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Abstract

The mammalian lung has an enormous environmental-epithelial interface that is optimized to 

accomplish the principal function of the respiratory system, gas exchange. One consequence of 

evolving such a large surface area is that the lung epithelium is continuously exposed to toxins, 

irritants, and pathogens. Maintaining homeostasis in this environment requires a delicate balance 

of cellular signaling between the epithelium and innate immune system. Following injury, the 

epithelium can be either fully regenerated in form and function or repaired by forming dysplastic 

scar tissue. In this review, we describe the major mechanisms of damage, regeneration, and 

repair within the alveolar niche where gas exchange occurs. With a focus on viral infection, we 

summarize recent work that has established how epithelial proliferation is arrested during infection 

and how the innate immune system guides its reconstitution during recovery. The consequences 

of these processes going awry are also considered, with an emphasis on how this will impact 

postpandemic pulmonary biology and medicine.
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1. INTRODUCTION

Mammalian physiology depends on the proper functioning of a respiratory system that 

serves a number of functions, most importantly gas exchange. To accomplish this, the 

mammalian lung has evolved an intricate architecture of branching airways and alveolar 

parenchyma that both surveilles the exposed barrier to the external environment and 

maximizes the surface area for gas exchange. A natural consequence of these functions 

is that the lung is especially sensitive to infectious and noninfectious environmental insults.

Over the last several decades, foundational work in immunology and microbiology has 

allowed us to understand the lung as an arena for interactions between various infectious 

microbes and the host’s innate and adaptive immune defenses. The comparative paucity of 

techniques for studying repair and regeneration in the lung has meant that characterization 

of lung injury patterns and mechanisms of repair and regeneration have lagged substantially. 

Nevertheless, advances in generation of genetic mouse models and DNA sequencing 

technology over the last several decades have fostered the creation of new tools and 

facilitated studies of the developmental and regenerative biology of the lung. These recent 

studies have given us unprecedented insight into the processes by which lung function is 

fully restored after acute injury, which we refer to as regeneration, and by which lung 

healing occurs with scar formation, which we refer to as repair.

In this review, we focus our discussion on the mechanisms of repair and regeneration in the 

lung’s alveolar epithelium following acute lung injury, with an emphasis on the response 

to viral infection. Reviews on the pathogenesis of acute lung injury and the host immune 

response to infection or insult have been published recently, and we refer readers to those 

reviews for further discussions of these subjects (1–3).

2. THE SUSCEPTIBLE EPITHELIUM OF THE RESPIRATORY TRACT

The respiratory system can be separated into multiple anatomic compartments on the 

basis of tissue structure and function and cellular composition. To discuss the repair and 

regeneration of lung architecture, we briefly review the major niches that can serve as 

sites of infection before focusing on how epithelia and immune cells act in conjunction 

to restore homeostasis in the injured alveolus. We note that several recent reviews have 

comprehensively addressed the composition of the anatomic and cellular compartments of 

the mammalian lung (4–6).

2.1. Upper Airway

The upper airway consists of structures proximal to the vocal cords, including the nasal 

passages and nasopharynx, oropharynx, and larynx. While these structures have important 

nonrespiratory functions (e.g., phonation and olfaction), they also perform important roles 

in respiration including humidifying ambient air, entrapping large particulate matter, and 

priming mucosal immune responses. Despite myriad host defenses such as production of 

mucus, secreted immunoglobulins, and antimicrobial peptides, the upper respiratory tract 

is the most common site of respiratory viral infections (7). Although these epithelia are 

distinct from the alveolar epithelium in both form and function, they serve as the first site of 
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encounter for pathogens and may amplify viruses that ultimately cause greater damage in the 

lower airways and alveolar epithelium.

2.2. Lower Conducting Airways

The lower airways include regions of the respiratory tract below the level of the vocal folds 

that do not participate in gas exchange but play distinct roles in respiratory physiology. 

These structures, which include the trachea, bronchi, and bronchioles, are lined by a 

pseudostratified columnar epithelium, interspersed with a self-renewing population of basal 

cells, ciliated cells, goblet cells, neuroendocrine cells, secretory cells, and recently described 

ionocytes (reviewed in 8). In addition to serving as a conduit for air, intrathoracic airway 

epithelium also actively clears mucus, environmental particles, and microbes from the 

lower passages via rhythmic beating of cilia. Lower airway epithelium also serves as a 

principal site of viral infection in both humans and mice, and a large body of literature has 

characterized the roles of viruses in causing exacerbations of chronic pulmonary diseases 

such as asthma and chronic obstructive pulmonary disease (COPD) (9, 10).

2.3. Respiratory Airways

The respiratory airways lie distal to the bronchioles and represent a unique structure that 

is not fully conserved among mammals. In humans, the distal airways give rise to terminal 

bronchioles, which in turn open into respiratory bronchioles (RBs). RBs are delineated 

histologically and functionally by the presence of interspersed alveoli as well as a transition 

to low cuboidal epithelium. This anatomic niche does not exist in the mouse airway, which 

terminates at the bronchoalveolar duct junction (BADJ) without a corresponding structure 

containing both airways and alveoli. Recently, a new cell type was identified in the RB, 

termed the respiratory airway secretory cell, which was found to act as a progenitor for 

alveolar epithelial cells (11). Thus, this region of the human lung, which is absent in 

mice, may serve as an important niche for the regenerative response after acute injury. A 

population of cells found at the BADJ and termed bronchioalveolar stem cells have been 

reported in mice and have been reported to differentiate into alveolar epithelial cells as 

well (12). The respiratory airways are a common site of viral lung infection, particularly 

in children where infectious bronchiolitis has been associated with long-term respiratory 

dysfunction (13).

2.4. Alveolar Epithelium

The alveolus is the functional unit of the lung and the principal site of gas exchange. 

The alveolar epithelium consists principally of alveolar type 1 (AT1) and alveolar type 

2 (AT2) cells. AT1 cells are specialized squamous cells that cover the large majority of 

the alveolar surface area and are closely apposed to the capillary network (Figure 1). 

In contrast, AT2 cells are cuboidal cells that produce and recycle the surfactant proteins 

and phospholipids that maintain surface tension within the alveolus, preventing injury 

from expansion and collapse during the respiratory cycle (14). Recent advances in single-

cell RNA sequencing (scRNA-seq) have yielded much deeper insight into the cellular 

heterogeneity of the alveolar epithelium (6, 15, 16). During injury, AT2s also function as 

an important progenitor cell population that can reconstitute the alveolar epithelium by both 

proliferating and differentiating into AT1s (see below for further discussion). Since AT2 
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cells are also important targets of viral infections, how alveolar repair can proceed following 

their loss remains an area of active research and debate.

2.5. Immune System

The enormous surface area of the respiratory tract necessitates a broad range of host 

defense mechanisms to control and clear pathogens, recycle cell debris and surfactant, 

and sequester noxious particles. These immune functions are carried out by nonimmune 

cells [e.g., secretion of mucin and antimicrobial peptides by various epithelial lineages 

(17), propagation of the mucus layer proximally by ciliated epithelial cells], as well 

as by dedicated immune cells of hematopoietic and lymphopoietic origin. The cellular 

immune system consists of leukocytes that participate in innate and adaptive immune 

functions. Adaptive immune cells consist of B and T lymphocytes that reside within 

bronchus-associated lymphoid tissue aggregates that exist at homeostasis in some but not 

all species of mammals but can also develop in response to inflammation of infection (18). 

Additionally, intraepithelial T lymphocytes expressing either αβ or γδ T cell receptors 

are interdigitated within the airway epithelium and assist in defense and repair following 

injury (19). At homeostasis, innate immune cells compose a substantial fraction of the total 

cellular composition of the lung. These cells include dendritic cells, innate lymphoid cells, 

neutrophils, and multiple phenotypically distinct groups of monocytes and macrophages. 

Resident macrophage populations can be further subdivided into airway, alveolar, and 

interstitial macrophages. Alveolar macrophages are perhaps the most abundant and best-

characterized innate immune cells in the lung and have a wide variety of functions 

both in homeostasis and in repair after injury (reviewed in 2, 3, and 20). They reside 

within the lumen of the alveolus and assist in surveilling for pathogens and maintaining 

surfactant homeostasis. In mice, they are derived from monocytes that are recruited from 

the fetal liver and yolk sac in multiple waves prior to birth (21, 22). After birth, their 

population is maintained by in situ proliferation (23) or recruitment of circulating blood 

monocytes during injury that subsequently acquire a transcriptional phenotype similar 

to resident alveolar macrophages over time (24). Less is known about how interstitial 

macrophages regulate alveolar homeostasis, although they have been postulated to play a 

largely immunoregulatory role (25).

2.6. Human Versus Mouse

Much of our understanding of the development, regeneration, and repair of the lung has 

been derived from transgenic murine models and studies of ex vivo human tissues. For many 

of the major cell types and structures in the lung, the mouse can serve as a reasonable 

model for human anatomy. At the cellular level, for example, mice and humans have similar 

alveolar epithelial cell lineages with many conserved transcriptional features between AT1s 

and AT2s. However, the dramatically different metabolic requirements and lifestyles of 

humans and mice have led to several important differences in their respective lung anatomy 

that need to be considered when comparing findings from studies in these organisms 

(reviewed in 26). For example, the large airways in humans have a dedicated bronchial 

circulation that is not present in mice, as well as cartilaginous rings that buttress airways 

for several generations distal to the trachea. As noted above, the airway to alveolar junction 

is highly divergent between mice and humans. These anatomic differences may also have 
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consequences in viral lung disease, as viral infection of the distal airways in humans causes 

a substantial disease burden (27). For example, mice have substantially less pathology in 

response to cigarette smoke exposure, while ferrets and humans develop a distinct pathology 

of the RBs due to smoke injury (28).

3. ACUTE PULMONARY INJURY

The vast majority of cells in the lungs are quiescent at homeostasis, with a relatively modest 

rate of epithelial turnover and little organized immune activity. Due to the central location of 

the lungs in the circulatory system and the reliance on a thin epithelial barrier to accomplish 

gas exchange, the lungs are exquisitely sensitive to infectious, inflammatory, and mechanical 

insults. Acute lung injury develops in a short period of time (typically defined as under 1 

week) and can be localized or diffuse. The following discussion focuses on acute infectious 

injuries, as these are the best-studied areas of repair and regeneration in humans and mice.

3.1. Respiratory Failure: The Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) represents the severest manifestation of acute 

lung injury in humans and is accompanied by a substantial rate of mortality in spite of recent 

advances in treatment (29). ARDS is defined as an acute onset or worsening of respiratory 

symptoms, impaired oxygenation (manifest as hypoxemic respiratory failure), and bilateral 

lung infiltrates not explained fully by pulmonary edema from cardiac dysfunction (30). 

ARDS can arise from numerous disease processes, most commonly infectious and/or 

inflammatory. The initial description of ARDS pathology noted the presence of alveolar 

collapse, inflammation, and interstitial and intra-alveolar hemorrhage and edema, as well as 

hyaline alveolar membranes in nearly all patients (31). Since then, studies in humans and 

animal models have identified uncontrolled inflammation and the loss of alveolar epithelial 

barrier integrity as central mechanisms in the development of ARDS (32). The combination 

of inflammation and barrier dysfunction leads to filling of alveolar spaces with protein-rich 

exudative fluid and inflammatory leukocytes that help to control infection but can also 

propagate tissue damage (Figure 1). A subset of patients who experience sustained severe 

injury eventually develop a second pathologic phase of disease (termed the fibroproliferative 

phase) characterized by persistent inflammation, aberrant reepithelialization, and expansion 

of fibroblasts with excessive deposition of extracellular matrix (33). While many patients 

who survive eventually return to their baseline lung function, a substantial minority 

experience residual loss of both mechanical lung function and gas exchange (alveolar) 

interface (34).

While the concept of ARDS has some clinical utility in identifying patients with severe 

lung injury who benefit from protective ventilatory strategies, its focus on physiological 

parameters elides the multiple injury pathways that can lead to a common physiologic 

end point. As such, it serves mainly as a useful starting point for considering the various 

mechanisms of severe lung injury and repair.
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3.2. Viral Lung Injury

The host immune response to viral lung injury has been studied extensively over the last half 

century and has been reviewed in depth recently (35, 36). Mammals have evolved a wide 

array of defenses to limit damage from viral replication and immune injury that range from 

cell-intrinsic viral sensors to complex cell signaling networks. Although a full discussion of 

these topics is beyond the scope of this review, we briefly summarize some key features of 

the host response to viral lung infection below, focusing on the biology of the epithelial cell 

compartment in two injury models.

3.2.1. Influenza.—Influenza causes substantial morbidity and mortality through yearly 

cycles of endemic transmission as well as in epidemics that follow the emergence of 

new strains (37). Influenza A virus (IAV), the most common type, infects airway and 

respiratory epithelia, leading to disease through both direct damage to the epithelium and 

inflammation. Given its human relevance and amenability to study in rodents, IAV has 

become the predominant model for studying viral lung injury.

Influenza is transmitted from person to person via inhalation of droplets produced during 

coughing, sneezing, or talking. IAV virions bind to α-2,3 and α-2,6 sialylated glycans on the 

surface of host epithelia, with individual strains of IAV exhibiting tropism for epithelial cells 

at different points along the full length of the lower respiratory tree (38, 39). Tissue tropism 

for a given strain of IAV also varies between mammals (40), reinforcing the importance 

of considering assumptions about host features in animal models of influenza. Significant 

heterogeneity exists in the severity of murine infection as a function of both influenza 

strain and host genetic background (41, 42). This has both complicated the interpretation 

of discordant experimental results and yielded insights into important features of host-viral 

interactions, such as the identification of cellular proteins such as Mx1 that help to restrict 

influenza replication (42, 43). For the purposes of this review, we focus on viruses with 

tropism for the lower respiratory tract, where IAV has been reported to infect bronchial and 

bronchiolar epithelial cells, AT1s and AT2s, and alveolar macrophages (39, 40).

Viral binding to epithelial cells is mediated by the interaction between the viral 

hemagglutinin protein and host cell-surface sialic acid residues. Following binding, the 

virus is internalized via the endosomal pathway, with cytosolic release occurring after 

acidification of the endosome. Viral RNA is released into the host cytosol and imported into 

the nucleus where viral replication occurs, followed by virion assembly in the cytoplasm, 

budding, and release (44). Epithelial cell death is common and can occur via apoptosis or 

necrosis (45).

At the cellular level, hosts have evolved multiple lines of defense against viral infections 

that limit infectivity and inflammation due to IAV. Innate immune sensing in target epithelial 

cells represents the first line of defense and consists of cell-intrinsic proteins that sense 

and respond to the presence of pathogen-associated molecular patterns. These pathogen 

recognition receptors (PRRs) include multiple Toll-like receptors (TLRs), retinoic acid–

induced gene-I protein (RIG-I), and NLR family pyrin domain containing 3 (NLRP3) (36). 

Of these, TLR3, RIG-I, and NLRP3 are expressed in bronchial and/or alveolar epithelia and 

have been implicated in the downstream activation of innate immune pathways (46). Binding 
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of viral RNA to intracellular PRRs activates signaling through interferon response factors 3 

and/or 7, as well as nuclear factor kappa B, leading to transcription of interferons as well as 

proinflammatory cytokines such as interleukins 1 and 6 (IL-1 and IL-6) and tumor necrosis 

factor α (TNF-α). Activation of these responses thereby leads to infiltration of both innate 

and adaptive immune cells, resulting in a coordinated antiviral response. In mice, viral loads 

in the lung peak within the first week (41, 47) and interferon responses return to baseline 

shortly thereafter (48). Epithelial repair and regeneration crescendo during the second week 

after infection and can take several weeks to complete.

3.2.2. Coronaviruses.—Prior to the coronavirus disease 2019 (COVID-19) pandemic, 

coronaviruses were mostly encountered as upper respiratory pathogens, typically causing 

mild seasonal infections. Two earlier outbreaks, severe acute respiratory syndrome 

coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus 

(MERS-CoV) in 2012, marked the first recorded emergence of coronaviruses with tropism 

for the alveolar epithelium, resulting in increased morbidity. Fortuitously, these strains 

circulated widely enough to raise alarm without causing global pandemics, thus permitting 

the scientific community to establish a basic understanding of their biology prior to the 

outbreak of SARS-CoV-2 (reviewed in depth in 49). Both SARS-CoV and SARS-CoV-2 

bind to angiotensin-converting enzyme 2 (ACE2), which acts as the cell-surface receptor 

in conjunction with the transmembrane serine protease 2 (50, 51). ACE2 is expressed 

broadly in multiple different tissues. In the lungs, it is expressed at highest levels on 

AT2 cells and alveolar macrophages, which have been proposed to be the principal cells 

responsible for causing pulmonary pathology (52, 53). Transcriptional surveys of patients 

with fatal COVID-19 suggested that macrophage activation, impaired alveolar epithelial 

regeneration, and pathologic fibroblast activation are hallmarks of severe pulmonary disease 

(54). Studies in the explanted lungs of patients who received lung transplantation revealed 

widespread tissue destruction and the complete loss of normal architecture, and replacement 

with connective tissue, cuboidal epithelium, and hemosiderin-laden macrophages (55). 

Transcriptional profiling in these patients also demonstrated an abnormal epithelial response 

with expansion of a transitional AT2 cell state (see below) and overrepresentation of 

inflammatory monocytes relative to healthy tissue. These experiments have also been 

corroborated in studies using cultured human AT2 organoids that demonstrate robust 

infection with SARS-CoV-2 as well as induction of interferon responses and epithelial 

growth arrest (56).

4. THE AIRWAY-DERIVED DYSPLASTIC RESPONSE TO VIRAL LUNG 

INJURY

Like most vital organs, the mammalian lung reacts to injuries of varying severity with 

responses that can both limit the extent of destruction and facilitate repair. However, 

analogous to scarring in other organs, the lung can also respond to severe injury by 

sacrificing functional tissue to limit further damage. This process of dysplastic alveolar 

repair has recently been reviewed in depth (57).
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4.1. Historical Descriptions

Early reports of an aberrant epithelial response to severe viral lung injury described a 

morphologically distinct epithelial cell population that was present in the distal airways of 

patients who died following infection with H2N2 influenza (58). These dysplastic epithelial 

pods were predominantly located in the peribronchiolar region, suggesting the possibility 

of a relationship with the airway epithelium. They were subsequently found to express 

keratin 5 (Krt5) and were noted to emanate from a transformation related protein 63 

(Trp63)-expressing lineage of epithelial cells in the distal airways (59). Subsequently the 

progenitor cell population giving rise to these Krt5 pods was termed either distal airway 

stem cells (60) or lineage-negative epithelial progenitors (LNEPs) (61).

4.2. Origin and Composition of Krt5 Pods

The cell type of origin for Krt5 pods has been extensively researched and debated. Initial 

descriptions of Krt5+ cells indicated that they arose from rare basal cell–like progenitors 

in the distal intrapulmonary airways rather than the trachea (59, 61). At homeostasis, these 

cells express p63 but not Krt5, and they later acquire Krt5 expression during injury (61, 

62). The early characterization of Krt5 pods suggested that they could generate mature 

AT1 and AT2 cells (59). However, subsequent studies using fate-mapping approaches have 

demonstrated that regeneration of the alveolar epithelial lineages by airway cells expressing 

Krt5 does not occur at a substantial frequency following influenza infection (reviewed 

comprehensively in 57).

Dysplastic remodeling with Krt5-expressing cells is also observed following viral infection 

in humans, suggesting that this process is evolutionarily conserved within mammals. 

Pathologic descriptions of a phenomenon of squamous metaplasia have been reported in 

cases of severe injury with diffuse alveolar damage (63). Subsequent work demonstrated 

Krt5 staining in these peribronchiolar pods in cases of idiopathic acute lung injury with 

ARDS (64), idiopathic pulmonary fibrosis (61), influenza (65), and COVID-19 (66). As 

in mice, these cuboidal epithelial cells do not express the canonical alveolar epithelial 

cell markers, indicating that they do not successfully reconstitute the functional alveolus 

(64, 67). The conservation of a generalized epithelial dysplastic response to injury 

across mammals suggests an important evolutionary role in either constraining damage, 

maintaining barrier function, or epithelial regeneration.

4.3. Cellular Signaling of Dysplastic Epithelialization

Recent work has improved our understanding of the cell signaling processes that promote 

dysplastic epithelialization after injury. The stimulus to generate bronchiolization with Krt5 

pods seems to derive partially from a loss of AT2 cells in conjunction with secondary 

signals. Using a model in which diphtheria toxin expression can be induced in AT2 cells, 

resulting in their ablation, Yee et al. (68) demonstrated that AT2 cell loss alone was not 

sufficient to induce Krt5+ cell accumulation. Work by Xi et al. (65) using a model of H1N1 

IAV demonstrated that the accumulation of Krt5 pods occurred in response to local hypoxia 

and was dependent on expression of hypoxia inducible factor 1α (HIF1α), as deletion of 

HIF1α led to nearly complete loss of peribronchial Krt5 pods. Interestingly, HIF1α−/− mice 

had less severe disease as evidenced by milder hypoxemia, less pulmonary edema, and a 
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higher proportion of AT2 cells in the epithelium. The authors subsequently demonstrated 

that hypoxia induced Notch signaling, which favored the expansion of Krt5+ cells. In 

contrast, signaling via the Wnt/β-catenin pathway promoted differentiation of LNEPs 

into AT2s, indicating that local signaling cues (rather than prior cell fate commitment) 

dictated the path of differentiation (65). Intriguingly, it was recently reported that hypoxia 

promotes differentiation of tracheal basal cells toward solitary neuroendocrine cell fate in a 

HIF1α/HIF2α-dependent manner (69). Expansion of these neuroendocrine cells helped to 

protect from hypoxic injury via secretion of calcitonin-related gene peptide. Together, these 

studies indicate that hypoxia can induce different cellular responses from the airways, with 

additional signaling or anatomic cues likely determining how airway epithelia respond.

Fibroblast growth factors (Fgfs) also play important roles in promoting alveolar epithelial 

growth and differentiation (70–73). A recent study by Yuan et al. (72) implicated the Fgf10-

Fgfr2b signaling in the fate choice between Krt5 and AT2. After observing that Fgf10+ 

fibroblasts were found adjacent to AT2 cells, the authors used a combination of inducible 

knockouts and fate mapping to demonstrate that loss of Fgfr2b signaling led to loss of 

AT2 and Krt5+ cells following bleomycin injury (72). Overexpression of Fgf10 in bronchial 

epithelial cells, conversely, promoted the accumulation of AT2 cells. Together, these data 

indicate that Fgf signaling plays an important role in promoting differentiation of airway 

basal cells to repopulate the alveolar space with either AT2s or dysplastic epithelial cells. 

Additional studies are needed to determine the local cues that govern regulation of the Fgf 

pathway.

4.4. Persistence of Pods and Long-Term Effects on Respiratory Function

The dysplastic epithelial response results in the replacement of previously functional 

alveolar tissue with bronchiolized epithelium that does not apparently participate in gas 

exchange. This can result in worsened hypoxemia (65) and is correlated with delayed viral 

clearance and prolonged inflammation (74). One major consequence of the COVID-19 

pandemic has been the dramatic increase in the incidence of ARDS and the recognition 

of limitations in exercise tolerance (75), impairments in gas exchange (76), and persistent 

chest imaging abnormalities (77) that last for months or longer after viral infection. While 

Krt5+ cells have been identified in scRNA-seq data sets (78) and pathology specimens 

(66) from patients with severe COVID-19, more work is needed to determine whether our 

current understanding of the dysplastic epithelial response to injury is generalizable between 

different types of viral injury.

5. EPITHELIAL REGENERATION

The advent of scRNA-seq has allowed an unprecedented view into the composition of the 

alveolus at a cellular and transcriptional level (6, 79). While these studies have permitted us 

to define some of the cross talk between cellular compartments (80), more work needs to be 

done to understand the timing and context dependency of these signaling networks during 

epithelial repair and regeneration following viral injury.
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5.1. AT2 Cells as Niche Progenitors

AT2s have been identified as playing a central role in regenerating the damaged or denuded 

alveolus for several decades (81, 82). While the uninjured alveolus is quiescent during 

homeostasis in adults, AT2 cells reenter the cell cycle after most injuries and rapidly 

differentiate into AT1 cells (82). A recent report revealed that the ability of AT2 cells to 

differentiate into AT1 cells after hyperoxic lung injury is restricted to the adult lung and 

does not occur in the neonatal lung, suggesting differences in AT2-AT1 differentiation across 

the life span (83). Whether such differences are observed after infectious injury such as 

influenza remains to be explored. Despite these age-dependent differences, the AT2 cell 

remains the best-characterized alveolar epithelial progenitor in the adult lung in both humans 

and mice (Figure 2).

As with distal airway epithelial progenitor cells, investigation into AT2 cell heterogeneity 

has revealed distinct subsets that are endowed with progenitor capacity. Two recent studies 

reported the existence of a subpopulation of AT2s that expressed Axin2, a marker of 

Wnt responsiveness, and that served as alveolar epithelial precursors (73, 84). These 

cells, termed alveolar epithelial progenitors (AEPs), constituted a minority of AT2s at 

homeostasis and were capable of both proliferating and differentiating into AT1s following 

influenza infection. Another study showed that AT2 cells expressing the IL-1 receptor had 

an enhanced ability to proliferate and differentiate into AT1 cells (15). The growing number 

of scRNA-seq data sets has suggested additional AT2 heterogeneity, but most of these 

subpopulations have not been rigorously characterized for functional differences.

Recent studies have begun to identify and characterize the molecular pathways that regulate 

AT2 cell self-renewal and differentiation into AT1 cells. As noted above, the Axin2+ 

AEP subpopulation is preferentially responsive to Wnt signaling, which promotes AT2 

self-renewal and fate while inhibiting AT1 differentiation (70, 73, 84). Wnt signaling can 

also be activated in AEPs by inhibition of lymphotoxin beta receptor (85). Fibroblast growth 

factors expressed in the alveolar niche also provide important signaling cues that guide 

alveolar epithelial growth, differentiation, and fate maintenance. Wnt-responsive AEPs were 

also characterized by their increased sensitivity to Fgf signaling via Fgf7 and Fgf10 in 

organoid culture compared with non-AEP AT2s. More recently, several studies have shown 

that Fgfr2 signaling is critical for the AT2 cell proliferative response to acute injury (71, 86, 

87). Loss of Fgfr2 in AT2 cells also enhances their differentiation into AT1 cells, indicating 

that Fgf signaling helps to maintain the AT2 cell fate in response to injury (87).

The Hippo signaling pathway plays key roles in stem/progenitor cell self-renewal and 

cellular mechanotransduction (88, 89). The transcriptional effectors Yap and Taz are located 

in the cytoplasm when Hippo is active and translocate into the nucleus when Hippo 

signaling is inhibited, where they bind to TEAD transcription factors to regulate gene 

expression. Inhibition of Hippo signaling, either through expression of activated Yap/Taz 

mutants or loss of important Hippo kinases such as Lats2 or Mst1/2, leads to precocious 

activation of AT1 marker genes during lung epithelial development (90). In the adult 

lung, Yap expression has been shown to promote AT2 cell proliferation and inhibit AT1 

differentiation in infectious models of lung injury (91).
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The transforming growth factor beta (Tgf-β) superfamily also plays an important role in AT2 

self-renewal and AT1 differentiation. Several reports have shown that high levels of bone 

morphogenetic protein (Bmp) signaling in the adult AT2 cell population promote AT2-AT1 

differentiation whereas inhibition of Bmp signaling promotes AT2 self-renewal (92). While 

the role for cell autonomous Tgf-β signaling in adult AT2 cells after injury remains unclear, 

many organoid models used to study AT2 cells include Tgf-β inhibitors, which increase AT2 

cell growth in these conditions (87, 93).

5.2. AT1-AT2 Plasticity During Alveolar Regeneration

While AT2-AT1 differentiation is a cardinal feature of alveolar regeneration in the adult 

lung, there is emerging evidence that AT1 cells can reprogram back into AT2 cells after 

certain lung injuries. To date, there is little evidence that AT1 cells can proliferate. However, 

Jain et al. (94) showed that a small number of AT1 cells can reprogram back into AT2 

cells following pneumonectomy. More recently, Penkala et al. (83) showed that AT1-AT2 

reprogramming was robust after hyperoxic injury in the neonatal and adult lung. This is in 

contrast to the limited ability of AT2-AT1 differentiation, which is restricted to the adult 

lung and not to the neonatal lung. Characterization of this reprogramming process identified 

Hippo signaling as an AT1-restricted pathway and showed that loss of Yap and Taz leads to 

a spontaneous reprogramming of AT1 cells into AT2 cells. These studies reveal the extensive 

nature of alveolar epithelial cell plasticity, how it changes across the life span, and how 

it modulates tissue regeneration after acute injury in the lung. Notably, the above findings 

derive largely from murine studies, although advances in culturing primary human alveolar 

epithelial cells will likely yield additional insights into the role of Hippo and other cell 

signaling pathways in human alveolar epithelial fate maintenance.

5.3. Intermediate States in AT2-AT1 Differentiation

Recent studies have identified an intermediate or transitional state that exists between AT2 

and AT1 cells after acute injury. Using various methods including scRNA-seq and lineage 

tracing, these studies show that there is a subpopulation of transitioning cells that express 

high levels of markers such as claudin 4 and Krt8 (15, 16, 95, 96). Under normal situations, 

these transition state cells will ultimately become mature AT1 cells. However, it remains 

unclear whether cells could become blocked at this state in certain lung injuries or diseases. 

Further studies will be required to more fully assess the functional importance of this state 

during normal repair and in acute and chronic lung disease.

6. ALVEOLAR EPITHELIAL RESPONSES TO IMMUNE SIGNALING

Innate immune cells play central roles in protecting damaged epithelial surfaces and 

assisting in repair and regeneration in the skin, lung, and other environmental interfaces 

(97). Correspondingly, epithelial regenerative processes typically occur within an immune-

biased milieu. Several studies conducted over the last decade have begun to disclose the 

importance of immune signaling pathways in both promoting and restricting regeneration 

and repair (Figure 3).
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6.1. The Interferon Response

Interferons (IFNs) play a central role in protecting the host epithelium from the pathogenic 

effects of viral infection. Discovered in the late 1950s, interferon was first characterized as 

a soluble factor produced by the chick chorioallantoic membrane in response to influenza 

infection that could be isolated and used to inhibit the replication of both influenza and 

unrelated viruses in separate culture (98). Since then, three major classes of interferons 

have been identified: type I (IFN-α/IFN-β), type II (IFN-γ), and type III (IFN-λs) that 

vary in cell tropism and downstream effector function. Interferon signaling is accompanied 

by a dramatic reorientation of cellular behavior at the transcriptional, translational, and 

posttranslational level. This results in the upregulation of numerous interferon-stimulated 

genes (ISGs) and cessation of proliferation, protein synthesis, and other central aspects of 

host cellular biology.

As primary targets of viral respiratory infections, airway and alveolar epithelia play a 

critical role in early amplification of the interferon response. Shortly after infection with 

IAV, AT2s begin to secrete type I and III interferons in addition to other proinflammatory 

cytokines (99). Type I interferons signal through the interferon alpha receptor (IFNAR) 

that is expressed broadly in most tissues. In contrast to the IFNAR, the interferon lambda 

receptor is expressed predominantly in epithelial tissues including the respiratory epithelium 

(100, 101). Cultured AT2s that are infected with IAV or treated with exogenous interferon 

exhibit a dramatic transcriptional change with up- or downregulation of hundreds of genes 

(102). These genes included canonical ISGs such as Isg15 (103) and Mx1 that assist in viral 

control, as well as multiple chemokines that recruit immune cells (102). A full discussion 

of the effects of these pathways is beyond the scope of this review, as they have been well 

studied and reviewed elsewhere (103, 104).

The net consequence of interferon signaling on the lung epithelium is growth arrest. For 

example, AT2 organoids cultured in the presence of interferon are smaller, have decreased 

colony-forming efficiency (105), and have increased numbers of apoptotic cells (56). The 

mechanisms by which type I and III interferons exert these effects have been clarified 

substantially over the last several years. In a recent study, Major and colleagues (48) noted 

that very little epithelial proliferation occurred during the 5 days following murine H3N2 

IAV infection, a period of time corresponding to substantial tissue injury and the height of 

interferon production. The disappearance of interferon protein corresponded to dramatically 

increased epithelial proliferation and differentiation, which ultimately abated during the 

second week after infection. Mice lacking type I and III interferon receptors on epithelial 

cells exhibited higher levels of epithelial proliferation, confirming the requirement for intact 

interferon signaling for growth arrest.

A complementary study by Katsura and colleagues (56) revealed similar findings in human 

AT2 cells infected with SARS-CoV-2. Viral infection led to a rapid upregulation of the 

expected type I and III interferons as well as their downstream targets and was associated 

with induction of markers of apoptosis, decreased numbers of proliferating Ki-67+ cells, and 

loss of canonical markers of AT2 identity. These findings correlated with transcriptional and 

histological findings in specimens obtained from humans with severe COVID-19 disease. 
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Finally, the authors demonstrated that treatment of AT2 organoids with interferon reduced 

proliferation and increased apoptosis (56).

Together, these findings indicate that interferons can act as a double-edged sword, 

controlling viral infection in host alveolar epithelium but at the expense of alveolar cellular 

integrity and proliferative capacity. This likely serves as a brake on infection, as ongoing 

epithelial proliferation would simply provide a continuous source of susceptible host cells. 

The cessation of interferon signaling, however, results in an exuberant regenerative response 

that integrates other proinflammatory cytokines that are also produced in the injured 

alveolus.

6.2. Interleukins and Chemokines

Although many investigations of cytokine signaling have focused on how they influence 

immune behavior, several recent studies have highlighted important roles for inflammatory 

cytokines in promoting the growth of alveolar epithelial cells.

Recent work using AT2 organoids demonstrated that multiple cytokines that are produced 

during viral infection affect growth of AT2 cells in vitro (105). Notably, TNF-α, IL-1, 

and IL-17 increased the size of organoids by increasing epithelial cell proliferation. This 

finding was somewhat paradoxical considering that alveolar epithelial cells are not found 

in significant numbers in the regions of the lung with the densest immune infiltrates. To 

further explain this, the authors noted that AT2 proliferation was highest in the regions near 

damaged lung zones but only in mice with intact IL-1 signaling (105). Importantly, IL-1 

exerted proproliferative effects both on AT2 cells and on the fibroblast cells used to support 

AT2s in the organoid assay, suggesting that multiple cellular constituents of the alveolar 

niche may respond additively or synergistically.

Subsequent work by Choi and colleagues (15) replicated the finding that IL-1β increased 

organoid size and implicated interstitial macrophages as a source of IL-1β that promoted 

this effect. Using scRNA-seq of in vitro organoids, the authors found that IL-1β induced 

a transcriptional response in AT2s that resembled intermediate states along an AT2 to AT1 

differentiation axis observed in mice injured with bleomycin. The authors further noted 

that while sustained IL-1β signaling inhibited the full differentiation of AT2s into mature 

AT1s in culture, withdrawal of the cytokine from growth medium permitted differentiation 

to occur (15). Together, these findings demonstrate the importance of cytokine signaling 

in multiple cell types within the alveolar niche and suggest that alveolar regeneration may 

require the coordinated activities of multiple cellular compartments.

IL-10 plays an important role in restraining inflammation and promoting resolution of 

injury. IL-10 is constitutively present in both humans and mice (106) and is expressed 

by AT1s and AT2s (107) as well as interstitial macrophages (108). IL-10 signals via the 

suppressor of cytokine signaling 3 to suppress expression of inflammatory cytokines such 

as IL-1, IL-6, and TNF-α (109). The timing and regulation of IL-10 signaling are also 

important determinants of lung healing. For example, in a model of postinfluenza bacterial 

pneumonia, blocking IL-10 improved survival and decreased bacterial burden (110).
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6.3. Surfactant

While surfactant has been traditionally recognized for its mechanical properties that prevent 

cyclic alveolar collapse during the respiratory cycle, the various protein components also 

have well-characterized immune functions. Regulation of the pulmonary surfactant pool is 

critically important at the cellular, tissue, and organismal levels. Additionally, IAV infection 

results in dysregulation of surfactant homeostasis, an outcome that may play a role in 

causing reduced lung compliance and the development of ARDS (111). Surfactant consists 

of four surfactant proteins (SP-A, -B, -C, and -D), secreted from specialized organelles 

in AT2 cells called lamellar bodies, as well as phospholipids, which compose 80–90% of 

surfactant by weight (reviewed in 14 and 112). While both AT2s and alveolar macrophages 

are capable of recycling surfactant (113), loss or dysfunction of alveolar macrophages leads 

to the pathologic accumulation of surfactant, resulting in pulmonary alveolar proteinosis in 

humans and mice (114). Elegant work in the 1990s in mice lacking granulocyte-macrophage 

colony-stimulating factor (GM-CSF) demonstrated an accumulation of lipoproteinaceous 

eosinophilic fluid in their lungs and increased susceptibility to pulmonary infections (115, 

116). This phenotype depended on the expression of the GM-CSF receptor on alveolar 

macrophages, implicating their dysfunction in the failed clearance of surfactant (117). 

Further studies highlighted the role of peroxisome proliferator-activated receptor γ signaling 

downstream of GM-CSF (118, 119) as an important factor in regulating macrophage 

inflammation in the setting of IAV infection (120). AT2s represent the major source of 

GM-CSF production in the lung (121), suggesting that this signaling circuit plays a central 

role in maintaining alveolar homeostasis during and after viral infection.

SP-A and SP-D belong to a family of pattern recognition receptors called collectins that 

bind to foreign glycans and help to clear environmental particles and pathogens by binding 

to CD14 on cells of the monocyte-macrophage lineage (122, 123). SP-A and SP-D have 

been proposed to exert anti-inflammatory effects on alveolar macrophages through multiple 

mechanisms including preventing complement activation andTLR signaling (122, 124) and 

binding via signal-regulatory protein alpha (125, 126). Notably, SP-A and SP-D have 

also been shown to exert direct antiviral effects by binding to IAV hemagglutinin, further 

emphasizing the importance of restoring surfactant homeostasis following infection (127).

6.4. Cell–Cell Interactions Between the Epithelium and Innate Immune System

Homeostasis in the alveolar niche is maintained (and restored after infection) via 

bidirectional interactions between epithelial cells and innate immune cells. While some of 

these signals are transmitted via soluble signaling pathways, others depend on cell-to-cell 

contact. In aggregate, alveolar epithelial signaling through multiple pathways serves to 

prevent alveolar macrophage activation in the absence of inflammatory cues. Moreover, 

following inflammation, recruited cells of the monocyte-macrophage lineage persist in tissue 

and eventually adopt a transcriptional profile that is similar to native alveolar macrophages 

(24), suggesting that signals within the alveolar niche dictate the behavior of myeloid cells.

Alveolar epithelial cells exert a direct immunoregulatory effect on alveolar macrophages 

via interactions between CD200 and CD200R. AT2 cells express CD200, the ligand for 

CD200R that is expressed on alveolar macrophages (128, 129). Alveolar macrophages from 
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mice lacking CD200 exhibit spontaneous secretion of IL-6 and TNF-α when cultured in the 

presence of lung epithelial cells. CD200 knockout also led to less severe influenza illness, 

pulmonary pathology, and inflammation, consistent with the finding in other models that 

monocytes and macrophages can cause inflammatory lung damage during IAV infection 

(129, 130).

In addition to its central role in epithelial growth and regeneration, Tgf-β also assists in 

maintaining homeostasis between the epithelium and innate immune system and returning 

to a quiescent state following injury. At homeostasis, Tgf-β is expressed by multiple cell 

types in the alveolar niche and is activated and stabilized in the extracellular environment 

by binding to integrin αVβ6 expressed on alveolar epithelial cells (131, 132). Yu and 

colleagues (131) demonstrated that expression of the Tgf-β receptor in CD11c+ myeloid 

cells (including alveolar macrophages) is required for the development and/or maintenance 

of alveolar macrophages. Mice lacking integrin αVβ6 develop spontaneous emphysema 

that can be abrogated by providing exogenous Tgf-β or knocking out the major alveolar 

matrix metalloproteinase Mmp12 (133). Notably, mice lacking integrin αVβ6 also have 

reduced mortality in response to multiple respiratory viral infections and exhibit greater type 

I interferon responses, although in contrast to other studies, increased levels of interferon 

did not correlate with susceptibility to postviral pneumococcal pneumonia (134). Together, 

these data indicate that Tgf-β promotes the maintenance of alveolar macrophages within the 

alveolar niche while restraining excessive inflammatory activation.

Recently, the gap junction protein connexin 43 (Cx43) was identified as a regulator of 

immune-epithelial interactions within the alveolus. Using an innovative ex vivo imaging 

approach, Westphalen et al. (135) demonstrated that spatially remote alveolar macrophages 

exhibit synchronized calcium spikes in culture when exposed to lipopolysaccharide (LPS). 

This phenotype was abrogated in macrophages lacking Cx43 and depended on direct 

communication via the alveolar epithelium. Loss of Cx43 in the alveolar epithelium resulted 

in increased inflammation in response to LPS challenge, suggesting that communication via 

Cx43 gap junctions may help to prevent excessive alveolar macrophage activation (135). 

These findings were subsequently validated in a human ex vivo culture system (136), 

although their physiologic relevance needs to be further clarified.

Cells of the monocyte-macrophage lineage can also promote epithelial growth in the absence 

of overt lung injury. Using a model of compensatory regrowth after pneumonectomy, 

Lechner and colleagues (137) observed an increase in interstitial and alveolar macrophages 

in the remaining lungs of mice that had recently undergone unilateral pneumonectomy. 

Consistent with the role of C-C motif chemokine ligand 2 (CCL2) in recruiting monocytes 

to sites of injury, the authors observed that these mice had increased levels of circulating 

CCL2. Mice lacking the receptor for CCL2 (CCR2−/−) had significantly less compensatory 

growth of the remaining lung, less proliferation of AT2 cells, and less differentiation of 

AT2 cells into AT1 cells (137). Notably, mice lacking CCR2 are also protected from 

influenza injury (130), so recruited monocytes likely play a multifaceted role in repair and 

regeneration that depends on the additional signaling cues within the alveolus.
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The distal lung is an anatomic niche faced with the challenging reality of needing 

to protect a highly exposed surface from environmental insults and pathogens, while 

preventing unrestrained inflammation. This necessitates delicate balancing of interactions 

between alveolar epithelia and lung resident macrophages through multiple cell signaling 

pathways. Absent inflammatory cues, the alveolar epithelium is quiescent in adults and 

maintains an anti-inflammatory state in resident myeloid cells. During viral infection, the 

net effect of the integrated epithelial-macrophage response is to upregulate cell-intrinsic 

antiviral responses, recruit inflammatory leukocytes, and arrest epithelial proliferation. 

With successful clearance of virus and the cessation of interferon signaling, epithelial 

proliferation can occur and may in fact be promoted by the presence of other inflammatory 

cytokines such as IL-1. How these events are coordinated and ultimately completed remains 

an area of intense investigation.

7. FUTURE DIRECTIONS

Advances in lineage tracing and single-cell transcriptional profiling have begun to 

revolutionize our understanding of the developmental and regenerative biology of the 

alveolus. Over the last decade, we have dramatically expanded our understanding of the 

wealth of signaling inputs that restrain or promote alveolar epithelial growth both during 

development and following injury. In spite of these recent technological advances, no 

currently approved therapeutics promote or assist in lung regeneration. To reach a point 

where mechanistic biology can be translated into clinical therapies that restore lung function, 

we will need to further advance our understanding of the unique structural and signaling 

features within the alveolar niche.

Recently, we have gained insight into the immune signaling pathways required to maintain 

an anti-inflammatory state in the alveolus at homeostasis while permitting appropriate 

activation of immune cells in response to pathogens. From these studies, it is apparent 

that maintaining homeostasis is an active process that requires balanced signaling within 

the epithelial and immune compartments. The signaling mechanisms that guide alveolar 

epithelial cell fate maintenance remain partially described. For example, the environmental 

inputs that lead AT2 cells to undergo proliferation and differentiation into AT1s remain 

incompletely characterized.

The COVID-19 pandemic has confronted us with the deficiencies in our understanding of 

how the alveolus regenerates or repairs after viral injury. For example, it remains unclear 

what signals dictate whether an injured area of lung undergoes regeneration or repair. While 

the composition of immune cells in the damaged alveolus clearly changes over time, how 

these cells communicate with the reconstituting epithelium remains less certain. Detailed 

time-course experiments will be needed to clarify the cell signaling networks that are 

activated at various time points during regeneration. Given the heterogeneous nature of lung 

injury during viral infection, future studies will also need to account for spatial differences 

in cell signaling across the full range of tissue damage severity. While these studies will 

be labor intensive and will require computational expertise, they will hopefully offer an 

unprecedented view into the basic biology of the alveolus and the mechanisms that guide its 

restoration.
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Figure 1. 
(a) Epithelium of the lower airway and composition of the alveolus. (b) Repair and 

regeneration of the alveolus following injury. At homeostasis, the alveolar epithelium 

consists of squamous alveolar type 1 epithelial cells that are located in close contact with 

the capillary bed to facilitate gas exchange, as well as cuboidal alveolar type 2 epithelial 

cells that secrete surfactant stored in lamellar bodies. The alveolus is surrounded by a 

sparse interstitium composed of fibroblasts, interstitial macrophages, and other cell types 

not depicted here (e.g., lymphatic vessels and nerves). Viral injury causes alveolar epithelial 
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cell death, barrier dysfunction, impaired gas exchange, alveolar hemorrhage, and infiltration 

of leukocytes and protein-rich fluid. Resolution of inflammation can occur via regeneration 

(reconstitution of the functional alveolus) or repair (scarring). Repaired epithelium does not 

participate in gas exchange and contains airway-derived cuboidal epithelial cells expressing 

Krt5+. Abbreviation: Krt5, keratin 5. Figure adapted from images created with BioRender.
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Figure 2. 
Alveolus intrinsic signals that promote proliferation and differentiation. AT2 cells serve 

as facultative progenitors for the alveolar epithelium. Recent work has uncovered 

subpopulations of AT2 cells that are preferentially endowed with proliferative capacity. 

AT2 cells are capable of regenerating both AT2 and AT1 lineages via proliferation 

and differentiation, respectively. Recent work has identified extracellular signals that 

promote (fibroblast growth factors, interleukin 1) or restrict (Tgf-β, interferons) AT2 cell 

proliferation. In contrast, Tgf-β promotes differentiation of AT2 cells into AT1 cells, while 

intracellular Yap/Taz signaling actively maintains AT1 identity by preventing differentiation 

back to the AT2 lineage. Abbreviations: AT1, alveolar type 1; AT2, alveolar type 2; Taz, 

transcriptional coactivator with PDZ-binding motif; Tgf-β, transforming growth factor beta; 

Yap, Yes-associated protein. Figure adapted from images created with BioRender.
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Figure 3. 
Immune signaling in the alveolus. At homeostasis, the alveolus is maintained in a quiescent 

state via bidirectional signaling between the alveolar epithelium and alveolar macrophages. 

These mechanisms include production of soluble factors such as IL-1, which is secreted by 

myeloid immune cells and promotes AT2 cell proliferation via the IL-1 receptor. GM-CSF 

is secreted by AT2 cells and signals via PPAR-γ to induce a transcriptional program that 

promotes surfactant homeostasis. AT2s also express the cell surface ligand CD200, which 

provides immunoregulatory signals to alveolar macrophages via CD200R. Several recent 

studies have also shown coordinated calcium-mediated signaling via gap junctions (notably 

connexin 43). Abbreviations: AT2, alveolar type 2; GM-CSF, granulocyte-macrophage 

colony-stimulating factor; IL, interleukin; PPAR, peroxisome proliferator-activated receptor. 

Figure adapted from images created with BioRender.
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