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A B S T R A C T   

Prior research suggests that the organization of the language network in the brain is left-dominant and becomes 
more lateralized with age and increasing language skill. The age at which specific components of the language 
network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study 
has not included a language task paradigm, so we introduce a method to study resting-state laterality in the 
Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and 
right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term “Wernicke’s 
area” near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability 
and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral 
metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic 
component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of 
hemispheric specialization in youth are critical for future work determining the correspondence of lateralization 
with language onset in earlier stages of development.   

1. Introduction 

Language serves not only its important communicative role, but also 
supports higher-order reasoning such as theory of mind (e.g. Ebert et al., 
2017), and emotion regulation (e.g. Monopoli and Kingston, 2012). In 
the brain, language is processed by a left hemisphere-dominant network 
that comprises multiple regions thought to be specialized for distinct 
linguistic subskills. 

This laterality has been found to increase between childhood and 
young adulthood (Holland et al., 2007; Lidzba et al., 2011; Sepeta et al., 
2016; Szaflarski, Holland et al., 2006; Szaflarski, Schmithorst et al., 
2006), and with increasing language skills within the same age range 
(Bartha-Doering et al., 2018), which may be due to a decrease in right 
hemisphere (RH) involvement (Dehaene-Lambertz et al., 2002; Olulade 

et al., 2020; Petitto et al., 2012). In older children, organization and 
laterality of the language network is not adultlike by 9 years (Enge et al., 
2020; Skeide et al., 2014). 

1.1. Challenges in investigating lateralization 

Considering the drastic developments in language skills, the first few 
years of life are an important time period for understanding changes in 
cortical organization (Hervé et al., 2013; Johnson, 2001). Functional 
magnetic resonance imaging (fMRI), due to its high spatial resolution 
and non-invasiveness is well-suited to questions of cortical topology. 
However, using task-based fMRI (tfMRI) with infants and toddlers is 
difficult, as it relies on both the ability of the participants to effectively 
perform the task and lie very still. Resting state fMRI (rsfMRI) does not 
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induce task demands, and is uniquely suited to the study of the devel-
opment of functional brain organization and can even be conducted 
during natural sleep in infants (Dubois et al., 2021; Howell et al., 2018; 
Korom et al., 2022). 

Resting state (RS) organization is individualized and accounts for a 
significant portion of task activation patterns suggesting it can be used to 
study online activation (Tavor et al., 2016). However, changes in the RS 
signal do occur over development: primary networks are further 
developed in neonates, compared to higher-order networks (Fransson 
et al., 2011; Gao et al., 2009, 2017) and become more dissimilar be-
tween individuals with age (Moore et al., 2023), which suggests that 
much of the infrastructure reflected by rsfMRI is in place early in 
development. Together, this suggests rsfMRI can recapitulate changes in 
task-response topology. 

1.2. Using rsfMRI data to examine the development of the language 
network 

MRI studies of language have been constrained by sample sizes 
(Bradshaw et al., 2017; Enge et al., 2020) that have been criticized for a 
lack of power (Button et al., 2013; Poldrack et al., 2017). Developing a 
new technique could prove problematic when using a small sample size 
by providing false-positive validation of an incorrect technique, so we 
leveraged the well-powered Adolescent Brain and Cognitive Develop-
ment study (ABCD; Barch et al., 2018; Casey et al., 2018; Volkow et al., 
2018) to develop and validate a novel technique for the study of later-
alization using rsfMRI. Central to our assumption is that the cortical 
regions that support online language processing also vary together in RS 
and thus can be recapitulated using RS correlations (Biswal et al., 1995; 
Hermundstad et al., 2013; Mennes et al., 2010). 

For these analyses we leveraged the MIDB Probabilistic Atlas that 
accounts for individual variability in our sample in network topology 
(Hermosillo et al., 2022). Specifically, we used regions of interest (ROIs) 
selected from the ventral attention network (VAN). The VAN is a 
RH-dominant exogenous attention network (Corbetta and Shulman, 
2002) that closely mirrors the left hemisphere (LH)-dominant language 
network topologically (Bernard et al., 2020; Braga et al., 2020). 

From this VAN, we used ROIs from inferior frontal gyrus (IFG) and 
middle temporal gyrus (MTG). MTG is thought to subserve morpho-
syntactic and lexico-semantic categorization, lexical access, and phrase 
structure building (Skeide and Friederici, 2016), or to be involved 
non-selectively in a range of lexico-semantic as well as syntactic pro-
cessing (Fedorenko and Blank, 2020). Our understanding of the role of 
IFG is in substantially more flux. One major line of work has argued the 
role of IFG in language is articulation (Broca, 1861; Flinker et al., 2015; 
Hillis et al., 2004; Long et al., 2016; Papoutsi et al., 2009). However, 
more recent work suggests IFG comprises subregions individually se-
lective for language processing and another that is modulated by pro-
cessing difficulty (Fedorenko and Blank, 2020; Weiss-Croft and 
Baldeweg, 2015). 

1.3. Using rsfMRI to study the language network 

In comparison to tfMRI literature, the rsfMRI literature is less 
mature. Researchers have used independent component analysis (ICA) 
to isolate the independent component most like a template. These 
studies so far have had small sample sizes (n = 15) and wide variation in 
overlap between individual-specific and canonical language networks 
(Branco et al., 2016; Smitha et al., 2019). While promising, such ICA 
approaches are affected by the number of components selected, cannot 
give region-level analyses, and bias the estimate toward the template, 
which was asymmetric in the former paper and symmetric in the latter. 
Likewise, Braga and colleagues (2020) used an iterative approach to 
refine a subject-specific ROI based on the qualities of its resulting 
seedmap and its similarity to the canonical language network. However, 
to re-apply such ROIs to the same timeseries would introduce data 

leakage. 
This paper proposes and validates a new RS functional connectivity 

analysis specifically for the purposes of investigating for hemispheric 
specialization. We generate many seed-based connectivity maps meant 
to be representative of the language network, varying the relative pro-
portion of LH and RH grayordinates in the seed region. This increases the 
reliability of our characterization of laterality by estimating the network 
multiple times. We demonstrate external validity by demonstrating a 
relationship between this technique and associations with behavioral 
tasks conducted outside of the scanner. Thus, it is informative with 
regards to brain-behavior associations and suitable for use across 
development, for example in infants and toddlers from whom only RS 
data was collected. 

2. Methods 

2.1. Participants 

Data were taken from the ABCD baseline (Year 1) acquisition (ages 
9–11 years). We used the ABCD Reproducibility Matched Samples 
(ARMS; Feczko et al., 2021), which are matched across the ABCD study 
based on site, age, sex, ethnicity, grade, highest level of parental edu-
cation, handedness, combined family income, exposure to anesthesia, 
and family structure. Family members were kept in the same ARMS, and 
the ARMS were matched to have equivalent numbers of siblings, twin 
pairs, and triplets. Participants were included if they had more than 10 
min of low-motion (framewise displacement < 0.2 mm) rsfMRI data, 
leaving 3098 individuals in ARMS-1 and 3055 in ARMS-2, see Supple-
mentary Figure (SF) 2. The ARMS function as a within-study test/re-
plication sample to increase our confidence in our findings by 
immediately performing a replication. Relative to the entire sample, the 
low-motion group is older, more female, more non-Hispanic white, and 
is more likely to have married parents, parents with graduate degrees, 
higher household incomes, has fewer mental and physical health prob-
lems, higher general cognition, executive functioning, and learning and 
memory scores (Cosgrove et al., 2022; Feczko et al., 2021), which limits 
generalizability. 

While we modeled handedness as a continuous variable, we present 
the number of individuals in each handedness category based on the 
Edinburgh Handedness Inventory (EHI): left: EHI < − 0.5; mixed: − 0.5 
≤ EHI ≤ 0.5, right: EHI > 0.5 (Table 1, Veale, 2014). 

Additionally, we divided the participants’ linguistic environment (as 
reported in the ABCD Longitudinal Parent Demographics Survey; Barch 
et al., 2018) into the following mutually exclusive categories (Table 2), 
where each child was assigned to the most-bilingual-exposure category 
in which they fit. In this rating, we consider categories 3 and 4 “bilin-
gual” (14%). There was no difference in distribution between ARMS, 
χ2(4,6153) = 3.988,p = .41. 

Each brain-behavior model was tested against demographic cova-
riates, including gender, age, handedness, parental education, binned 
parental income (breaks: $2500, $8500, $14,000, $20,500, $30,000, 
$42,500, $62,500, $87,500, $150,000, $250,000), child anesthesia 
status, child race, and ABCD site. 

Table 1 
Number of individuals in each ARMS by handedness category (right: EHI > 0.5, 
left: EHI < − 0.5, mixed: − 0.5 ≤ EHI ≤ 0.5).   

Handedness 
n (%) 

ARMS Right Mixed Left 
1 2488 (80) 378 (12) 232 (7) 
2 2476 (81) 376 (12) 203 (7)  
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2.2. Preprocessing 

Data were processed using the ABCD-BIDS processing pipeline 
(Sturgeon et al., 2021), which is a modified version of the HCP pipeline 
that is more general and compatible with the different MR platforms 
used across the ABCD study. This pipeline was previously described in 
detail (Feczko et al., 2021), and contains the HCP pipeline steps of 
PreFreeSurfer (with the modification of allowing a missing T2), Free-
Surfer, PostFreeSurfer (conversion to CIFTI), fMRIVolume, fMRISurface 
(registration), and the additional steps of DCAN BOLD processing, and 
Executive Summary creation. 

2.3. Network level results 

2.3.1. Network creation 
For a complete description of the generation of the template 

matching (TM) maps used in this paper, see Hermosillo et al. (2022), 
which implements methods from Gordon and colleagues (2017). Briefly, 
for each subject, a network assignment was generated for each grayor-
dinate based on the similarity of spatial pattern of functional connec-
tivity to an independent set of network templates. Then, each cortical 
and subcortical grayordinate was assigned a likelihood of belonging to 
each of 14 networks across the group. Those networks were the default 
mode network (DMN), the visual network (VIS), the frontal parietal 
network (FPN), the premotor network (PMN), the dorsal attention 
network (DAN), the ventral attention network (VAN), the salience 
network (Sal), the cingulo-opercular network (CO), the sensorimotor 
dorsal network (SMd), the sensorimotor lateral network (SMl), the 
auditory network (AUD), the temporal network (MTL), parieto-occipital 
network (PON), and the parietal medial network (PMN). 

Ten minutes of data with a framewise displacement (FD) of less than 
0.2 mm were sampled from each subject, and the probability of network 
observation (η2) is calculated for each network. Network templates were 
initially created in ARMS-3, the small, held-out development set of 
ABCD participants (Feczko et al., 2021). η2 values are calculated by 
correlating the template dense time series across all grayordinates 
within a session. Whole-brain connectivity at each grayordinate was 
thresholded to Z-scores greater than or equal to one (independently 
within hemisphere, subcortex, and cortex-to-subcortex). The correlation 
between this suprathreshold map and each template is theη2. Each 
grayordinate is assigned to the network with the maximum η2, i.e. a 
“winner-take-all” approach. Finally, some clean-up, including 
hole-filling, is performed after binarization to create assignments for 
each network for each subject. 

2.3.2. Characterizing networks 
First we calculated a network binary LI (bLI), using the classic LI 

formula LI = L− R
L+R, where L and R are the number of in-network vertices 

in each hemisphere. Secondly, binarization of η2 obscures information 
about the underlying probability of network observation. In other words 
there is no distinction between these two scenarios: (1) a clear correct 
assignment, where the highest η2 is much greater than all others; and (2) 
a vertex where there is no clear winner, and multiple networks may be 
detectable, e.g. at the edge of a network, yet one must be selected. 

We explored two methods of comparing grayordinate-wise η2values 

in an attempt to be more sensitive to the underlying distribution of η2 

values, a continuous LI (cLI), where the left and right η2 values were 
subtracted from one another pairwise, and a t-test LI (tLI), where the 
vectors of left and right η2 were treated as paired estimates. 

Initially, we calculated cLI. In order to do this, because the grayor-
dinate CIFTI matrix is not symmetric, we projected the LH values onto 
the RH, so that values can be paired. Then, we simply subtracted the 
projected RH η2 values from their corresponding LH value, resulting in 
29,706 difference values for each network. The average voxelwise dif-
ference across the brain is thus the cLI. As only positive template 
probabilities were assigned, the theoretically largest possible difference 
is 1 or − 1, representing perfect left or right dominance, placing it on the 
same scale as bLI, however cLI ranged mostly between 0.1 and − 0.1. 

As this model of the cortex in this framework pairs values across the 
hemispheres, we can also perform a paired t-test to distinguish more 
intricately between hemispheres (tLI), although due to the large sample 
size (29,706) the test itself is often trivially significant, and so we report 
effect sizes (Cohen’s d). Because cLI and this metric tLI are so highly 
correlated (r = 0.92 across all individuals and networks), we just use tLI 
going forward. It is important to note that, just as a grayordinate does 
not represent the signal from a meaningful grouping of neurons (other 
than adjacency), pairing of values across the central sulcus this way 
matches values only homotopically, not homologously, and so a tLI 
takes into account both the greater extent in one hemisphere — spatial 
asymmetry — and underlying differences in the confidence of network 
assignment. 

Secondly, because the ipsilateral connectivity bias theoretically 
causes extraneously elevated correlation coefficients between language 
areas and non-language areas, our method controls for this bias by 
evaluating the laterality of the language network estimate against the 
laterality of the seed. 

2.4. The integrated laterality index 

2.4.1. ROI selection 
The optimal method to create a session-level ROI would be using an 

approach similar to that of Braga and colleagues (2020), by identifying 
what ROI creates a language-network-like seedmap. However, applying 
such an ROI to the data it was created from would introduce data 
leakage and circularity issues, and we long enough fMRI scans to split a 
single session in half across the ABCD sample to both create and apply an 
ROI. Thus, we decided on a technique that would maximize the overlap 
of the selected ROI across participants without introducing data leakage. 
We leveraged previous work on ABCD to identify regions of cortex that 
are reliably found to host the VAN in ABCD. 

The VAN is a consistently identified cortical network (Gordon et al., 
2016; Hermosillo et al., 2022; Power et al., 2011; Yeo et al., 2011) that 
seems to comprise a LH language network and RH attention network 
(Bernard et al., 2020; Lee et al., 2012). We used the VAN map described 
above, and began by thresholding it at 0.5 probability (i.e. all grayor-
dinates that were present in at least 50% of participants). We used the 
large inferior frontal region from this map as our IFG ROI, see Fig. 1. 
Qualitatively, we noticed that MTG segregated into a large ventral 
component and a smaller anterior component at a slightly higher 
threshold of 0.586 in LH. In this analysis, we term the larger component 
“MTG” and the smaller “Wernicke’s area” (WA) based on its location 
near the temporoparietal junction, similar to Tremblay and Dick’s 
(2016) definition, although much smaller in extent (see Fig. 1). We 
created ROIs for both ARMS, but they were so spatially similar that we 
used ROIs from ARMS-1 in analyses of both ARMS for consistency. This 
method only identified the three regions discussed above, and did not 
identify that other regions important for language were consistent 
enough within the sample to pass the threshold for inclusion, such as the 
middle frontal gyrus, superior temporal gyrus, temporal pole and ventral 
temporal lobe. 

Table 2 
Number of participants in each category. Dual immersion was the “L2 in school” 
category. L1: first language; L2: second language.  

Language Exposure ARMS 1 N (%) ARMS 2 N (%)  

1. English at home and in school  2340 (76)  2244 (73)  
2. English at home, L2 in school  152 (5)  158 (5)  
3. Non-English home, child L1 is English  205 (7)  211 (7)  
4. Child L1 is not English  228 (7)  247 (8)  
5. Unknown  173 (6)  195 (6)  
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The left ROIs were uniformly larger than the right (IFG L: 351 
grayordinates, R: 177; MTG L: 490, R: 482). Indeed, there was no right- 
hemisphere Wernicke’s ROI at this threshold (L size: 81). We projected 
all canonical left ROIs onto the right hemisphere for the next step, 
creating homotopes, rather than using the functional homolog. This was 
necessary to facilitate our analysis, as described below, that swaps out 
left for right vertices as necessary. 

Our three ROIs overlap spatially with Fedorenko’s Language Atlas 
(Lipkin et al., 2022), providing external validity for our ROI selection 
(see SF 6.1), however, some mismatch in temporoparietal junction is 
evident, as is the inclusion of non-language IFG, which possibly 
impacted our results. 

For all three conceptual ROIs, we created sets of CIFTI ROIs that 
incorporated nL grayordinates from the canonical left ROI and nR 
grayordinates from the mirrored ROI, where nL and nR sum to equal the 
total size of the left ROI (nmax). For each value of increasing nR between 
1 and (nmax − 1), we randomly selected nR grayordinates to involve 
from the right ROI, and removed the corresponding grayordinate from 
the left, see Figure LLL(a). We repeated this process 10 times for each 
value of nR , so that later steps can randomly select a pregenerated 
bilateral seed out of 10, rather than creating a new one during pro-
cessing. These seeds are available on Zenodo (https://doi.org/10. 
5281/zenodo.7289743). We refer to the proportion of right- 
hemisphere grayordinates relative to the ROI as seed laterality (SL), 
however remapped such that nR = 0 receives an SL value of 1; and nR =

nmax a value of − 1. Therefore, a seed with equal proportions left/right 
has an SL value of 0. This sign convention follows the laterality literature 
in representing LH with positive values. 

2.4.2. Seed maps 
For increasing values of nR, we used as a source ROI for the DCAN 

Lab Seed Map Wrapper (link: https://gitlab.com/Fair_lab/Cifti_conn_m 
atrix_to_corr_dt_pt), which generates a whole-brain correlation map. 
For each map, we used exactly 10 min of low motion (FD < 0.2 mm) 
data randomly sampled from available data, removing motion outliers, 
and performed r-to-Z transformation on the result (Figure LLL(b-c)). For 
images of the r-value maps, see SF 3b. 

We calculated an LI for each seed map, using wb_command -cifti-find- 
clusters with a Z threshold of 0.4 and a surface area threshold of 10 mm2 

to remove only the most spurious areas of correlation and wb_command 
-cifti-stats to count the number of surviving grayordinates in each 
hemisphere. Then we calculated the LI as LI = L− R

L+R (Figure LLL(d)). 
Although there is technically a different number of grayordinates in each 
hemisphere in the CIFTI matrix, the difference is small enough to make 
no difference in the overall LI calculation. 

Seed maps with more-rightward SL were on average slightly smaller 
(IFG β1 = − 3.55, β2 = − 3.52 grayordinates per percentage point in-
crease in SL, values for both ARMS given in subscript; Wernicke’s β1 =

− 0.991, β2 = − 0.873; MTG β1 = − 1.97, β2 = − 2.05, all p values <.001). 

2.4.3. Integration 
Initially, we calculated laterality indices using all 10 × nmax possible 

seed maps (e.g. for IFG, 3510). However, visual inspection of the results 
demonstrated that the clustering of the points along a polynomial line of 
best fit (R2 >.99; SF 3a) showed that using multiple replicates at each SL 
value was unnecessary. In order to reduce computation time, we used 
100 seed maps per session to calculate ILI, using random selection of one 
out of the 10 pre-hoc ROIs for each SL, which performed well relative to 
the best-estimate using seedmaps at each nR value, see Supplementary 
Material 3. For WA, which was smaller than 100 grayordinates, all 
values of nR were included. 

Across all participants, the LI trend was clearly not linear. We per-
formed a simple ANOVA model selection approach to select the best 
functional form to use across sessions. We randomly selected 100 ses-
sions (50 from each ARM) and fit polynomial models between linear and 
quintic, inclusive. The most frequent best functional form was a cubic 
(n = 29), with the other models being selected as the best-fitting form 
with the following frequencies: linear: 4, quadratic: 26, quartic: 25, 
quintic: 16. The median best-fitting model was the cubic. Furthermore, 
there is no theoretical reason to suggest that the laterality of these mixed 
estimates of language function laterality would uniformly approach one 
extreme more rapidly than the other, thus a symmetric function like a 
cubic is consistent with how we might expect the estimate to behave 
relative to biology. That said, all models performed very well (mean R2 

linear: 0.963; quadratic: 0.989; cubic: 0.992; quartic: 0.993; quintic: 
0.993). Visualizations of some example trends can be found in Supple-
mentary Material 3. 

From this curve, there are a number of estimates that become 
immediately apparent: the y-intercept,1 the value at SL = -1 and 1, as 
well as the x-intercept. The x-intercept in particular is not always 
interpretable, as it does not always occur between − 1 < SL < 1, and 
cubics can have multiple x-intercepts. The extreme SL values, of course, 
reflect the laterality of language activity alone as it relates to a single 
ROI, and thus does not avoid theipsilateral effects we set out to control 
for. 

Thus, we chose to calculate the integral of the cubic fit, creating an 
integrated laterality index (ILI). The correlation between these values and 
the integration of the cubic fit are presented in Table 3. Notably, the two 
most interpretable parameters (y-intercept and ILI) are at unity, how-
ever, as we will show, ILI has better predictive value for behavior. In the 
below analysis, the smallest root of the polynomial was taken as the x- 
intercept. 

Fig. 2 shows the processes of calculating an ILI for a non-lateralized 
participant. First, (a) shows a mixed source ROI; (b) shows the resulting 
seedmaps at different mixing percentages (75% left, 50%, and 25%); (c) 
shows the resulting laterality indices based on 100 samples of source 
ROIs; and finally (d) shows the cubic fit as it changes based on the source 

Fig. 1. The surface-based ROIs selected for this analysis. Red: inferior frontal 
gyrus (IFG); blue: middle temporal gyrus (MTG); yellow: “Wernicke’s area.” 
Only the LH is shown because left ROIs were projected onto the RH for 
all analyses. 

Table 3 
The correlation between values extracted from cubic fits. ARMS 1 on the left, 
ARMS 2 on the right. All r values are trivially significant at large n.   

Value 

Value 1 2 3 4  
1. y-intercept      
2. x-intercept .73 /.70     
3. SL = 1 (L) .22 /.25 .43 /.41    
4. SL = − 1 (R) .37 /.36 .13 /.12 -.36 / − .36   
5. ILI .97 /.97 .76 /.72 .41 /.44 .40 /.38  

1 Here is where the value of remapping nR becomes useful, as the y-intercept 
now represents equal sampling from both hemispheres. 
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ROI, showing this individual had high degrees of ipsilateral connectiv-
ity, but that the underlying network trends toward bilaterality. 

After Benjamini-Hochberg correction, there was a statistically sig-
nificant relation between mean seed map size and ILI for IFG in both 
ARMS (β1 = 0.0000249, β2 = 0.0000250, p1 <.001, p2 <.001), but not 
for MTG (p1 =.527, p2 = 0.410) or WA (p1 =.197, p2 = 0.414). 

Across both ARMS, ILIIFG and ILIMTG were significantly (all p < .001, 
one-sided t-test) left-lateralized, but ILIWer was significantly right- 
lateralized (both ARMS p < .001), see Fig. 3(a). Example MTG seed-
maps for a left-lateralized participant (Z ≈ 2) and a right-lateralized 
participant (Z ≈ − 2) are shown in Fig. 3(b), see Supplementary Mate-
rials 3 for more details. 

2.4.4. Behavioral and environmental characteristics 
We examined the specificity of the relationship between ILI and not 

only language-related behavior measures, but with all behavioral scores 
previously analyzed in ABCD by Thompson and colleagues (2019). 
These include all seven subscores from the NIH Toolbox (Bauer and 
Zelazo, 2014; Weintraub et al., 2013), as well as the Little Man Task 
(LMT; Ratcliff, 1979) and the Rey Auditory Verbal Learning Test 
(RAVLT; Lezak, 1983). 

Under the differentiation hypothesis, the underlying structure of 
cognition changes from childhood into adolescence (Mungas et al., 
2013; Shing et al., 2010; Thompson et al., 2019), and to that end, we 
investigated two sets of composite scores measuring latent components 
of cognition. The first set are the sum-score composites from the 
Toolbox: Total Composite (TC; all instruments), Crystallized Composite 
(CC), and Fluid Composite (FC), see Table 4. We additionally included 
the three principal component (PC) scores described by Thompson and 
colleagues: General Ability, Executive Function, and Learning & 

Memory. These scores will be referred to as PC1-GA, PC2-EF, and 
PC3-LM. Although PC scores are calculated with all instruments, each 
instrument is listed with the PC(s) where its weight was greater than 0.4. 

The majority of participants had behavioral assessment and MRI 
acquisition on the same day (77%), with 22% of participants doing the 
MRI acquisition within the month following behavioral assessment, and 
1% doing the MRI within the month before behavioral assessment. Less 
than 1% of the total sample had more than a month between assessment 
and acquisition. 

2.5. Brain-behavior correlations 

In the models below, we included child age in months, child grade, 
highest parent education in years, parent income (as factor), child 
gender, child anesthesia exposure (yes/no), child race,2 and site as 
covariates. We independently tested for an effect of handedness as it is of 
substantive interest in laterality effects. Including handedness, these are 
the variables originally used to balance the ARMS, and tests were con-
ducted independently in each ARMS to achieve test-retest reliability. 

We also examined the effect of linguistic exposure on laterality. To 
simplify, we examined the difference between monolinguals (Group 1) 
and bilinguals (Groups 3 and 4), leaving out the relatively small dual- 
immersion-only group (Group 2). There was no difference in laterality 
between language exposure groups, except in bLI in ARMS2 (p = 0.038 
following Benjamini-Hochberg [BH] correction), so we do not include 
linguistic exposure in models going forward. 

Fig. 2. Graphic representation of ILI creation. (a) Bilateral ROIs including grayordinates from both hemispheres are created, by removing n grayordinates from the 
left ROI and adding n matching homotopic ROIs from the RH. (b) Seedmaps are created from each bilateral ROI. Example seedmaps from a non-lateralized participant 
are shown for ROIs containing 75%, 50%, and 25% LH voxels. (c) Mixing proportions are sampled between 100% and 0% LH to create a regression line (blue). The 
same proportions and individual as (b) are shown. (d) The area under the curve (cubic fit) is calculated; resulting in the “ILI.” The same individual is shown in each 
subfigure and the areas under the curve are highlighted. 

2 White, Black, Native American/Alaskan Native, Native Hawaiian/Pacific 
Islander, Asian, more than one, other 
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Rather than testing our brain measures against only relevant 
behavioral measures, we instead show the effect of laterality on the 15 
behaviors listed above (NIH Youth Toolbox, Little Man Task, RAVLT, 
and Thompson PC scores), providing external validity and specificity. 
We separate all analyses by ARMS to provide immediate, within-study 
replication. 

3. Results 

3.1. Network laterality scores are associated with each other and 
handedness, but not linguistic exposure 

The original networks were calculated from a set of 6066 partici-
pants across both ARMS. The bLI ranged from [− 0.65, 0.864] and tLI 
from [− 0.62, 0.61], but the first is bound [− 1, 1] and the latter un-
bound (an effect size). The correlation between the two metrics is r =
0.79, but correlation varied by network, between [.52,.86]. Notably low 
were the correlations between LIs in the MTL, perhaps reflecting low 
confidence in the probabilistic assignments in that network, likely due to 

the susceptibility weighted artifact common in the mesial temporal lobe 
(e.g. Olman et al., 2009). Accordingly, the TP network was the 
second-lowest. In our network of interest, the VAN, correlations were 
approximately r = 0.78 (Fig. 4). 

There was an association between handedness score and bLI (β =

0.021, p < .001) after controlling for the covariates listed above, with 
the effect that the average entirely right-handed participant had a bLI 
0.042 units more lateralized than the average entirely left-handed 
participant, which approximates a Cohen’s d of 0.4. There was like-
wise an effect on tLI (β = 0.015, p < .001), with the effect that the 
average entirely right-handed participant had a tLI 0.030 units more 
lateralized than the average entirely left-handed participant, which 
approximates a Cohen’s d of 0.3. In both scores, the average left-handed 
LI was greater than zero, i.e. still left-lateralized. 

3.2. tLI, but not bLI is associated with behavior scores 

Each estimate is the single beta weight for the laterality metric, 
controlling for the variables mentioned above (including handedness 
score). We differentiate point estimates of beta weights by p-values in  
Fig. 5, those greater than 0.05 (gray) and those that survive correction 
(red). 

In Fig. 5, the behaviors are standardized and ordered by average beta 
weight across ARM and metric (bLI/tLI). The same order is used on both 
facets. We note a general increase in weight as the linguistic skills 
needed for the behavior increase; e.g. Toolbox Reading and RAVLT- 
Immediate scores are among the highest. bLI showed fewer significant 
associations; with no behavioral task showing replicable associations 
after BH correction for 60 multiple comparisons.3 Using tLI, PC1-GA, 
Toolbox Crystallized Intelligence, Toolbox Reading, and RAVLT were 
significant in both ARMS. Models evaluating the effect of all network 
laterality on all behaviors can be found in Supplementary Material 4. 

Finally, due to the high correlation between ILI and the y-intercept of 
the cubic fit, we examined the explanatory power of ILI compared to the 
y-intercept (i.e., the 50–50 ROI), and the left and right ROIs. Uniformly 
across behaviors, ILI explained a higher proportion of the behavior than 
the left ROI, which explained more of the behavior than the 50/50 ROI. 

Fig. 3. (a) Distribution of ILI for all three ROIs in both ARMs (1: red, 2: blue). Wer: Wernicke’s area. (b) Example seedmaps for two participants at source mixing 
percentages of (top to bottom) 100% left, 50/50%, and 100% right, indicated with schematized ROI representations. Participants are (i) strongly left-lateralized and 
(ii) strongly right-lateralized). 

Table 4 
List of all behavioral measures included in the analysis, including the short form 
of their name, their Toolbox composite score (sum score) and their weights onto 
Thompson PCs that exceed 0.4. All NIH-TB instruments are included in the Total 
Composite.  

Instrument Short 
Name 

NIH 
Composite 

Thompson PC 
(weights > 0.4) 

NIH-TB    
Picture Vocabulary Pic Vocab Crystallized PC1-GA (.754) 
Oral Reading Recognition Reading C PC1-GA (.820) 
Dimensional Card Sort Card Sort Fluid PC2-EF (.710) 
Flanker Inhibitory Control and 

Attention 
Flanker F PC2-EF (.712) 

Picture Sequence Memory Picture F PC3-LM (.863) 
List Sorting Working Memory 

Test 
List F PC1-GA (.471) 

Pattern Comparison 
Processing Speed 

Pattern F PC2-EF (.813) 
PC3-LM (.493) 

Others    
Little Man Task LMT - PC1-GA (.500) 
Rey Auditory Verbal Learning 

Test (Immediate Recall) 
RAVLT - PC3-LM (.712)  

3 Fifteen behaviors × two ARMs × two LIs 
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Rarely did the laterality associated with the right ROI explain a signif-
icant proportion of the variance (only in MTG AMRS-1 and in PC1-GA, 
Toolbox CC, and Toolbox Reading), see SM 5. 

Importantly, this also demonstrates a non-reliance of the summary 
measure on laterality changes associated with the RH, which is a 
mechanism that has been proposed in children younger than the 9–11 
year old participants in this study (Dehaene-Lambertz et al., 2002; Enge 

et al., 2020; Olulade et al., 2020; Perani et al., 2011; Petitto et al., 2012). 

3.3. ILI is not associated handedness or linguistic exposure 

We tested handedness and linguistic exposure for ILI as well. The 
effects of handedness on ILIIFG were not significant. Handedness had an 
effect on ILIMTG in ARMS-2 (β = .281,p = .002, but not ARMS-1 (β = .

Fig. 4. Correlations between bLI and tLI across networks, by ARM. Average correlation by ARM shown with solid (ARMS-1) and dashed (ARMS-2) lines. Points are 
colored by network. Correlations are notably low in the MTL, perhaps reflecting low confidence in the probabilistic assignments in that network, likely due to the 
susceptibility weighted artifact common in the mesial temporal lobe. 

Fig. 5. Beta weights for behavior-brain associations for both LIs. Horizontal ranges represent 95% CI. Associations significant after BH correction in red, non- 
significant in gray. ARMS-1 in circles, ARMS-2 in triangles. On the y-axis, composites prefixed with an asterisk. 
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602,p = .158). The effect was significant in both ARMS for ILIWA, but in 
opposite directions (ARM1: β = 0.272, p < .001; ARM2: β = − 0.172,
p < .001), all p-values BH corrected for multiple comparisons. Because 
the effects of handedness on ILI do not replicate between ARMS, we 
consider this to indicate correlations with handedness are spurious. 
Likewise, controlling for covariates, there was no effect of bilingual 
status on any ILI, so linguistic exposure is not included in future cova-
riates. The partial correlation between ILIs was IFG-WA: 0.18 - 0.22; 
IFG-MTG: 0.42 - 0.43; WA-MTG: 0.14 - 0.17 (values for both ARMs 
shown). 

3.4. ILI for MTG is associated with behavior, but not IFG or WA 

We present a similar behavioral plot for ILI measures. In IFG and 
MTG, the association between behaviors and ILI increased as the amount 
of linguistic skill needed for the task increased (Fig. 6). No patterns 
emerged for WA, so we will discuss IFG and MTG. Below, we present 
statistics for individual models predicting neurobehavioral outcome 
against demographic variables and ILI, following BH correction for 90 
multiple comparisons.4 

Between IFG and MTG, associations were significant in both ARMS 
for the RAVLT, Toolbox Pic Vocab (only in MTG), Toolbox TC, Toolbox 
Reading, Toolbox CC, PC1-GA. The LMT and Toolbox List Sort tasks 
were significant in both ARMS for MTG, but not IFG. 

3.5. Multilevel Analysis 

One of the goals of this project was to assess laterality of language 
function through the lenses of network-level laterality (bLI, tLI) and the 
lateralization of functional regions (ILIIFG, ILIWA, ILIMTG). To this effect, 
we must examine whether these different metrics explain different 
components of the outcome. 

Due to the large correlation between the network metrics (bLI/tLI: 
r ≈ 0.8), and because bLI was not consistently associated with any of the 
behavioral outcomes, we use tLI to examine network laterality. Like-
wise, while ILIWA was not associated with any metric and ILIIFG was not 
reliably associated with any metric, we only examine ILIMTG, which was 
reliability associated with PC1-GA, Toolbox CC, Toolbox Reading, 
Toolbox TC, and the RAVLT. 

We fit nested models on the five behavioral measures reliably pre-
dicted by ILIMTG (see above) to understand whether network- and ROI- 
level laterality explain distinct elements of the outcome. We performed 
ANOVAs on the null model (demographic predictors only), a second- 
level model model incorporating network laterality, and a third-level 
model additionally incorporating MTG laterality. The AIC for these 
sets of models are shown in Table 5; all improvements are significant for 
PC1-GA, Toolbox CC and Toolbox Reading. Toolbox TC and RAVLT 
showed no reliable improvement adding either the network-level or 
ROI-level laterality, i.e. the only significant improvement was in ARMS- 
2 demographics-to-network. 

4. Discussion 

Laterality of functions could be an important bioindicator of neuro-
development and ongoing cortical and hemispheric specialization in 
young children. Many important skills have most frequently been 
indexed with tasks — either due to the study population or aims — but 
routine collection of RS data in addition to study aims has become 
increasingly common. Therefore, we developed a new RS technique to 
characterize the laterality of the language network using ROIs known to 
participate in the adult language network, allowing examination of 
those data without an in-scanner language task. Our method may also 
extend to other areas demonstrating HS, such as visual word form 

detection and face processing. 
Generally, we found that associations between our network-level and 

ROI-level brain measures and behavior were larger for tasks requiring 
language-specific, rather than domain-general skills. This is true even in 
the analyses where task-laterality relations did not meet statistical 
significance. 

4.1. Linguistic tasks show the largest associations 

It is not common to report the lack of association between brain 
measurements and instruments that should not be associated with the 
outcome of interest. Previous fMRI studies (Hwang et al., 2019) and 
studies on the ABCD behavioral data (Dick et al., 2019) studies have 
examined relevant parts of the Toolbox, but not necessarily discriminant 
validity. Other fMRI studies have examined external validity with the 
Oral and Written Language Scales (Carrow-Woolfolk, 1996; Szaflarski, 
Schmithorst et al., 2006) and verbal IQ as measured by the Wechsler 
Abbreviated Scales of Intelligence (Bernal et al., 2018; Everts et al., 
2009; Wechsler, 2014), but not contrasting instruments. By far, most 
fMRI studies rely on performance based on in-scanner tasks for validity, 
rather than behavioral instruments collected outside of the scanner (e.g. 
Joliot et al., 2016; Smitha et al., 2017; Szaflarski, Holland et al., 2006; 
Tzourio-Mazoyer et al., 2016; Zago et al., 2016). 

Lacking in-scanner tasks, we were forced to rely on out-of-scanner 
tasks. However, we aimed to demonstrate validity by showing that our 
ILI is associated more highly with behavioral metrics involving language 
skills, and less to not at all with metrics not involving language skills. 
Our results support this pattern. We succeeded in demonstrating this 
with laterality associated with MTG, but did not find laterality associ-
ated with IFG to be more highly associated with language skills over all 
others. 

To summarize, we reported on five analyses: two ways of measuring 
network-level laterality across the entire cortex and laterality associated 
with three language ROIs. Except for “WA,” the tasks most frequently 
appearing with the highest beta values were Toolbox Reading, Toolbox 
Picture Vocabulary, the RAVLT, and the composite score Toolbox CC 
(the linear combination of Reading and Pic Vocab), as well as two other 
composite scores: Toolbox TC, and PC1-GA. The laterality associated 
with the MTG specifically, rather than the VAN at large explained more 
of the variance for Toolbox Reading, Toolbox CC, and PC1-GA, but not 
Toolbox TC, and the RAVLT. This may reflect the more domain-general 
skills invoked in the latter tests, namely all the fluid scores and the 
increased memory demands of the RAVLT over the other tasks (which 
require no memory beyond the trial). 

The “WA’’ ROI showed no patterns of association. As can be seen in 
SF 6.1, while our ROI is contained within the extent of the language 
network as defined by Lipkin and colleagues, it also misses a consider-
able amount of the area identified by those authors as involved in the 
language network. Its small size also indicates a low amount of inter- 
subject spatial reliability, and as mentioned, there was no RH homo-
log, thus we consider that under our method of ROI creation, this area 
captured more irrelevant cortex within individuals. For example, the 
mixed seedmaps that include LH language areas and non-language RH 
areas would not be very lateralized, and thus the variance of the later-
ality scores would be meaningless when regressed against behavior 
variance. 

Regarding the IFG analysis, the results show a trend consistent with 
an understanding of the IFG as containing distinct language and domain- 
general sub-regions. Because our ROI was large, to capture the IFG 
across more than 6000 individuals, our brain-behavior results do not 
show high degrees of specificity for language, as it may have captured 
both language and domain-general sub-regions. Even then, there is large 
heterogeneity in topology (Gordon et al., 2017; Hermosillo et al., 2022; 
Keller et al., 2022) that dampens the usefulness of ROIs applied across 
individuals. Likewise, Moore and colleagues (2023) demonstrated that, 
although adultlike resting state networks exist in infancy, networks are 4 Fifteen behavioral scores × three ROIs × two ARMs 
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continuing to differentiate through adolescence, which likewise limits 
the applicability of a single ROI applied against individuals. 

However, the relative simplicity of the tasks that do not reflect 

higher-order syntactic processing that is also consistent with IFG as a 
syntactic node: If the asynchronous linguistic tasks do not index syn-
tactic processing, then it would likewise show small-to-no effects in the 
syntactic node. Future research - such as in the Human Connectome 
Project - should analyze subject-specific, task-localized, language- 
selective IFG nodes in order to dissociate domain-general signal. 

Language is only one facet of cognition, and even those Toolbox tasks 
with more language components don’t rely on language alone. Cognitive 
skills do not exist in isolation, and composite scores decrease method 
variance that can emerge from using a single task. Therefore, it is not 
surprising that some composite scores emerge as having higher associ-
ations with laterality than single-task measurements, based on the 
relative amount of noise in each measurement. This is especially true for 
Toolbox CC, which is a linear composite of the two language tasks. 

In both IFG and MTG, we also find that the smallest beta values were 
found for the Toolbox Flanker, Toolbox Card Sort, and Toolbox Pattern 
Matching tasks. This pattern suggests that the laterality of the language 
network in adolescents is differentiably associated with language- 
specific, rather than domain-general executive function skills, however 
the effect sizes for IFG are perhaps decreased by the inclusion of domain- 
general processing subregions. 

Together, this pattern shows that our laterality measure indexes the 
appropriate behaviors, and is not associated with behaviors reliant on 
other aspects of cognition. If we were, for example, indexing attentional 
control rather than language specifically, beta values among tasks would 
be much more similar to one another. The fact that language, but not 
other domains of cognition such as working memory, executive func-
tion, or processing speed emerged as possible explanations for this 
pattern provide external validity of our resting state measure. 

These effects are large for brain-behavior associations. For example, 

Fig. 6. Beta weights for behavior-brain associations in all three ROIs. The vertical line shows no relation between brain/behavior. Horizontal ranges represent 95% 
CI. Associations significant after BH correction in red, non-significant in gray. ARMS-1 in circles, ARMS-2 in triangles. On the y-axis, composite scores are prefixed 
with an asterisk. Note the different order from the previous plot. 

Table 5 
Information criteria for six nested models predicting three behaviors from both 
ARMS. DOF and p-values in columns 1 and 2 show values for the test comparing 
the current model to previous. P-values Benjamini & Yekutieli corrected for 20 
correlated multiple comparisons. The DOF for all tests was 1.    

Model 

Behavior ARMS 0. 
Demographics 

1. Network 
DOF= 1 

2. Network + MTG 
DOF= 1 

PC1-GA 1 4094 4079 
p < 0.001 

4068 
p = 0.002  

2 4469 4450 
p < 0.001 

4442 
p = 0.007 

Toolbox CC 1 5890 5879 
p = 0.002 

5871 
p = 0.008  

2 6582 6571 
p = 0.002 

6564 
p = 0.008 

Toolbox 
Reading 

1 6342 6327 
p < 0.001 

6310 
p < 0.001  

2 6940 6931 
p = 0.004 

6925 
p = 0.014 

Toolbox TC 1 5759 5755 
p = 0.069 

5755 
p = 0.847  

2 6369 6349 
p < 0.001 

6349 
p = 0.565 

RAVLT 1 6340 6331 
p = 0.006 

6332 
p = 1.000  

2 6866 6852 
p = 0.001 

6853 
p = 1.000  
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out of the set of reliably significant effects (0.02 < B < 0.08), the largest, 
MTG/PC1-GA approaches the top-1% mark of brain-wide associations as 
reported by Marek et al. (2022), i.e. the association approaches the 
maximally detectable size within Marek et al. As ILI and network lat-
erality are summary measures of functional topology, behavioral asso-
ciations are naturally larger than those with raw imaging phenotypes. 

4.2. Drawbacks to this analysis include task asynchrony and 
characteristics 

One important caveat to note is that there is no straightforward 
method to quantify the amount of linguistic skills needed for each task, 
and while the associations between laterality and tasks follow roughly 
the same pattern between methods, the beta weights do not order in 
exactly the same way. A second caveat is that, contrary to most imaging 
analyses of brain organization, we are attempting to draw correlations 
between observed resting-state organization and task scores completed 
at another time, which precludes large relationships. 

A third major drawback in the present study is that the “language” 
tasks themselves do not examine more than single words. Toolbox 
Reading requires proper pronunciations of words presented on a screen 
and crucially requires no semantic understanding of the stimulus; 
Toolbox Picture Vocabulary asks the participant to select semantically 
relevant images following a verbal stimulus, and the RAVLT requires the 
memorization of loosely semantically organized sets of nouns. In each of 
these cases, the stimuli are single items, i.e. there is no top-down pro-
cessing required to understand a sentence or phrase. We hypothesize 
that the associations would be larger if tasks that examined higher- 
order processing skills were analyzed. However, increasing difficulty 
may inflate the associations with IFG due to its domain-general role, 
rather than its linguistic role. 

The third area, Wernicke’s area, showed no correlation with any 
behavioral scores. However, given the uncertainty over the existence 
and role of “Wernicke’s area” (Tremblay and Dick, 2016) and the small 
size of the ROI generated for this analysis may justify this lack of 
assocation. 

As a final point, we approached ROI selection at the population level. 
We use ROIs constructed from ABCD ARMS 1 that comprise grayordi-
nates that are involved in the VAN in the majority of participants. 
However, it is possible that IFG or MTG in a given individual is 
completely or mostly disjoint from this ROI, however, lacking a func-
tional localizer, this approach prioritizes intersubject validity. 

5. Conclusions 

RS data can be used to calculate coarse measures of hemispheric 
organization as related to components of the language network. We 
found that, consistent with earlier work, greater laterality associated 
with MTG is associated with greater linguistic skills (as measured out of 
the scanner) in a sample of school-aged children. However, we did not 
find the same pattern in IFG, which is consistent with more recent work 
describing IFG as a mosaic of language-selective and task-general re-
gions. We suggest that implementing this technique in other RS data will 
be fruitful for understanding the development of the language network. 
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Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., 
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