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ABSTRACT Intestinal flora affects the maturation of the host immune system, serves as a biomarker and efficacy predictor in the immunotherapy 

of several cancers, and has an important role in the development of colorectal cancer (CRC). Anti-PD-1/PD-L1 antibodies have 

shown satisfactory results in MSI-H/dMMR CRC but performed poorly in patients with MSS/pMMR CRC. In recent years an 

increasing number of studies have shown that intestinal flora has an important impact on anti-PD-1/PD-L1 antibody efficacy in CRC 

patients. Preclinical and clinical evidence have suggested that anti-PD-1/PD-L1 antibody efficacy can be improved by altering the 

composition of the intestinal flora in CRC. Herein, we summarize the studies related to the influence of intestinal flora on anti-PD-1/

PD-L1 antibody efficacy in CRC and discuss the potential underlying mechanism(s). We have focused on the impact of the intestinal 

flora on the efficacy and safety of anti-PD-1/PD-L1 antibodies in CRC and how to better utilize the intestinal flora as an adjuvant to 

improve the efficacy of anti-PD-1/PD-L1 antibodies. In addition, we have provided a basis for the potential of the intestinal flora as 

a new treatment modality and indicator for determining patient prognosis.
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Introduction

Colorectal cancer (CRC) is one of the most common types of 

cancer and with the changes in socioeconomic level, lifestyle, 

and diet1, the incidence of CRC is increasing year-after-year in 

China. The intestinal flora has been shown to be related to the 

occurrence of CRC in recent years.

Human skin and the cavities connected to the environment 

are exposed to a large number of microorganisms. The intes-

tinal flora is the main component of the human microbiota. 

The human gut microbiota is dynamic and the composition 

is continuously changing. Moreover, microbial communities 

vary between different locations in the gastrointestinal tract2.

Most of the intestinal flora belong to the commensal 

flora, including Bacillus, Clostridium, Bifidobacterium, and 

Lactobacillus, which have an important role in maintaining 

host physiology and immune function3. In addition to help-

ing the body digest food and protecting the intestine from 

pathogenic flora, commensal flora interacts with the host 

intestinal mucosal system and influence systemic immune 

function4. Under normal conditions, the intestinal flora main-

tains human gastrointestinal homeostasis, participates in the 

metabolism, synthesis, and absorption of nutrients, acts as a 

natural barrier against the invasion of pathogenic microorgan-

isms, and regulates the secretion of antibodies from the intes-

tinal mucosa to influence the maturation of innate immunity 

and the establishment of adaptive immunity5.

The intestinal flora affects the maturation of the host 

immune system. There are three possible mechanisms under-

lying the interaction between intestinal flora and the host 

immune system: (1) through microbial antigen-induced T cell 

responses; (2) through pattern recognition receptors involved 

in the immune response; and (3) through metabolism to 
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produce immunoreactive substances6. When specific factors 

(abuse of antibiotics, high-fat diet and situational reaction) act 

on the intestinal flora leading to a disruption of the dynamic 

balance between the flora and immune cells, the intestinal 

flora interferes with the immune system and participates in 

the development of several diseases, such as obesity, diabetes 

mellitus, autoimmune diseases, neurodegenerative diseases, 

inflammatory bowel disease, and cancers7-10. With the rapid 

development of sequencing technology, researchers have dis-

covered that the intestinal flora participates in cancer devel-

opment and anti-cancer effects. The intestinal flora influences 

tumor progression by inducing impaired intestinal barrier 

function, mitochondrial dysfunction, DNA damage, activa-

tion of carcinogenic pathways, and  immunosuppression11,12. 

Specifically, intestinal microbial metabolites affect a variety of 

signaling pathways and promote or inhibit the occurrence and 

development of tumors13.

There are significant differences in the composition of 

the intestinal flora between healthy populations and cancer 

patients14. Flora are present within tumors15, suggesting that 

intestinal flora have an important role in the development of 

CRC. The oncogenic and anticancer mechanisms associated 

with intestinal flora have not been established, but it is clear 

that cancer treatment by modulating intestinal microbes is 

feasible.

Immune checkpoint inhibitors (ICIs), as a type of cancer 

therapy, have revolutionized cancer treatment16. Monoclonal 

antibodies that inhibit the binding of programmed cell death 

protein 1 (PD-1) to its ligand (PD-L1) have been approved 

for the treatment of MSI-H/dMMR CRC. However, among 

CRC patients, only a small percentage of CRC patients with 

MSI-H/dMMR have demonstrated a response to anti-PD-1/

PD-L1 therapy. Therefore, expanding the population for 

anti-PD-1/PD-L1 therapy in CRC and improving the efficacy 

of anti-PD-1/PD-L1 therapy have become the focus of recent 

studies.

The intestinal flora influences the efficacy of anti-PD-1/

PD-L1 therapy, attenuates immunotherapy-induced adverse 

effects, and reverses resistance to anti-PD-1/PD-L1 therapy17. 

Intestinal flora interventions have achieved satisfactory results 

in CRC immunotherapy. This review summarizes the follow-

ing: (1) the effects of the intestinal flora on CRC occurrence, 

progression, and metastasis; (2) the effects of the intestinal flora 

on anti-PD-1/PD-L1 therapy for CRC; and (3) approaches to 

increase anti-PD-1/PD-L1 efficacy in CRC patients by modu-

lating the intestinal flora.

Influence of the intestinal flora on 
CRC occurrence, progression, and 
metastasis

Effect of the intestinal flora on the human 
immune system

The human immune system consists of the innate and adap-

tive immune systems. Innate immunity rapidly recognizes 

non-specific antigens, while adaptive immunity recognizes 

specific antigens and produces a persistent memory response. 

It has been shown that the immune system in germ-free mice 

is severely underdeveloped. This phenomenon is corrected by 

colonization of the intestinal flora in conventional pathogen- 

free mice, suggesting that the intestinal flora has an important 

role in the maturation of the immune system18.

Intestinal flora and immune systems
When an organism is exposed to flora, bone marrow-derived 

innate immune cells are the first to respond. These innate 

immune cells recognize the flora via pattern recognition recep-

tors (PRRs), a class of non-clonal receptors expressed mainly 

on innate immune cells, which have recently been shown to 

mediate communication between the human immune system 

and flora. PRRs include Toll-like receptors (TLRs), Nod-like 

receptors (NLRs), Aim-2-like receptors (ALRs), and RIG-I-

like receptors (RLRs)19, all of which influence maturation of 

the immune system by recognizing microbial or pathogen- 

associated pattern molecules (PAMPs) or danger-associated 

molecular patterns (DAMPs). It has been shown that ligands, 

products, and metabolites that originate from flora influence 

innate immune cell differentiation and function via PRRs20. 

When an organism is first exposed to the intestinal flora, innate 

immune cells [e.g., natural killer (NK) cells and dendritic cells 

(DCs)] generate a memory response and produce a stronger 

immune response upon reinfection. This memory effect is asso-

ciated with epigenetic recombination mechanisms (e.g., DNA 

methylation/histone modifications) of innate immune cells21. 

Components of the intestinal flora (e.g., peptidoglycan, flagel-

lin, β-glucan, and lipoproteins) and intestinal flora metabolites 

may induce memory phenotypes in innate immune cells, and 

regulate the metabolism and function of innate immune cells19.

Adaptive immunity is also regulated by the intestinal flora. 

In a healthy state, pathogenic bacteria stimulate the human 

immune system, then innate immune cells recognize the 
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pathogenic bacteria and activate killer T cells to exert a kill-

ing effect. However, recognition of commensal flora by the 

innate immune cells eventually activates regulatory T (Treg) 

cells, which leads to a state of immune tolerance. The intestinal 

flora induces the production of specific memory T cells that 

cross-react with tumor-associated antigens and contributes 

to the anti-tumor immune response22. When the flora ecol-

ogy is dysregulated, T cells alter their phenotype, shifting to 

an inflammatory, immunostimulatory, or immunosuppres-

sive phenotype, depending on the tumor environment and 

flora composition23. In addition to T cells, intestinal flora also 

influence B cell differentiation and function. Some specific 

flora promotes the maturation and infiltration of B cells and 

increase the antigen-presenting function of B cells.

Intestinal flora metabolites and immune systems
Metabolites have an important role in the maturation of the 

human immune system. Short chain fatty acids (SCFAs) inhibit 

the pro-inflammatory effects of monocytes, neutrophils, and 

macrophages24. Microbial tryptophan metabolites bind to aryl 

hydrocarbon receptor (AhR) to control the differentiation, 

proliferation, and effector functions of a variety of cells, and 

drive the secretion of IL-22 by group 3 innate lymphoid cells, 

which directly or indirectly regulate immune homeostasis and 

function25. Bile acid (BA) is modified by intestinal flora to pro-

duce secondary bile acids (SBAs), which promote the polari-

zation of macrophages from M1-to-M2 by activating GPR131 

and reduce expression of pro- inflammatory genes, such as 

interferon-gamma (IFN-γ), interleukin (IL)-1β, and IL-626.

Intestinal flora metabolites also have an important role in 

adaptive immunity. SCFAs promote the secretion of IL-10 

in Th1 cells and increase acetyl coenzyme A levels together 

with mitochondrial mass in B cells, thereby promoting pal-

mitic acid synthesis and increasing cellular metabolism to 

support B cell activation and antibody production via the 

mTOR pathway27,28. The effect of SCFAs on B cell differen-

tiation is controversial29,30. SCFAs enhance forkhead box p3 

(Foxp 3) expression in T cells and promote Treg cell differenti-

ation and accumulation of Treg cells in the intestine as well31. 

Tryptophan metabolites activate AhR in CD4+ T cells, thereby 

inducing intraepithelial CD4+ CD8αα+ double- positive 

T cells to maintain intestinal homeostasis32. Tryptophan 

metabolites also promote IL-22 transcription in T cells via 

AhR to maintain mucosal integrity33. Lithocholic acid deriva-

tives inhibit the differentiation of Th17 cells and increase Treg 

cell differentiation34.

Pathogen infection and the immune system
During chronic infection with pathogenic bacteria, the balance 

between the intestinal flora and the immune system shifts, 

which contributes to the production of cells with immuno-

suppressive properties, such as tumor-associated neutrophils 

(TANs), tumor-associated macrophages (TAMs), regula-

tory DCs, and myeloid-derived suppressor cells (MDSCs)35, 

leading to a shift of the intestinal microenvironment from a 

tumor-suppressive to a pro-tumor state and contributing to 

the progression of colitis to CRC. Prolonged exposure to anti-

gens keeps T cells in a state of exhaustion, leading to T cell dys-

function and increasing tumor susceptibility36. Intestinal flora 

can also stimulate the sustained expression of suppressor mol-

ecules, such as PD-1, CTLA-4, and TIM-3, which promotes 

tumor immune evasion37. In addition, complement receptor 

C3aR deficiency promotes tumor development, which may be 

related to the fact that C3aR deficiency accelerates the estab-

lishment of CRC-associated flora. The increased abundance 

of CRC-associated flora generates new antigens to activate 

immune cells, such as NK cells, CD8+ T cells, memory CD4+ T 

cells, Treg cells, and B cells38.

The immune system is regulated by the intestinal flora while 

continuously monitoring the intestinal flora through a precise 

monitoring system. The intestinal flora leads to the develop-

ment of CRC and immune evasion through innate and adap-

tive immunity. Elucidating the mechanisms underlying the 

interaction between the intestinal flora and immune cells is 

expected to provide the basis for future immunotherapy in 

patients with CRC (Figure 1).

Influence of the intestinal flora on CRC 
occurrence, progression, and metastasis

Differences in the intestinal flora between healthy 
people and patients with CRC

The intestinal flora in the colon and rectum consists mainly of 

anaerobic bacteria; Bacteroidetes and Firmicutes are the domi-

nant flora. Differences in the intestinal flora between healthy 

populations and CRC patients, and significant changes in the 

composition of intestinal flora during CRC development sug-

gest that CRC development is related to the intestinal flora39. 

The intestinal flora is involved in the process of tumor devel-

opment via specific mechanisms, such as inducing intestinal 

inflammatory responses, releasing inflammatory factors, and 

damaging host DNA40.
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Intestinal flora promotes CRC occurrence and 
progression

Members of the intestinal flora have been identified that 

promote CRC development, such as Enterococcus faeca-

lis, Escherichia coli, Bacteroides fragilis, Streptococcus bovis/

Streptococcus gallolyticus, Helicobacter pylori, and Fusobacterium 

nucleatum41. F. nucleatum has been widely studied in the devel-

opment of CRC. F. nucleatum has been shown to be enriched 

in the intestine of CRC patients, and the F. nucleatum load in 

the tumor is negatively correlated with patient  prognosis42. 

F. nucleatum induces the expression of oncogenic and inflam-

matory genes through activation of the β-catenin signaling 

pathway by FadA adhesin binding to E-cadherin, causing 

upregulation of inflammatory factors, including NF-κB and 

cytokines (IL-6, IL-8, and IL-18) that drive colorectal carcino-

genesis43. F. nucleatum inhibits the killing effect of NK and T 

cells by the binding of Fap2 to the inhibitory receptor, TIGIT, 

on NK cells and T cells, promoting immune evasion in CRC44. 

In addition, F. nucleatum infection also drives colorectal car-

cinogenesis by activating TLR4, which causes elevated levels 

of MYD88, increases microRNA-21 expression, and promotes 

tumor growth45. The flora associated with the development of 

CRC and the underlying mechanisms are detailed in Table 1.

Intestinal flora metabolites promote CRC 
occurrence and progression

In addition to the effect of bacteria on CRC, bacterial metab-

olites influence the CRC occurrence and development. For 
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Figure 1 F. nucleatum promotes the occurrence and development of CRC by (1) secreting FadA adhesin and binding to E-cadherin to activate 
the β-catenin signaling pathway, (2) activating TLR4, (3) causing DNA damage, and (4) secreting Fap2 and binding to TIGIT receptors on T 
cells and NK cells. Pathogens can form a pro-tumor microenvironment through chronic infection and promote CRC metastasis by (1) promot-
ing EMT, (2) disrupting intestinal vascular barrier, (3) promoting adhesion and invasion, and (4) increasing immunosuppressive bacteria. The 
immune system inhibits pathogenic bacterial infection by recognizing PAMPs and DAMPs. Commensal flora upregulates Treg cells to prevent 
overactivation of effector T cells.
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example, N-nitroso compounds (NOCs), ammonia, and poly-

amines promote CRC through the production of reactive oxy-

gen species (ROS), inflammation, and direct  genotoxicity64. The 

gut microbiome-derived metabolite, trimethylamine N-oxide 

(TMAO), exerts oncogenic effects by promoting cell prolifera-

tion and angiogenesis in CRC65. Indoleamine directly induces 

cellular DNA damage and promotes tumorigenesis in the 

AOM/DSS inflammation-associated CRC mouse model66. The 

presence of SCFAs in the intestine generally reduces inflamma-

tion in the intestinal environment and helps reduce the occur-

rence of CRC. However, there is evidence that Porphyromonas 

gingivalis and P. asaccharolytica induce cellular senescence 

through secretion of the bacterial metabolite, butyrate, which 

may be involved in the development of CRC67. The secondary 

metabolite, colicin, which is encoded by the pks gene island, 

may induce DNA damage to promote CRC development68.

Intestinal flora promotes CRC metastasis
The intestinal flora not only influence CRC develop but pro-

mote CRC metastasis. The intestinal flora promote CRC metas-

tasis through the following mechanisms: (1) lipopolysaccharide 

(LPS), a major component of the outer membrane of Gram-

negative bacteria, promotes adhesion and invasion of the tumor 

cell extracellular matrix, and increases the adhesion and meta-

static capacity of tumor cells; (2) increases infiltration of immu-

nosuppressive bacteria in the immune microenvironment; (3) 

Table 1 Mechanism of microbiota participating in CRC occurrence and development

Flora   Mechanism   Ref.

Fusobacterium 
nucleatum

  (1) Activation of β-catenin signaling pathway. (2) Increasing the level of MYD88 and the expression of 
microRNA-21. (3) Inhibiting the killing effect of NK cells and T cells. (4) Increasing MDSCs.

  43-45

Escherichia coli   (1) Increasing the damage of DNA repair genes and frequency of gene mutations. (2) Increasing the 
expression of IL-17C. Inducing the expression of Bcl-2 and Bcl-xl. (3) TNFRSF11B gene overexpression, 
and secretion of colibactin. (4) Decreasing the infiltration of central memory CD4+ T cells and effector 
memory CD4+ T cells in TME.

  46,47

Enterotoxigenic 
Bacteroides fragilis

  (1) Promoting the production of reactive oxygen species (ROS) and DNA damage. (2) Upregulates 
E-cadherin and β-catenin signaling. (3) Activating signal activator of transcription-3 (STAT-3) and 
increases Th17 activity. (4) Upregulating cellular CCL3/CCR5 and NF-κB pathways.

  48-50

Streptococcus bovis/
gallolyticus

  (1) Stimulating the production of several inflammatory factors (IL-1β, IL-6, IL-8, and TNF-α), causing 
DNA damage. (2) Stimulating tumor cells to release IL-8 and prostaglandin E2 enhanced phosphorylation 
of mitogen-activated protein kinases. (3) Inducing pro-inflammatory responses and β-catenin signaling 
pathway.

  51-53

Enterococcus faecalis   (1) Activation of macrophage MMP-9. (2) Upregulation of Wnt/β-catenin signaling pathway and 
increased chromosomal instability. (3) Generation of ROS and extracellular superoxide.

  54,55

Peptostreptococcus 
anaerobius

  (1) Upregulation of AMPK signaling and interaction with TLR2 and TLR4. (2) Initiating oncogenic PI3K-
Akt-FAK cascade reaction, activates NF-κB.

  56,57

Salmonella   (1) Causing anti-oncogene Apc or Arf deficiency and proto-oncogene c-myc expression. (2) Promoting 
genomic instability through the PI3K pathway. (3) Manipulation of CDC42 acetylation regulates the 
CDC42-PAK axis. (4) Increasing ROS.

  58-60

Campylobacter jejuni   Causing DNA double-strand breaks.   61

Sulfate-reducing 
bacteria

  (1) Production of hydrogen sulfide and causing DNA damage. (2) Elevated levels of H2S can lead to cell 
proliferation and invasion, as well as angiogenesis. (3) Increasing CRC cell glycolytic activity.

  62

Klebsiella   Aggregating CD163+ tumor-associated macrophages.   63

Clostridiodies spp. 
/Clostridium spp.

  Producing secondary bile acids with inflammatory and carcinogenic activity.   62

Helicobacter pylori   (1) Leading production of pro-inflammatory factors IL-1β, IL-18, and TNF-α, promoting the differentiation 
of Th1 and Th17 cells. (2) Causing overexpression of gastrin and cyclooxygenase-2. (3) Encoding cytotoxin-
associated gene A.

  62
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disrupts the intestinal vascular barrier; and (4) promotes epi-

thelial-mesenchymal transformation (EMT)69.

The intestinal flora is involved in CRC occurrence, progres-

sion, and metastasis through multiple pathways. The presence 

of CRC-associated flora may be associated with poor CRC 

prognosis and may be used as an indicator of CRC risk factors 

in screening of healthy populations. The composition of the 

gut flora may influence CRC recurrence among postoperative 

CRC patients, but definitive studies are lacking.

Association of gene mutation status and 
primary tumor site with intestinal flora

Gene mutations affect enrichment of relevant 
bacterial groups

CRC patients with MSI-H/dMMR have a better response to 

anti-PD-1/PD-L1 antibodies, which is likely due to an increased 

tumor mutational load that stimulates the immune system, 

increases tumor-infiltrating lymphocytes, and enhances the effi-

cacy of anti-PD-1/PD-L1 antibody therapy. In a study involving 

the relationship between F. nucleatum and CRC carcinogene-

sis and development, Mima et al.42 reported a higher F. nucle-

atum DNA load in CRC patients with MSI-H. An association 

was demonstrated between the presence of some members of 

the intestinal flora and genetic phenotypes in CRC patients42. 

A subsequent study showed that F. nucleatum enrichment is 

significantly associated with TAM infiltration and CDKN2A 

(p16) promoter methylation in MSI-H CRC patients, and BRAF 

V600E mutations are more frequent in F. nucleatum-enriched 

CRC patients70. A recent study also showed that Fusobacterium/

oral pathogens are associated with right-side colon tumors, 

high-grade, MSI-H, CIMP-positive, CMS1, BRAF V600E, and 

FBXW7 mutations71. Moreover, intratumoral microbes appear 

to be strongly associated with MSI in CRC72.

Differences in the composition of intestinal flora at 
different primary sites

Proximal and distal CRC have different embryonic origins, 

resulting in differences in biological characteristics. Recent 

studies have shown differences in the composition of the intes-

tinal flora in different tumor primary sites. Jin et al.73 reported 

differences in the diversity and composition of tumor micro-

biota in patients with proximal and distal CRC, with microbial 

communities being richer in proximal than distal CRC tissues. 

In addition, Fusobacteria has a poor prognosis in patients with 

proximal colon cancer73.

Effect of intestinal flora on anti-
PD-1/PD-L1 antibody therapy for 
CRC

Variety of intestinal flora and anti-PD-1/PD-
L1 antibody therapy efficacy

The interaction between intestinal flora and the immune 

system suggests that the intestinal flora influences the tumor 

immunotherapy response. With the use of PD-1/PD-L1 

mono clonal antibodies in clinical treatment, investigators 

have found that the intestinal flora influences the efficacy of 

PD-1/PD-L1 monoclonal antibodies (Figure 2A).

Zhang et al.74 showed that the intestinal flora from CRC 

patients significantly reduces the efficacy of anti-PD-1 mon-

oclonal antibodies in tumor-bearing mice. In CRC allograft 

implant animal experiments, transplantation of fecal micro-

biota from cancer patients who responded to ICIs into germ-

free or antibiotic-treated mice improved the antitumor effects 

of PD-1 blockade75. Peng et al.76 found that among patients 

with CRC, an elevated ratio of Prevotella/Bacteroides is asso-

ciated with favorable responses to anti-PD-1/PD-L1 antibody 

therapy.

The mechanism by which the intestinal flora affects 

anti-PD-1/PD-L1 antibody therapy has been gradually eluci-

dated. Enterotoxigenic B. fragilis (ETBF) increase the number 

of Treg cells and MDSCs in the circulation of CRC patients, 

suggesting that bacteria suppress the ICI response by increas-

ing the number of immunosuppressive cells77. Combination 

treatment of anti-PD-L1 monoclonal antibodies (mAbs) with 

attenuated Salmonella in MC38 cell lines improved the out-

come of CRC immunotherapy78. This finding may be related 

to a decrease in the percentage of tumor-associated granulo-

cytic cells and an increase in tumor infiltration by effector T 

cells. A significant increase in the number of Lactobacillus in 

an anti-PD-1 antibody-responding mice model of CRC was 

shown by 16s rRNA gene sequencing. L. paracasei sh20 iso-

lated from Lactobacillus enhances anti-PD-1 antibody efficacy 

by stimulating CXCL10 expression in tumors and enhancing 

CD8+ T cell recruitment79. Clostridium butyricum reduces 

the expression of Ki-67 and MYC in C57BL/6J mice, while 

increasing the infiltration of CD8+ T cells and improving the 

efficacy of anti-PD-1 antibody therapy80. A mouse experiment 

has shown that the intestinal flora metabolite, urolithin B 

(UB, one of the derivatives produced by human intestinal 
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flora metabolism of ellagitannins), significantly increases the 

number of NK and γδ T cells in the tumor microenvironment 

(TME) of CRC, and inhibits the number of Treg cells, ulti-

mately exerting an anti-tumor effect. UB inhibits the expres-

sion of PD-L1, and when combined with anti-PD-1 antibody, 

better reduces the tumor burden81.

A comparison of the intestinal flora in CRC patients who 

did and did not respond to anti-PD-1/PD-L1 antibody ther-

apy suggested that specific members of the intestinal flora are 

associated with prognosis in patients with CRC treated with 

anti-PD-1 antibody therapy and specific bacteria improve the 

efficacy of anti-PD-1 antibody therapy, which provides new 

insight into immunotherapy.

Intestinal flora affects immune-related adverse 
events to anti-PD-1/PD-L1 antibody therapy

In recent years, ICIs have been approved as a first-line treatment 

strategy for a variety of advanced cancers. The benefits associated 

with ICI-related therapy are accompanied by immune-related 

adverse events (irAEs), which occur in 70%–90% of patients 

receiving immunotherapy. The increased efficacy of therapy 

is accompanied by an increased incidence of irAEs, an effect 

known as the efficacy-toxicity coupling effect82. Interestingly, 

the occurrence of irAEs appears to be associated with better 

overall survival (OS) in patients with gastrointestinal cancer83.

IrAEs accumulate in the skin, thyroid, digestive system, lungs, 

pituitary gland, and in some cases the nerves and heart, caus-

ing fatal consequences84. Most irAEs are due to the activation 

of cytotoxic CD8+ T cells by ICIs, which increases the diversity 

of the CD8+ T cell pool in patients, while decreasing the pro-

liferation and activity of Treg cells, weakening the regulation 

of T cell responses and promoting autoimmune inflamma-

tion85. In addition, B cells, neutrophils, NK cells, monocytes, 

macrophages, and eosinophils have also been shown to be 

involved in the development of irAEs24. In addition to immune 

cells, intestinal flora, genetics, environment, and susceptibility 

to autoimmune diseases also have an impact on the develop-

ment of irAEs. During ICI treatment, intestinal epithelial cell 

damage leads to a loss of intestinal barrier integrity, and com-

mensal flora enter secondary immune organs or tumor beds 

through the disrupted intestinal barrier and influence the 

Figure 2 Intestinal flora affects the response to anti-PD-1/PD-L1 antibody therapy. A. Transplantation of intestinal flora from healthy humans 
or favorable flora enhanced anti-PD-1/PD-L1 antibody efficacy, whereas transplantation of intestinal flora from patients with CRC or unfavora-
ble flora reduced anti-PD-1/PD-L1 efficacy. B. Microbiota associated with severe irAEs and mild irAEs.
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systemic inflammatory response86. In addition, intestinal flora 

can also interact with immune cells and affect irAEs though 

cross- reactivity. Organismal immune cells recognize specific 

intestinal flora and stimulate the organismal immune response 

to produce antibodies, which bind auto- or tumor-antigens and 

modulate immune cells to cause auto-inflammation.

There are differences in the composition of the intesti-

nal flora in anti-PD-1 antibody-induced irAEs. It has been 

shown that the severity of irAEs is related to intestinal flora 

(Figure 2B). Fecal microbiota transplantation (FMT) from 

donors without cancer ameliorates refractory ICI-related 

 colitis87. Lactobacillus reuteri and Bifidobacterial ameliorate 

ICI-related colitis in an experimental model88,89. The intestinal 

flora likely decrease irAEs by promoting Treg cell development 

and production of the anti-inflammatory factor, IL-10.

The occurrence of irAEs involves multiple organs and 

mechanisms. When irAEs occur, multidisciplinary coopera-

tion is needed to provide the best personalized treatment plan 

to achieve the expected effect of ICI therapy while minimizing 

adverse events and improving patient compliance. The intes-

tinal flora has made great progress in mitigating irAEs, both 

as a therapeutic option for reducing irAEs and as a predictive 

marker. However, due to the random and complex nature of 

the occurrence of irAEs, a large number of experiments are 

needed to determine the specific mechanisms underlying 

irAE occurrence before the immune flora can be used in clin-

ical treatment to ensure that intestinal flora will not cause 

other more serious adverse events while mitigating the orig-

inal adverse events. Overall, the intestinal flora has enormous 

potential in mitigating irAEs and is expected to be used in 

combination with ICIs in the near future to increase the effi-

cacy of ICIs while mitigating irAEs in CRC patients.

The composition of intestinal flora not only affects the effi-

cacy of anti-PD-1/PD-L1, but also influences the adverse events 

from immunotherapy. Therefore, modulating the composition 

of intestinal flora in CRC patients before anti-PD-1/PD-L1 ther-

apy may lead to better treatment outcomes for CRC patients.

Effect of gene mutation status and intestinal 
flora composition on anti-PD-1/PD-L1 
antibody therapy in CRC

BRAF
ETBF is detected at a high rate in patients with CRC90. ETBF 

colonization drives colon tumorigenesis in BRAF V600E 

mutant mice, a process that can be inhibited by anti-PD-L1 

antibody therapy. The Th1-type immune microenvironment 

correlates with the response to anti-PD-L1 antibody treat-

ment in BRAF V600E mutant mice. However, in BRAF V600E 

mutant mice treated with continuous anti-PD-L1 antibody 

therapy, IFN-γ-producing cells are reduced, while the EMT, 

TGF-β signaling pathways, and angiogenic pathways are 

upregulated, suggesting a potential drug-resistant state of 

BRAF V600E mutant tumors91. This finding may be related to 

the persistence of ETBF during anti-PD-L1 antibody therapy, 

and therefore elimination of ETBF in parallel with anti-PD-L1 

antibody therapy may result in a durable anti-tumor response.

Chemokine ligand 22 (CCL22)
Tumor CCL22 mRNA and TAM origin is significantly upreg-

ulated in F. nucleatum-associated CRC, and high CCL22 

expression is associated with better responses to anti-PD-1/

PD-L1 antibody therapy92, which may be related to the fact 

that the anti-PD-1 antibody therapy inhibits TAM function 

and increases the CD8+ T:Treg cell ratio. Combination ther-

apy with PD-1 mAb and PLX3397 significantly improves the 

anti-tumor immune response93. Although MSI status has been 

shown to be related to the composition of the intestinal flora, 

there are no studies showing the efficacy of anti-PD-1/PD-L1 

antibody in the context of MSI-H/MSS as a function of the 

intestinal flora.

The above experiments showed that genetic background 

influences the composition of the intestinal flora in CRC 

patients and affects the development of CRC and responsive-

ness to ICI therapy through various pathways, while intestinal 

flora can also cause mutations in some genes. Elimination of 

specific flora in the context of different gene mutations might 

increase anti-PD-1 responsiveness and MSS CRC patients may 

benefit. The relationship between the combination of genes 

and intestinal flora in immunotherapy is unclear, and the 

elimination of specific flora in combination with anti-PD-1 

antibody for CRC in the context of specific genes warrants 

more experiments for validation.

Regulation of the intestinal flora 
increases the efficacy of anti-PD-1/
PD-L1 antibodies in CRC patients

With the increasing understanding of the mechanisms under-

lying anti-tumor immunity, mechanisms of resistance to 

anti-PD-1/PD-L1 antibody therapy have gradually emerged 

(Figure 3). Among patients with low responses or resistance to 



Cancer Biol Med Vol 21, No 1 January 2024 73

anti-PD-1/PD-L1 antibody therapy, resistance to anti-PD-1/

PD-L1 antibody therapy may be due to the following: (1) 

adaptive immune resistance; (2) insufficient infiltration of 

pre-existing T cells in the tumor; and (3) mutation of cancer 

cells during the process of proliferation94,95. Adaptive immune 

resistance refers to recognition of tumor antigens by pre- 

existing anti-tumor T cells triggers the expression of PD-1 on 

T cells and the release of IFN-γ, which subsequently leads to 

the expression of PD-L1 on tumor cells and relieves the func-

tion of specific T cells. This process can be reversed by PD-1/

PD-L1 blocking agents. The lack of pre-existing T-cell infiltra-

tion in the tumor may be due to the low immunogenicity of 

the tumor, damage by early immune checkpoints (e.g., CTLA-

4), or suppression by immunosuppressive cells in the TME 

(e.g., myeloid cells or Treg cells)96. Anti-PD-1/PD-L1 antibody 

therapy is often less effective due to resistance mechanisms. By 

exploring the interaction between the intestinal flora and the 

host, investigators have found that intestinal flora may restore 

ICI responsiveness by the following: (1) promoting CD8+ T 

cell proliferation; (2) promoting CD8+ T cell differentiation; 

and (3) promoting CD8+ T cell infiltration and reducing the 

amount of FOX+ CD4+ T cells (Figure 3).

Traditional Chinese medicine

Chang Wei Qing (CWQ, 肠胃清)
CWQ decoction, a Chinese herbal formula, potentiates the 

anti-tumor effects of anti-PD-1 antibodies and increases CD8+ 

and PD-1+ CD8+ T cell infiltration in tumors when com-

bined with anti-PD-1 antibody. This finding may be related 

to the upregulation of PD-L1 protein as well as a decreased 

abundance of Bacteroides and an increased abundance of 

Akkermansia, Firmicutes, and Actinobacteria in gut microbi-

ota. In addition, combination therapy reduces the incidence of 

intestinal mucosal inflammation induced by anti-PD-1 anti-

body alone97.

Gegen Qinlian ( 葛根芩连, Radix Puerariae)
The Gegen Qinlian decoction (GQD) has been clinically 

proven to be efficacious in the treatment of ulcerative colitis98. 
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Figure 3 The combination of PD-L1 and PD-1 inhibits the effector CD8+ T cells to kill tumor cells. Anti-PD-1/PD-L1 antibodies weaken the 
inhibitory effect of tumor cells. Probiotics and FMT increase the favorable flora load, strengthening the role of favorable flora in promoting 
the proliferation, differentiation, and infiltration of CD8+ T cells. Combined treatment of the probiotics and FMT further expand the anti-tumor 
immune effect.
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In a xenograft model, Lv et al.99 reported that the combination 

of GQD and anti-PD-1 antibody significantly inhibits CT26 

tumor growth in a mouse model compared to monotherapy. 

This finding is due to combination therapy promoting infil-

tration of CD8+ T cells, downregulating PD-1 expression, and 

upregulating IL-2 and IFN-γ expression in tumor tissues. In 

addition, intestinal flora analysis revealed that B. acidifaciens is 

significantly enriched with the combination treatment.

Although the composition of the intestinal flora is altered 

during combined anti-PD-1 antibody therapy with classi-

cal traditional Chinese medicine, there is no clear evidence 

that the intestinal flora functionally mediates the increased 

anti-PD-1 antibody efficacy of traditional Chinese medicine.

Diet style

Epidemiologic results show that increased intake of red and 

processed meat increases the risk of CRC, while eating dietary 

fiber reduces the risk of CRC100. Diet has an important impact 

on the composition and metabolism of the intestinal flora. 

Therefore, it is feasible to inhibit the development of cancer by 

regulating the intestinal flora through diet. Both dietary fiber 

and bioactive components are important dietary components 

that promote the growth of beneficial intestinal microorgan-

isms101. Several data support the diet-microbiota-cancer inter-

action, suggesting that diet style influences CRC development.

The ketogenic diet (KD) has a positive therapeutic effect on 

cancer. KD induces the production of ketone bodies (KBs), 

especially 3-hydroxybutyrate 3-HB. A KD causes changes in the 

intestinal flora (Akkermansia muciniphila, Ruthenibacterium 

lactatiformans, and Pseudoflavonifractor capillosus with an 

increased proportion and a relatively decreased proportion 

of colonies of the Lactobacillaceae family), and its metabolite, 

3-HB, induce the accumulation of CXCR3+ CD8+ T cells when 

combined with anti-PD-1 antibody therapy, while inhibiting 

PD-L1 expression on myeloid cells, thus prolonging the effec-

tor time of activated CD8+ T cells in vivo102.

The consumption of fruits, vegetables, and grains rich in die-

tary fiber and bioactive substances is negatively associated with 

the risk of CRC. SCFAs, bioactive components, and KB produced 

by intestinal flora through the breakdown of substrates main-

tain the intestinal mucosa and enhance the anti-tumor effects of 

the immune system. Conversely, chronic intake of high-fat diets 

(HFDs) promotes tumor immune evasion103. Intestinal flora is 

an important mediator of the diet-cancer association, and elu-

cidation of the molecular mechanisms underlying the intestinal 

flora-mediated anti- tumor effect of dietary components war-

rants additional experiments for validation.

Fecal microbiota transplantation

FMT is a technique that alters the composition of flora in the 

gut of an individual by transferring donor feces into the gas-

trointestinal tract. Several mouse experiments have shown that 

transplantation of feces from cancer patients who respond to 

anti-PD-1 antibody into germ-free or antibiotic-treated mice 

by FMT improves anti-PD-1 antibody efficacy75. This finding 

may be related to re-editing of the TME by the intestinal flora of 

oncology patients after FMT, promoting the differentiation of 

naïve CD8+ T cells into effector memory CD8+ T cells, downreg-

ulating the expression of circulating cytokines and chemokines 

associated with anti-PD-1 antibody resistance, such as CCL2, 

CXCL8 (IL-8), and IL-18, and upregulating IL-21, CXCL13, 

IL-10, IL-5, IL-13, TNF, CX3CL1 and FLT3L circulating bio-

markers associated with a good clinical response104. Although 

FMT improves anti-PD-1/PD-L1 antibody efficacy in a mouse 

model of CRC, it has not been studied in patients with CRC. In 

a mouse model of colon cancer, FMT combined with anti-PD-1 

antibody treatment enhance anti-PD-1 antibody efficacy. FMT 

was shown to significantly alter the intestinal flora composi-

tion in a mouse model of colon cancer based on a metagen-

omics analysis by Huang et al.105 with an increased number of 

Bacteroidaceae and Desulfovibrionaceae families (Bacteroides 

was upregulated) and a decreased number of Bifidobacteriaceae, 

Porphyromonadaceae, and Verrucomicrobiaceae families. FMT 

combined with anti-PD-1 antibody therapy showed higher 

survival and tumor control compared to anti-PD-1 anti-

body therapy alone105. Furthermore, FMT protects intestinal 

villi, affects the differentiation of goblet cells in the intestinal 

tract106, reconstitutes intestinal microbiota, and increases the 

proportion of Treg cells in the intestinal mucosa to attenuate 

irAEs87.

Probiotics

Probiotics may limit the development of colitis-associated 

colon cancer (CAC) not only by enhancing intestinal barrier 

function, strengthening the integrity of the intestinal epithe-

lium, and inhibiting pathogenic bacteria from adhering to the 

intestinal mucosa, but also improving intestinal flora disor-

ders and enhancing immune system function, which appears 

to be a strategy to improve the efficacy of anti-PD-1/PD-L1 
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antibody therapy. Lactobacillus spp. and Bifidobacterium spp. 

have been extensively studied as common probiotics.

Lactobacillus spp.
Lactobacillus rhamnosus GG (LGG) is a type of commensal 

flora in the human intestine. Previous reports have demon-

strated that LGG inhibits tumor growth107, but the mecha-

nism of action and whether LGG increases ICI efficacy have 

not been established. In a mouse model of colon cancer, Si 

et al.108 reported that LGG enhances the innate immune 

response to cancer. By detecting the number and function of 

DCs, it was found that LGG enhances the antigen presenting 

function of DCs. In addition, like other Gram-positive bacte-

ria, LGG induces the production of IFN-β in DCs through the 

cGAS/STING axis, thereby enhancing the anti-tumor effects 

of combination therapy with anti-PD-1 antibodies108. Flow 

cytometry has shown that LGG combined with anti-PD-1 

antibody treatment significantly increases the number of 

tumor-infiltrating CD8+ T cells and the percentage of IFN-γ+ 

CD8+ T cells108. Similarly, Gao et al.109 found that Lactobacillus 

rhamnosus Probio-M9 promotes anti-PD-1 antibody therapy 

immune response by increasing favorable flora and inhibit-

ing unfavorable flora in the intestine. Probio-M9 enhances 

anti-PD-1 antibody immunotherapy through enrichment of 

sugar  degradation-related pathways as well as vitamin and 

amino acid synthesis pathways.

Bifidobacterium spp.
Bifidobacterium spp. modulate immune responses and pro-

tect intestinal barrier function. Recent studies have shown 

that Bifidobacterium also influences the immunotherapeu-

tic response. Mao et al.110 showed that that preoperative 

administration of Bifidobacterium in patients with CRC 

increased the proportion of CD8+ T cells in tumor tissues. 

Feeding Bifidobacterium increased the proportion of IFN-γ+ 

and  TNF-α+ CD8+ T cells in tumor tissues in the CT26 CRC 

mouse model. In contrast, feeding Bifidobacterium downregu-

lated PD-1 expression on CD8+ T cells, thus reducing the inci-

dence of drug resistance and exerting a synergistic anti- tumor 

effect110. Similarly, in a mouse MC38 cell line compared to 

anti-PD-1 antibody monotherapy, Yoon et al.111 reported that 

anti-PD-1 antibody therapy combined with Bifidobacterium 

shortum increased the ratio of effector CD8+ T:Treg cells in 

the tumor, increased IFN-γ and IL-2 expression, and decreased 

IL-10 expression, which promoted the entry of immune 

cells into the TME and enhanced the anti-tumor activity of 

immune cells.

The use of probiotics improves the tumor immune microen-

vironment and enhances the anti-PD-1/PD-L1 anti-tumor 

effects. Notably, the synergistic effects of probiotics and ICIs in 

tumor suppression appear to be strain-specific112. Therefore, 

safety assessment is required when using specific probiotics in 

combination with ICI therapy109.

Genetically engineered probiotics
Engineered probiotics with enhanced functionality are a 

novel, safe, and effective adjunctive treatment that can assist 

anti-PD-1/PD-L1 antibody therapy in CRC. E. coli Nissle 

1917 is a probiotic designed by researchers to express targeted 

PD-L1 and CTLA4. The strain has a controlled release mech-

anism that effectively releases therapeutic agents continuously 

in the TME. In addition, E. coli Nissle 1917 shows significant 

therapeutic effects in “cold” tumors113. Activated E. faecalis 

expresses and secretes homologs of the NlpC/p60 peptido-

glycan hydrolase, SagA, to produce immunoreactive peptides. 

Investigators produced SagA-engineered probiotics and found 

that SagA-engineered probiotics enhance anti-tumor efficacy 

of anti-PD-L1 antibody therapy114. These studies demon-

strated the potential of genetically engineered probiotics as 

adjuvants to promote anti-PD-1/PD-L1 antibody therapy.

Prebiotics

SCFAs
Studies have shown that oral administration of dietary fiber 

enhances anti-PD-1 antibody efficacy; one of the mechanisms 

may be an enrichment of SCFA-producing flora. SCFAs, as the 

major metabolites produced by intestinal flora (Bifidobacteria, 

Lactobacilli, and Streptococci) ferment insoluble dietary 

fiber, activate G-protein-coupled receptors, inhibit histone 

deacetylases, and act as an energy substrate linking diet and 

intestinal flora to improve intestinal health115. Among SCFAs, 

butyrate maintains the integrity of the intestinal barrier116, 

promotes T cell infiltration, enhances the memory potential 

of activated CD8+ T cells, and induces CD8+ T cell-dependent 

anti-tumor effects, thereby increasing the efficacy of anti-PD-1 

antibody therapy74.

Ursodeoxycholic acid (UDCA)
UDCA, an SBA produced by Clostridium spp., has been 

shown to impede colon cancer occurrence117. Studies have 

shown that UDCA enhances anti-tumor immunity by 

degrading TGF-β and inhibiting Treg cell differentiation 

and activation in tumor-bearing mice. In addition, UDCA 
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synergizes with anti-PD-1 antibody to enhance anti-tu-

mor immunity and tumor-specific immune memory in 

tumor-bearing mice118.

Inosine
Inosine, a bacterial metabolite produced by Bifidobacterium 

pseudolongum and Akkermansia muciniphila, promotes Th1 

cell activation and modulates the enhanced immunothera-

peutic response through the T cell-specific A2AR signaling 

 pathway119. Furthermore, inosine enhances tumor immu-

nogenicity by inhibiting ubiquitin-like modifier activating 

enzyme 6 (UBA6) in tumor cells and improves the sensitivity 

to ICIs. Studies relevant to inosine provide a promising per-

spective to search for effective approaches to overcoming the 

tumor cell-intrinsic resistance to ICIs in immunotherapy120.

Bioactive components
Bioactive components have been shown to inhibit the devel-

opment of CRC. Spice-derived bioactive components increase 

the proportion of beneficial bacteria and also reduce oxida-

tive and inflammatory responses121. Polyphenols, a bioactive 

component, inhibit DNA damage by modulating oxidative 

reactions and also increase the abundance of Bifidobacteria in 

the intestine, significantly inhibiting the growth of common 

pathogenic bacteria and having an inhibitory effect on the 

development of cancer122. Castalagin as a natural polyphe-

nol, increases the abundance of Ruminococcus, Alistipes, and 

other flora in the intestine. Castalagin interacts with commen-

sal flora to edit the TME, improved the CD8+:FOXP3+ CD4+ 

ratio in the TME, and support anti-PD-1 antibody activity in 

preclinical ICI resistance models123.

Antibiotic

In a mouse model of CRC, application of the antibiotic metro-

nidazole reduced F. nucleatum load and slowed tumor growth 

in xenograft mice124. Mithramycin-A (Mit-A) combined with 

anti-PD-L1 antibody treatment in a mouse model of CRC 

increased CD8+ T cell infiltration in the TME and reduce 

MDSCs to inhibit tumor growth125.

However, there is also evidence that the use of certain antibi-

otics diminishes the therapeutic effect of ICIs in tumor- bearing 

mice or cancer patients126, which may be due to the fact that 

antibiotic treatment causes intestinal ecological disturbances, 

decreases the diversity of the intestinal flora, reduces certain 

microorganisms that have an immune response to tumors, 

and disrupts the intestinal mucosal barrier, which in turn leads 

to impaired defense against pathogens, dysregulation of TLR 

signaling, and reduced IFN-γ expression. The intestinal tract 

is overloaded with F. nucleatum, ETBF, and Peptostreptococcus 

anaerobic in CRC patients, leaving the intestinal flora in a dis-

ordered state. Continued use of antibiotics in the presence of 

disturbed intestinal flora may lead to unresponsiveness of the 

ICIs127. Xu et al.128 established a CT26 xenograft model in the 

context of different antibiotics and showed that mice treated 

with different antibiotics have different degrees of weakened 

response to anti-PD-1 antibody treatment. This finding may 

be due to the changes in the composition of the intestinal flora 

caused by antibiotic treatment, which affect the expression of 

immune-related factors IFN-γ and IL-2 in the TME, resulting 

in reduced anti-PD-1 efficacy128.

ICIs treatment may cause an increased risk of opportunistic 

infection, therefore the use of antibiotics cannot be avoided. 

The difference between responders and non-responders after 

anti-PD-1/PD-L1 antibody therapy may be related to the 

ratio of favorable-to-unfavorable bacteria. However, standard 

antibiotic therapy lacks the specificity to specifically kill unfa-

vorable bacteria, therefore a more precise strategy is needed. 

In summary, antibiotics can affect the efficacy of ICIs by influ-

encing changes in flora composition. Consequently, under-

standing the changes in intestinal flora after antibiotic use can 

better improve the efficacy of immunotherapy.

Phage and flora

Phage
F. nucleatum increases MDSCs and suppresses the anti-tu-

mor immune response. Therefore, reducing F. nucleatum in 

the intestine improves the efficacy of anti-PD-1/PD-L1 anti-

body therapy. Dong et al.129 combined M13 phage with silver 

nanoparticles to form M13@Ag, which takes advantage of the 

property that M13 phage can specifically bind F. nucleatum to 

selectively kill F. nucleatum and improve the inhibitory state of 

the TME, thus reversing the resistance to anti-PD-1 therapy. 

In addition, M13@Ag activates antigen-presenting cells and 

further awakens the immune system128.

Flora
Circulating or tumor-infiltrating T cells not only recognizes 

tumor antigens, but also recognizes MHC class I- or class 

II-restricted peptides from a variety of microorganisms130. 

For example, gut Enterococcal bacteriophage epitope tail length 

tape measure protein 1 (TMP1) cross-reacts with human solid 
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tumor-expressed epitope proteasome subunit beta type-4 

(PSMB4)130, commensal bacterium Bifidobacterium breve 

epitope SVYRYYGL cross-reacts with the tumor-expressed 

epitope SIYRYYGL131, and E. coli epitope cross-reacts with 

tumor epithelial protein TMEM161A132. This finding indi-

cates intestinal flora can modulate the immunogenicity of 

tumor cells by providing tumor cross-antigens, thereby con-

tributing to restoration of the ICI response24.

In addition to providing tumor cross-antigens, some bac-

teria exhibit antimicrobial activity. A recent study showed 

that Streptococcus salivarius (S. alivarius) DPC6993 (a natural 

intestinal flora) has narrow-spectrum antimicrobial activity 

against F. nucleatum and determined that inoculation with 

S. alivarius DPC6993 reduces F. nucleatum and the risk of can-

cer development in a colon cancer model133.

Anti-tumor immune responses against anti-PD-1/PD-L1 

antibody can be enhanced by increasing the number of 

favorable flora or targeting unfavorable flora. This finding 

may be due to increased infiltration of effector T cells or 

improved suppressive state of the TME, thereby enhancing 

anti-PD-1/PD-L1 antibody efficacy or reversing the resistance 

of anti-PD-1/PD-L1 antibody therapy. This finding provides 

theoretical support for improving the efficacy of anti-PD-1/

PD-L1 antibody therapy in CRC.

Conclusion and prospects

Anti-PD-1/PD-L1 antibody therapy has become the stand-

ard treatment of patients with MSI/dMMR CRC but there 

are very limited responders to anti-PD-1/PD-L1 antibody 

therapy in patients with MSS CRC. Regulation of intestinal 

flora is one of the ways to improve the efficacy of anti-PD-1/

PD-L1 therapy. The intestinal flora has an important impact 

on the maturation of the immune system and the develop-

ment of CRC. Understanding the composition of intestinal 

flora in CRC patients can provide personalized treatment. 

Comparing the intestinal flora of CRC patients who respond 

to ICIs treatment with non-responders, we can determine 

the favorable and unfavorable flora. Increasing the favorable 

flora in the gut of CRC patients by drugs, diet, FMT, pro-

biotics, or antibiotics and phage targeting removal of the 

unfavorable flora can improve the TME and enhance the 

responsiveness of anti-PD-1/PD-L1 antibody therapy. The 

composition of the intestinal flora appears to be associated 

with gene mutation status, which provides new clues for the 

treatment of CRC.

Several drugs based on bacteria or their products have 

achieved good efficacy in anti-PD-1/PD-L1 antibody therapy of 

CRC in vitro134,135, but there are still unknown mechanisms of 

intestinal flora in ICIs for CRC. An in-depth understanding 

of how intestinal flora stimulates or suppresses the immune 

response of body could improve the accuracy of intestinal flora 

in the treatment of CRC and reduce the incidence of adverse 

effects. In addition to intestinal flora, intra-tumoral flora has a 

more direct impact on tumor development and inhibition, but 

the impact of the composition of CRC flora on its development 

remains unclear. Nevertheless, intestinal flora may undoubt-

edly provide new approaches for the treatment of CRC.
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