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Abstract

Alkene difunctionalizations enable the synthesis of structurally elaborated products from simple 

and ubiquitous starting materials in a single chemical step. Carbohydroxylations of olefins 

represent a family of reactivity that furnishes structurally complex alcohols. While examples 

of this type of three-component coupling have been reported, catalytic asymmetric examples 

remain elusive. Here, we report an enzyme-catalyzed asymmetric carbohydroxylation of alkenes 

catalyzed by flavin-dependent ‘ene’-reductases to produce enantioenriched tertiary alcohols. 

Seven rounds of protein engineering reshapes the enzyme’s active site to increase activity and 

enantioselectivity. Mechanistic studies suggest that C–O bond formation occurs via a 5-endo-trig 

cyclization with the pendant ketone to afford an α-oxy radical which is oxidized and hydrolyzed 

to form the product. This work demonstrates photoenzymatic reactions involving ‘ene’-reductases 

can terminate radicals via mechanisms other than hydrogen atom transfer, expanding their utility 

in chemical synthesis.
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The tertiary alcohol motif is increasingly common in pharmaceutical and agrochemical 

compounds as it imbues molecules with a metabolically stable fully substituted carbon 

while maintaining the ability to form hydrogen bonding interactions which are beneficial 

for binding and specificity. 1 While nucleophilic additions to ketones represent a common 

strategy for preparing this motif, 2,3 the steric degeneracy of the two substituents limits 

the generality of these approaches. Consequently, the most selective methods transfer 

chirality from more easily formed enantioenriched motifs or kinetic resolutions. 4–7 

Inspired by the convergence of a three-component coupling reaction, we sought to develop 

a catalytic asymmetric method for preparing tertiary alcohols from simple alkenes in 

a carbohydroxylation reaction. While there are various reports of transition metal, 8 

electrochemical, 9 and photoredox methods to catalyze this type of reaction, there are no 

known asymmetric methods (Figure 1A). 10,11

Enzymes are attractive catalysts for asymmetric synthesis because the protein scaffold can 

be evolved to tune the chemical environment for a reaction to achieve high levels of 

enantioselectivity. As enzymes typically catalyze only a single chemical reaction, efforts 

over the past decade have focused on expanding their catalytic abilities. Toward this 

end, our group has focused on developing new reaction mechanisms for flavin-dependent 

‘ene’-reductases (EREDs). These enzymes catalyze the reduction of activated alkenes 

through a hydride transfer mechanism. 12–14 Our group found that the flavin cofactor in 

its hydroquinone (FMNhq) and semiquinone (FMNsq) oxidation state can initiate radical 

formation for C–C bond-forming reactions. Our group and others have exploited this 

initiation mode for various asymmetric reductive hydroalkylation and hydrosulfonylation 

reactions. 15–19 In these examples, 20–22radical termination is the enantiodetermining step 

and occurs via hydrogen atom transfer from FMNsq to the organic radical. 23 This pathway 

is favored because of the weak N–H bond strength of FMNsq (58 kcal/mol) and has limited 

EREDs to hydrofunctionalizations of alkenes. 24–27

To address this limitation, we questioned whether an ERED could be evolved to utilize 

a different mechanism of radical termination. To outcompete hydrogen atom transfer, the 

proteins’ structure would need to be modified to alter the kinetic profile to favor trapping via 

a different bond-forming event (Figure 1B). With the goal of synthesizing enantioenriched 

tertiary alcohols, we sought to develop an enzyme that could stereoselectively trap the 

radical with a nucleophilic oxygen species (Figure 1B). While we initially envisioned a 

radical/polar crossover to form cation which could be trapped with water, we recognized that 

alternative mechanisms could form the same product.

We began by looking at a carbohydroxylation of α-methylstyrene using α-

bromoacetophenone as a radical precursor under anaerobic conditions based on our 

previous studies using flavin protein. In a previous study, we found that the EREDs from 

Gluconabacter (GluER) and Zymomonas mobilis (NCR) could reductively couple these 

compounds in good yield with excellent enantioselectivity either when irradiated with light 

or in the dark. 16 When reexamining these reactions under modified reaction conditions, 

we found small amounts of the carbohydroxylation product were formed (Table S1). After 

examining a broader set of EREDs under cyan light irradiation, we found that most favored 

the reductively coupled product while morphinone reductase from Pseudomonas putida 
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(MorB) gave the best yield of 45% and 75:25 enantiomeric ratio, with only 10% of reductive 

coupling byproduct (Figure 2B and Table S1). To improve the yield and enantioselectivity, 

we subjected MorB to iterative saturation mutagenesis (ISM). 28,29 We began by targeting 21 

residues lining the active site of MorB (Tables S3–S16). Over the first four rounds of ISM, 

we found a series of mutations located in the proximal binding site that increased the yield 

to 83% with 87:13 er. In the next round, we reinvestigated previously mutated positions and 

found that mutation of Y72C to threonine (C72T) led to the product in 94% yield with 92:8 

er. Two additional rounds of mutagenesis led to MorB-Y72T-C191G-T240E-R110L-V73D-

S34Q (MorB-B3), affording the hydroxylation product with 96% yield and 95:5 er. Notably, 

the hydrogen atom transfer pathway was suppressed through protein engineering, rendering 

the reductive coupling byproduct negligible.

With the optimal condition in hand, we began to explore the scope and limitations of the 

reaction (Table 1). This enzyme is tolerant to substituents at the para- and meta- positions, 

albeit in slightly diminished yields by comparison to the model substrate. In general, 

electron-donating substituents furnished higher yields than electron-withdrawing ones. The 

enzyme is also tolerant of small ortho-substituents, such as fluoro- and methoxy-groups (12, 

13). Even small increases in the steric bulk of the substituent lead to lower yields. The 

secondary bromoacetophenone form product in modest yield with 3.4:1 diastereoselectivity 

(17). Finally, larger aromatic groups, such as naphthyl groups and benzofurans (16, 18), 

result in lower yields.

We next tested the scope of alkenes. Alkenes with various electronic substituents effectively 

produced the target products with moderate to excellent yields and good selectivity 

(19–24, 30). However, the meta electron-withdrawing groups, such as CF3, were less 

effective, resulting in poor yield and enantioselectivity (25). Regarding the larger group 

at α-position, Et, nPr, and iPr were well accommodated, although with modest yields and 

selectivity (26–28). Besides, the trisubstituted alkene was reactive and exhibited excellent 

diastereoselectivity favoring the cis isomer (29). Notably, non-styrene alkenes were also 

efficient, affording the hydroxylation product with moderate yields and selectivity (31–33). 

While this enzyme was not optimized for these interesting substrates, protein engineering 

can be used to improve the activity and selectivity with these substrates. The remaining mass 

balance in these reactions are cyclized coproducts where the nucleophilic benzylic radical 

underwent the radical addition to the phenyl ring of ketone to form the benzocyclohexanones 

(Figure S3). These products could be derivatized to other useful motifs. For instance, the 

ketone in the model substrate could be reduced to the corresponding 1,4-diol in a 1.2:1 

diastereomeric ratio with 93:7 er (Figure S2). The chiral lactone 35 could also be accessed 

via Baeyer-Villiger oxidation in good yield and er (Figure S2).

Next, we conducted a series of experiments to elucidate the mechanism of this 

transformation. We began by investigating the mechanism of radical initiation. In the 

reductive coupling of alkyl halides with alkenes, we found that radical initiation occurred 

via electron transfer from FMNhq via an enzyme-templated charge transfer complex (CT 

complex). Unfortunately, this complex could not be observed via UV-Vis because FMNhq 

is oxidized in the presence of substrate without irradiation. Indeed, MorB-B3 can catalyze 

the carbohydroxylation without irradiation in 14% yield with no change in enantioselectivity 

Ouyang et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2024 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(95:5 er) (Figure 3A). This observation suggests that FMNhq is responsible for initiating the 

reaction, with photoexcitation providing a stronger driving force for radical initiation.

Next, we turned our attention to understanding the radical termination event. Two possible 

pathways were considered: i) the benzylic radical Int-1 is oxidized by FMNsq to form the 

acyclic cation Int-2 which is trapped by water to form product, or ii) the radical engages 

in a 5-endo-trig cyclization with ketone carbonyl to form an α-oxy radical Int-3 which 

is oxidized by FMNsq to form an oxocarbenium ion which is hydrolyzed to form the 

product (Figure 3C). In both cases, the reaction is redox-neutral and thus only requires a 

catalytic amount of reductant. Indeed, when the cofactor turnover system is replaced with 

40 mol % NADPH, the product is formed in 81% yield with 95:5 er (Figure 3B). To 

distinguish between the two mechanisms, we prepared an alkene 36 containing a pendant 

alcohol. We hypothesized that if a cation were formed, competitive cyclic ether formation 

would be observed. However, when 36 was subjected to the reaction conditions, the cyclic 

ether was not observed. Instead, a [4.2.1] bicyclic acetal 37, derived from the product of 

carbohydroxylation, was generated in 65% yield with 59:41 er (Figure 3D). This result 

suggests that a radical/polar crossover mechanism is not responsible for radical termination. 

Next, we prepared substrates with either a carboxylic acid 38 or ester 39 at the ortho-

position of the arene. The hypothesis is that π-electrons in the carbonyl could react with the 

radical, leading to an α-oxy radical which, upon oxidation, would form a lactone. Indeed, 

when using the carboxylic acid, the lactone is formed in 21% yield with 71:29 er. The ester 

was less effective, providing the same lactone in only a 6% yield with 70:30 er (Figure 

3E). Formation of the lactone product suggests that π-electrons are required for cyclization, 

indicating that a cation is not a likely intermediate in this reaction. As further support for 

this mechanism, we performed DFT calculations to compare the differences in Gibbs free 

energy for oxidizing the benzylic radical Int-2 versus the α-oxy radical Int-3. We found 

that oxidation of benzylic radical was uphill byΔG = 22.0 kcal/mol (Figure 3 and Figures 

S5–S9), while oxidation of the α-oxy radical Int-3 to the corresponding oxycarbenium ion 

Int-4 was only uphill by byΔG = 6.6 kcal/mol, which indicated the radical oxidation could 

be assisted by π-system of carbonyl. Collectively, these results are most consistent with a 

mechanism of radical termination where the carbonyl serves as a π-system for a 5-endo-trig 

cyclization.

We have developed an asymmetric synthesis of tertiary alcohols via a photoenzymatic 

alkene carbohydroxylation. While this reaction and the previously reported alkene 

hydroalkylation involve the same radical initiation step and benzylic radical intermediate, 

this evolved enzyme favors C–O bond formation over hydrogen atom transfer for radical 

termination, highlighting the ability of proteins to precisely control the kinetic profile 

of reactions. Moreover, this unique approach for alkene carbohydroxylation highlights 

the opportunity for enzymes to unlock new mechanisms for previously developed 

transformations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Tertiary Alcohol Synthesis and Mechanisms of Radical Termination in Photoenzymatic 

Catalysis. (A) Alkene difunctionalization by electrosynthesis, transition metal catalysis, and 

photoredox catalysis to prepare tertiary alcohols. (B) Changing the mechanism of radical 

termination in photoenzymatic reactions catalyzed by ‘ene’-reductases.
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Figure 2. 
Optimization of the Photoenzymatic Carbohydroxylation. Reaction conditions: α-

methylstyrene (0.65 uL, 0.01 mmol, 1.0 eq, 16.6 mM), α-bromoketone (5.94 mg, 0.03 

mmol, 3 eq), GDH-105 (0.12 mg), NADP+ (0.4 mg), glucose (1.8 mg) and purified ‘ene’-

reductases (1 mol% based on α-methylstyrene) in 100 mM Tris-HCl buffer pH 8.0, with 

10% CH3CN (v/v) as cosolvent, final total volume is 660 μL. Reaction mixtures were stirred 

under anaerobic conditions and irradiated with cyan LED at room temperature for 24 h. 

Yield determined via LCMS relative to an internal standard (TBB). Enantiomeric ratio (er) 

determined by HPLC on a chiral stationary phase.
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Figure 3. Mechanistic Studies and Possible Mechanisms.
(A) Carbohydroxylation in the dark indicating a ground state electron transfer mechanism. 

(B) Reaction with 2 mol% NADPH suggesting that the overall reaction is redox-neutral. 

(C) Two possible mechanistic pathways. (D) Reactivity with an alkene bearing an alcohol 

suggests that radical termination does not occur via a radical/polar crossover. (E) Reactions 

with alkenes bearing a carboxylic acid/ester moiety suggest radical termination occurs via 

5-endo-trig cyclization and oxidation of the resulting α-oxy radical. (F) Free-energy profile 

of possible intermediates.
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