r02 = q and 

r m0 + 1 1 = T . Further, define the intervals Ij + 1 = rj2, r j + 1 1  for j = 0, …, m0. The idea is 

to form a linear regression on ∪j = 0
m0 Ij + 1 and estimate the auto-regressive parameters 

by minimizing an ℓ1-regularized least squares criterion. More specifically, denoting 

y ℓmin, ℓmax = yℓmin
′ , …, yℓmax

′ ′,  X ℓmin, ℓmax = Y ℓmin
′ , …, Y ℓmax

′ ′, and e ℓmin, ℓmax = ζℓmin
′ , …, ζℓmax

′ ′, we form 

the following linear regression:

y q, r11

y r12, r21

⋮
y rm01, T

=

X q − 1, r11 − 1 0 … 0
0 X r12 − 1, r21 − 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … X rm02 − 1, T − 1

β1
′

β2
′

⋮
βm0 + 1

′

+

e q, r11

e r12, r21

⋮
e rm01, T

(13)

This regression can be written in compact form as Yr = XrB + Er, or, in a vector form, as

Yr = ZrB + Er

(14)
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where Yr = vec Yr , Zr = Ip ⊗ Xr, B = vec B , Er = vec Er , and r is the collection of all rj1 and 

rj2 for j = 0, …, m0 + 1. Let π = m0 + 1 p2q, Nj = length Ij + 1 = r j + 1 1 − rj2 for j = 0, …, m0 and 

N = ∑j = 1
m0 Nj. Then, Yr ∈ ℝNp × 1, Zr ∈ ℝNp × π, B ∈ ℝπ × 1, and Er ∈ ℝNp × 1. We estimate the 

VAR parameters by solving

B = argminB N−1∥ Yr − ZrB ∥2
2 + ρn ∥ B ∥1 .

(15)

We obtain the following consistency result.

Theorem 4. Suppose A1 − A5 hold and m0 is unknown and Rn = Bm0nγndn
⋆ 2. Assume also 

that Δn > εn for some large positive ε > 0 and ρn = C logπ
N  for large enough C > 0. (Note that 

N /n = O 1 .) Then, as n + ∞, the minimizer B of (15) satisfies

∥ B − Φ ∥ℓ = Op dn
⋆ 1/ℓρn for ℓ = 1,2. 

Theorem 4 is proved in Appendix B, where it is also shown that, if m0 is known, then it is 

enough to set Rn = nγn. The next remark emphasizes that removing the Rn-radius of estimated 

break points and fast rates of convergence play a crucial role in consistent parameter 

estimation.

Remark 6. Existing approaches for change point detection in multivariate and high-
dimensional settings, including ours and the proposal of Cho and Fryzlewicz (2015), are 
only able to consistently estimate the relative location of change points, tj/T . As a result, 

using the estimated change points to partition the time series into ‘stationary’ segments, 
and then estimating the VAR parameters of each segment using a regularized estimation 
procedure may lead to inferior, or even inconsistent, estimates of VAR parameters. On the 
one hand, using our sharper rates of consistency for change point detection, it is indeed 
possible to verify parameter estimation consistency without removing any portion of the 
data. However, the consistency rate will be different (worse in some settings) due to having 
misspecified models in the intervals of type tj, tj  or tj, tj , j = 1,2, …, m0. Rates for such a 

procedure are provided in Appendix F. On the other hand, the slower rates of consistency 
in Cho and Fryzlewicz (2015) may result in inconsistent estimates of VAR parameters. 
This is because if the distance between the break point tj and its estimation tj is large 

relative to the minimum distance between two consecutive break points, then the restricted 
eigenvalue (RE) condition may not hold for that segment. As discussed in Bickel et al. 

(2009), the RE condition is critical for establishing the consistency of parameter estimation 
in high-dimensional settings. To see this, note that the consistency rate for locating break 

points using the method of Cho and Fryzlewicz (2015) is of order T 2 − 2ψ with ψ ∈ 6/7,1 . 

Now, if, similar to our setting, the minimum distance between two consecutive break points 

is of order log T log p 1 + ν for some ν > 0, then the estimated break points might be far 
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from the true break points since T 2 − 2ψ / log T log p 1 + ν
 may diverge. This violates the RE 

condition and may result in inconsistent parameter estimation using L1-regularization.

6 Tuning Parameter Selection

Our proposed three-stage procedure relies on multiple tuning parameters, λ1, n, λ2, n, ηn, ωn, ρn and 

Rn. Although the theoretical rates for these parameters are derived in previous sections, their 

selection in finite sample applications needs further discussion. In this section, we provide 

guidance on selecting these tuning parameters.

λ1, n: We select λ1, n by cross-validation. Let T be a set of equally spaced time points, 

starting from a randomly selected initial time point. The data without observations 

in T can be used in the first step of our procedure to estimate Θ for a range of 

values for λ1, n. The estimated Θ are then used to predict the series at time points in 

T. The value of λ1, n which minimizes the mean squared prediction error over T is the 

cross-validated choice of λ1, n.

λ2, n: As described previously, the rate for λ2, n vanishes fast as T  increases. Thus 

for simplicity, we suggest setting λ2, n to zero. This choice was used in all of the 

numerical analyses in the paper—both simulations studies and real data applications

—and seems to give satisfactory results.

ηn: Following Remark 5, we suggest a fixed rate for this parameter, and, based on the 

theoretical rate in Remark 5, set ηn = log nlog p /n. This choice was used in all of the 

numerical analyses in the paper and provides very good results.

ωn: Selecting ωn is difficult, since it depends on how large changes in the VAR 

parameters must be in order to consider them as break points in finite sample 

applications. A similar tuning parameter appears in other work on the topic, including 

Cho and Fryzlewicz (2015) and Chan et al. (2014). Following Assumption A4, in our 

analysis we set ωn = C log nlog p 3/2 for some C > 0. The range for the constant C used 

in our analysis is within the interval [0, 1].

ρn: Finally, we select the tuning parameter ρn for parameter estimation as the 

minimizer of the combined Bayesian Information Criterion (BIC) for all the 

segments. Following Lütkepohl (2005) and Zou et al. (2007), for j = 0, …, m we 

define the BIC on the interval Ij + 1 = rj2, r j + 1 1  as

BIC j, ρn = log det Σε, j + log r j + 1 1 − rj2
r j + 1 1 − rj2

∥ βj + 1 ∥0,

where Σε, j is the residual sample covariance matrix with B estimated in (15), and 

∥ βj + 1 ∥0 is the number of nonzero elements in βj + 1; then ρn is selected as

ρn = argminρn ∑
j = 0

m
BIC j, ρn .
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(16)

Rn: Recall from Section 5 that we need to remove the selected break points together 

with their Rn-radius neighborhood before estimating the parameters using (15). In 

practice, the radius Rn needs to be estimated. However, a closer look at the proof of 

Theorem 3 together with Assumption A4 suggest that ωn can be chosen as an upper 

bound for the selection radius Rn. In other words, in the statement of Theorem 3, the 

radius Bm0nγndn
⋆ 2 can be replaced by ωn and the result would still hold. Formally, as 

n ∞,

ℙ max
1 ≤ j ≤ m0

t j − tj ≤ ωn 1 .

Therefore, in all simulation scenarios and data applications, we set Rn = ωn.

Additional discussions on tuning parameters are given in Section 7.4, where we investigate 

the robustness of our procedure to the recommended tuning parameters.

7 Simulation Studies

7.1 Preliminaries

We evaluate the performance of the proposed three-stage estimator with respect to both 

structural break detection and parameter estimation. In this section, we consider three 

simulations scenarios. The first two scenarios examine low-dimensional settings, with 

T = 300, p = 20, q = 1 and m0 = 2; the third scenario examines a high-dimensional setting 

with T = 80, p = 100, q = 1 and m0 = 1. Detail of simulation settings in each scenario are 

explained in Section 7.2 and Appendix D, where results from two additional simulation 

settings are also presented1. In all, except Scenario 5 in Appendix D, results are averaged 

over 100 randomly generated data sets with mean zero and Σε = 0.01IT; a non-diagonal Σε is 

considered in Scenario 5.

For structural break detection, we compare our method with the sparsified binary 

segmentation-multivariate time series (SBS-MVTS) approach of Cho and Fryzlewicz 

(2015). For both methods, we report the locations of the estimated break points and the 

percentage of simulations where each break point is correctly identified. This percentage is 

calculated as the proportion of simulations, where selected break points are close to each of 

the true break points. More specifically, a selected break point is counted as a ‘success’ for 

the first true break point, t1, if it is in the interval 0, t1 + 0.5 t2 − t1 ; similarly, a selected break 

point is counted as a ‘success’ for the second true break point, t2, if it falls in the interval 

t1 + 0.5 t2 − t1 , T . For our method, we also report the percentage of cases where the break 

point is correctly estimated in the Rn-radius of truth. The results are reported in Table 1.

1See also https://github.com/abolfazlsafikhani/SBDetection.
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For parameter estimation, we evaluate the performance of our procedure by reporting the 

(relative) estimation error, as well as true and false positive rates, calculated by comparing 

the nonzero patterns of true and estimated coefficient matrices. Since existing procedures 

do not provide consistent estimates of piecewise stationary VAR parameters, we compare 

our procedure to a procedure based on the state-of-the-art methods in high-dimensional 

change point detection and VAR estimation. More specifically, we use the estimated change 

points from SBS-MVTS to partition the time series into ‘stationary’ segments, without 

removing the Rn-radius of selected break points. We then use our ℓ1-penalized procedure 

(15) to estimate the VAR parameters in each segment. The results in Table 2 clearly show 

the advantages of our procedure and highlight the importance of removing the Rn-radius of 

selected break points in the third step of our procedure; see Section 7.2 for details.

7.2 Simulation Scenarios

Simulation Scenario 1 (Simple Φ and break points close to the center).—In the 

first scenario, the autoregressive coefficients have the same structure but different values; see 

Appendix D for details. In this scenario, t1 = 100 and t2 = 200, which means that break points 

are not close to the boundaries.

Before comparing our procedure with the SBS-MVTS method of Cho and Fryzlewicz 

(2015), we take a closer look at the first two steps of our procedure in this simulation setting. 

To this end, we plot the break points in one simulated data sets in the left panel of Figure 

3. As expected from Theorem 2, more than 2 break points are detected using the first stage 

estimator. However, some break points are indeed in a small neighborhood of true change 

points. Our second-stage screening procedure eliminates the extra candidate points, leaving 

only the two closest points to the true change points. The final selected points in all 100 

simulation runs are shown in the right panel of Figure 3, and confirm the consistency of the 

proposed method in selecting the break points.

Simulation Scenario 2 (Simple Φ and break points close to the boundaries).—

The coefficient matrices in this scenario are similar to those in Scenario 1. However, the 

break points are closer to the boundaries. Specifically, t1 = 50 and t2 = 250.

Simulation Scenario 3 (High-dimensional setting with simple Φ).—In this 

scenario, T = 80,  p = 100 and there is a single break point at t = 40. The autoregressive 

coefficients have the same structure as the first two VAR matrices in Scenario 1.

7.3 Simulation Results

Mean and standard deviations of locations of selected break points, relative to the sample 

size T  — i.e., t 1/T  and t 2/T  — for all simulation scenarios are summarized in Table 1. 

The results clearly indicate that, in all settings, our procedure accurately detects the number 

of break points and their locations. They also suggest that our procedure produces more 

accurate estimates of break points than the SBS-MVTS method. The advantage of our 

method is more pronounced when comparing the percentage of times where the break points 

are correctly detected using each method.
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In addition to overall improvement in detecting break points, the simulation results also 

indicate that our procedure offers significant advantages over SBS-MVTS in in Simulation 

Scenarios 2 and 3. In Scenario 2, where the break points are closer to the boundaries, 

the detection performance of our procedure does not deviate much from Scenario 1, but 

the performance on locating the break points seems to be slightly worse. This is in stark 

contrast to SBS-MVTS, which gives worse estimates of break points in this simulation 

setting. Similarly, our procedure continues to perform well in the high-dimensional setting 

of Scenario 3, whereas SBS-MVTS performs considerably worse than Scenario 1.

Table 2 summarizes the results for autoregressive parameter estimation in all three 

simulation scenarios. The table shows mean and standard deviation of relative estimation 

error (REE), as well as true positive (TPR) and false positive rates (FPR) of the estimates. 

The results suggest that our method also performs well in terms of parameter estimation. 

However, true positive rates are low in Scenario 2. One potential explanation for the reduced 

TPR in this scenario is that the first and third segments used for estimation in this scenario 

contain less than 40 time points, compared to 90 time points in Scenario 1. This shorter 

length makes it harder to estimate the parameters and correctly select zero and nonzero 

coefficients. Comparing our procedure and the naïve procedure based on SBS-MVTS, 

introduced in Section 7.1, indicates that our procedure is superior in all simulation scenarios, 

both in terms of estimation error and variable selection. Since the two methods use the same 

estimation procedure, this advantage can be attributed to our proposal, and, in particular, 

to removing the Rn-neighborhood of the estimator break points. These findings affirm our 

theoretical results.

7.4 Robustness of Tuning Parameter Selection

To address the challenges of selecting 6 tuning parameters for our method, in Section 6 we 

proposed data-driven procedures for selecting λ1, n (cross-validation), ρn (minimizing BIC), 

and Rn. We also made recommendations on how to select the other three tuning parameters. 

To assess the robustness of our method to these recommendations, in this section, we 

conduct two simulation studies to investigate how the method performs with other choices 

of λ2, n and ηn. We also propose a data-driven procedure for choosing ωn and conduct a third 

simulation to check its performance. All three additional simulation cases are repeated 100 

times and the results are averaged over these iterations.

The simulation settings for checking the robustness with respect to λ2, n and ηn are the 

same as Simulation 1. In each iteration of the first simulation (Case 1), we choose λ2, n

uniformly randomly from the interval 0, n−3/2 log p/γn , instead of simply setting it to zero 

as recommended in Section 6. (This interval corresponds to the rate assumed in Theorem 

2, with constants 0 and 1.) Similarly, in the second simulation (Case 2), we choose ηn as 

ηn = c log nlog p /n with the constant c chosen uniformly randomly from the interval (0.5, 

1.5) instead of setting it to c = 1 as recommended in Section 6. The results for break point 

detection are presented in Table 3. Comparing these with our previous results on Simulation 

1 reported in Table 1, we see no significant changes which confirm the robustness of our 

method with respect to selecting these two tuning parameters.
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For the last tuning parameter ωn, the recommendation in Section 6 was to set 

ωn = C log nlog p 3/2 for some C > 0. The range for the constant C used in our analysis is 

within the interval [0, 1]. Here, we propose a data-driven method to select ωn. The idea is to 

first finish the backward elimination algorithm (BEA) until no break points are left. Then, 

we cluster the jumps in the objective function Ln in Equation (10) into two subgroups, small 

and large. We then use the minimum value in the large subgroup as the optimal value for ωn. 

Details of this approach are presented in Appendix G. Intuitively, if removing a break point 

leads to a small jump in Ln, then the break point is likely redundant. In contrast, larger jumps 

correspond to true break points. The smallest jump in the second group is thus a reasonable 

candidate for ωn. The detailed algorithm in Appendix G also includes a provision for cases 

with no break points.

To assess the performance of the above data-driven procedure, in our third simulation in 

this section (Case 3), we repeat Simulation 1 but use the above procedure to choose ωn. The 

results in Table 3 show that this approach performs satisfactorily.

8 Applications

8.1 EEG Data

In this section, we revisit the EEG data discussed in Section 1. Recall that the data consists 

of electroencephalogram (EEG) signals recorded at 18 locations on the scalp of a patient 

diagnosed with left temporal lobe epilepsy during an epileptic seizure. The sampling rate is 

100 Hz and the total number of time points per EEG is T = 22,768 over 228 seconds. The 

time series for all 18 EEG channels are shown in Figure 1. The seizure was estimated to 

take place at t = 85s. Examining the EEG plots, it can be seen that the magnitude and the 

volatility of signals change simultaneously around that time. To speed up the computations, 

we select ten observation per second and reduce the total time points to T = 2276.

Data from one of the EEG channels (P3) was previously used by Davis et al. (2006) and 

Chan et al. (2014) for detecting structural breaks in the time series. As a comparison, we 

apply the SBS-MVTS method of Cho and Fryzlewicz (2015) as well as our procedure to 

detect the break points based on changes in all 18 time series. Table 4 shows the location 

of the selected break points using the Auto-PARM method of Davis et al. (2006) and the 

two-stage procedure of Chan et al. (2014), based on data from channel P3, as well as those 

estimated using our method and SBS-MVTS based on all 18 channels. The selected break 

points by our method are also shown in Figure 4.

Our method detects a break point at t = 83, which is close to the seizure time identified by 

neurologists. Most other break points selected by our method are also close to those detected 

by the two univariate approaches and SBS-MVTS. However, the main advantage of our 

method is that it also provides consistent estimates of VAR parameters. As shown in Figure 

2, these estimates can be used to gain novel insight into changes in mechanisms of neuronal 

interactions before and after seizure.
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Given the proximity of selected break points between t = 83 and t = 162, in order to obtain 

the networks in Figure 2, we consider the time segments before and after these two time 

points. More specifically, using the procedure of Section 5, we discard observations in the 

Rn radius before t = 83 and after t = 162 in order to ensure the stationarity of remaining 

observations. We then use the ℓ1-penalized least square estimator of (15), with tuning 

parameter selected by BIC (16), to obtain estimates of VAR parameters before and after 

seizure. Network edges in Figure 2 correspond to nonzero estimated coefficients larger than 

0.05 in magnitude. This thresholding is motivated by the known over-selection property of 

lasso (Shojaie et al. 2012) and is used to improve the interpretability of estimated networks.

8.2 Yellow Cab Demand in NYC

As a second example, we apply our method and SBS-MVTS to the yellow cab demand 

data in New York City (NYC), obtained from the NYC Taxi & Limousine Commission’s 

website2. Here, the number of yellow cab pickups are aggregated spatially over the zipcodes 

and temporally over 15 minute intervals during April 16th, 2014. We only consider the 

zipcodes with more than 50 cab calls to obtain a better approximation using linear VAR 

models. This results in time series for 39 zipcodes observed over 96 time points. To identify 

structural break points, we consider a differenced version of the data in order to remove first 

order non-stationarities.

Table 5 shows the 5 break points detected by our method, along with two break points 

identified by SBS-MVTS; the differenced time series and detected break points by our 

method are also shown in Figure 5. Based on data from NYC Metro (MTA), morning rush 

hour traffic in the city occurs between 6:30AM and 9:30AM, whereas the afternoon rush 

hour starts from 3:30PM and continues until 06:00PM. Interestingly, the selected break 

points by our method are very close to the rush hour start/end times during a typical day. 

Specifically, the selected break points at 7AM, 10AM, and 6PM are close to rush hour 

periods in NYC. These results suggest that the covariance structure of cab demands between 

the zipcodes in NYC may significantly change before and after the rush hour periods. Even 

with the least conservative tuning parameters, SBS-MVTS only selects two break points in 

this example, and does not identify any break points in the afternoon rush hour period.

9 Discussion

We proposed a three-stage method for simultaneous change point detection and parameter 

estimation in high-dimensional piecewise stationary VAR models.

We showed that the proposed method consistently estimates the total number and location of 

break points, and also the parameters of the underlying high-dimensional sparse piecewise 

stationary VAR model. Numerical experiments in three simulation settings and two real data 

applications corroborate these theoretical findings. In particular, in both real data examples 

considered, the break points detected using the proposed method are in agreement with the 

nature of the data sets.

2 http://www.nyc.gov/html/tlc/html/about/trip-record-data.shtml 
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When the total number of break points, m0, is finite, the rate of consistency for detecting 

break point locations relative to the sample size T  depends on three factors: (1) the number 

of time points, T , (2) the number of time series, p, and (3) the total sparsity of the model, 

dn
⋆. In the univariate case, Chan et al. (2014) obtained a consistency rate of order log n /n. 

In the high-dimensional case, the rate shown here is of order dn
⋆ 2log nlog p /n. The log p and 

dn
⋆ factors in this rate highlight the challenges of change point detection in high dimensions. 

The proposed procedure also allows the number of break points to increase with the sample 

size, as long as the minimum distance between consecutive break points is large enough, as 

characterized by Assumptions A3 and A4.

A limitation of the proposed procedure is the need to select multiple tuning parameters. 

In Section 6, we proposed data-driven strategies or made specific recommendations for 

choosing the tuning parameters. While it is possible to devise cross-validation type 

procedures for selecting all tuning parameters, this would increase computational burden 

of our method. However, the sensitivity analyses in Section 7.4 indicate that deviations 

from the recommendations of Section 6 do not impact the performance of our method. 

Therefore, we leave further investigations of data-driven choices of tuning parameters to 

future research. We note, however, that selecting the penalty parameter for the second stage 

estimator (9) can be challenging in practice. In our numerical studies, a simplified version 

of this tuning parameter was used. This simplified version does not guarantee optimal rates 

of consistency for break point estimation. Investigating optimal tuning parameters for this 

step, using e.g. the procedure of Feng and Simon (2018), and analyzing their theoretical 

properties can be fruitful areas of future research.

We end this discussion by noting that our method can be applied to cases where the jumps 

occur only in the means across different segments with fixed transition matrices. In this case, 

all design matrices will be deterministic. Therefore, technical proofs, including verifying the 

restricted eigenvalue condition and deviation bound will be simpler. Another possibility is to 

allow both mean vectors and transition matrices to change at certain locations. This makes 

our design matrices deterministic in some parts and random in others. Finding sufficient 

conditions on the jumps sizes in both mean vectors and transition matrices in order to 

consistently locate their changes over time could be an interesting problem.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
EEG signals from a patient diagnosed with left temporal lobe epilepsy. The data was 

recorded at 18 locations on the scalp during an epileptic seizure over 22,768 time points.
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Figure 2: 
Network of Granger causal interactions among EEG channels based on data from Figure 

1. The plots show the schematic locations of the EEG channels. The first two figures show 

interactions among EEG channels before and after the period of seizure. Gray edges in 

these two networks show common edges, while red edges show interactions identified either 

before or after seizure. The rightmost network shows interactions from an estimate obtained 

by ignoring the structural break in the time series.
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Figure 3: 
Left: Estimated break points from the first stage of our proposed procedure (Equation 5) for 

a single runs in Simulation Scenario 1; on average ~13 points are selected in the first stage. 

Right: Final selected break points for all 100 simulation runs in Simulation Scenario 1.
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Figure 4: 
EEG data over 228 seconds with the 8 selected break points using our method
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Figure 5: 
The NYC Yellow Cab Demand differenced time series from 39 different zipcodes over a 

single day with 96 time points. The 5 selected break points by the proposed method are 

shown as vertical lines.

Safikhani and Shojaie Page 30

J Am Stat Assoc. Author manuscript; available in PMC 2024 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Safikhani and Shojaie Page 31

Table 1:

Mean and standard deviation of estimated break point locations, the percentage of simulation runs where break 

points are correctly detected (selection rate)

method break point truth mean std selection rate

Scenario 1

SBS-MVTS 1 0.3333 0.3513 0.039 0.85

2 0.6667 0.6425 0.0558 0.87

Our method 1 0.3333 0.3318 0.0104 1

Scenario 2 2 0.6667 0.6584 0.0153 1

SBS-MVTS 1 0.1667 0.31 0.0802 0.94

2 0.8333 0.6414 0.102 0.68

Our method 1 0.1667 0.1763 0.022 1

Scenario 3 2 0.8333 0.7971 0.023 1

SBS-MVTS 1 0.5 0.4688 0.1504 0.64

Our method 1 0.5 0.4975 0.0223 1
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Table 2:

Results of parameter estimation for all three simulation scenarios. The table shows mean and standard 

deviation of relative estimation error (REE), true positive rate (TPR), and false positive rate (FPR) for 

estimated coefficients.

Method REE SD(REE) TPR FPR

Simulation 1 Our Method 0.3385 0.0282 1.00 0.036

SBS-MVTS 0.4113 0.2678 1.00 0.039

Simulation 2 Our Method 0.654 0.052 0.72 0.03

SBS-MVTS 0.901 0.154 0.63 0.03

Simulation 3 Our Method 0.6422 0.0234 0.91 0.003

SBS-MVTS 0.8023 0.089 0.67 0.003
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Table 3:

Sensitivity analysis for tuning parameters. The table shows mean and standard deviation of estimated break 

point locations, as well as the percentage of simulation runs where break points are correctly detected 

(selection rate) for the three simulations in Section 7.4.

break point truth mean std selection rate

Case 1 1 0.3333 0.3302 0.0108 1

2 0.6667 0.6715 0.0088 1

Case 2 1 0.3333 0.3313 0.0098 1

2 0.6667 0.6704 0.0082 1

Case 3 1 0.3333 0.3313 0.0098 1

2 0.6667 0.6702 0.0086 1
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Table 4:

Location of break points detected in the EEG data using four estimation methods. The locations are rounded to 

the closest integer.

Methods 1 2 3 4 5 6 7 8 9 10 11

Auto–PARM 86 90 106 121 133 149 162 175 206 208 326

Chan et al. (2014) 84 106 120 134 155 177 206 225 – – –

SBS–MVTS 84 107 114 126 133 143 157 176 – – –

Our method 83 111 114 121 130 138 144 162 – – –
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Table 5:

The location of break points for the NYC Yellow Cab Demand data.

1 2 3 4 5

SBS–MVTS 6am 11:30am – – –

Our method 7am 8:15am 10am 6pm 7pm
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