
Decoding the temporal dynamics of spoken word and nonword 
processing from EEG

Bob McMurraya,*, McCall E. Sarrettb, Samantha Chiuc, Alexis K. Blackd, Alice Wange, 
Rebecca Canalef, Richard N. Asling

aDept. of Psychological and Brain Sciences, Dept. of Communication Sciences and Disorders, 
Dept. of Linguistics and Dept. of Otolaryngology, University of Iowa

bInterdisciplinary Graduate Program in Neuroscience, Unviersity of Iowa

cDept. of Psychological and Brain Sciences, University of Iowa

dSchool of Audiology and Speech Sciences, University of British Columbia, Haskins Laboratories

eDept. of Psychology, University of Oregon, Haskins Laboratories

fDept. of Psychological Sciences, University of Connecticut, Haskins Laboratories

gHaskins Laboratories, Department of Psychology and Child Study Center, Yale University, 
Department of Psychology, University of Connecticut

Abstract

The efficiency of spoken word recognition is essential for real-time communication. There is 

consensus that this efficiency relies on an implicit process of activating multiple word candidates 

that compete for recognition as the acoustic signal unfolds in real-time. However, few methods 

capture the neural basis of this dynamic competition on a msec-by-msec basis. This is crucial 

for understanding the neuroscience of language, and for understanding hearing, language and 

cognitive disorders in people for whom current behavioral methods are not suitable. We applied 

machine-learning techniques to standard EEG signals to decode which word was heard on each 

trial and analyzed the patterns of confusion over time. Results mirrored psycholinguistic findings: 

Early on, the decoder was equally likely to report the target (e.g., baggage) or a similar sounding 

competitor (badger), but by around 500 msec, competitors were suppressed. Follow up analyses 

show that this is robust across EEG systems (gel and saline), with fewer channels, and with fewer 
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trials. Results are robust within individuals and show high reliability. This suggests a powerful 

and simple paradigm that can assess the neural dynamics of speech decoding, with potential 

applications for understanding lexical development in a variety of clinical disorders.
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1. Introduction

To accurately perceive speech, listeners must solve a fundamental challenge created by 

the fact that spoken language input unfolds over time. This is true at all levels: the 

acoustic cues that comprise a phoneme are often spread throughout the word (Galle et al., 

2019; McMurray et al., 2008), words comprise multiple phonemes (Marslen-Wilson, 1987), 

and the meaning of a sentence or section of discourse must be assembled across words 

and phrases. At the fine-grained level of words and phonemes, this process of temporal 

integration involves two components. First, the temporal unfolding of the auditory signal 

creates periods of temporary ambiguity when the earliest portions of a word are insufficient 

to identify it (e.g., after hearing be- the word could be beaker or beetle). Therefore, word 

recognition fundamentally requires the auditory system to integrate prior material with some 

form of memory (e.g., -ker only uniquely specifies a word once it is integrated with the 

prior bea-). Second, at each step, fine-grained acoustic information must be used to update 

the decision set (McMurray et al., 2002). This requires both auditory fidelity and perceptual 

compensation mechanisms that interpret the variable auditory signal relative to differences 

across talkers, and contexts (McMurray & Jongman, 2011), as well as a rapid use of this new 

information to adjust the strength of commitment (activation) to current lexical candidates.

While this extended form of auditory integration is crucial for many aspects of speech and 

non-speech processing, the present manuscript focuses on the key domain of spoken word 

recognition, where cognitive science offers clear models and methods (Dahan & Magnuson, 

2006). Even in this narrower domain, it is still unclear how the brain solves this auditory 

integration problem, which is fundamental for recognizing phonemes and words. Advances 

in multivariate approaches to neuroimaging have identified a network of structures involved 

in word recognition (Prabhakaran et al., 2006; Righi et al., 2009; Zhuang et al., 2011) 

and have demonstrated that this process involves both predictive mechanisms, that build 

and evaluate expectations about upcoming sounds (Blank & Davis, 2016; Gagnepain et al., 

2012), and activation mechanisms that accumulate evidence for candidates which compete 

with each other for recognition (Brodbeck, Hong, et al., 2018; Kocagoncu et al., 2017).

However, despite these advances, existing methods offer only indirect ways to capture the 

timecourse of auditory integration as they do not directly assess the real-time decisions that 

unfold in the neural substrate as speech is recognized. As we argue here, this is important 

because an explosion of work on development (Rigler et al., 2015), clinical language and 

hearing disorders (Desroches et al., 2006; McMurray et al., 2017; McMurray et al., 2010), 

and challenging listening conditions (Brouwer & Bradlow, 2015; Hendrickson et al., 2020) 
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suggests that the timecourse of this auditory integration varies along multiple dimensions 

(see Apfelbaum et al., 2022, for a partial review). This raises the need for a neural assay that 

can more precisely characterize the temporal dynamics of speech perception.

This manuscript presents a first step in this direction by introducing and validating a 

machine learning approach that is applied to EEG and fills these criteria. Although similar 

machine learning methods have been applied to EEG data to decode visual stimuli (Cichy et 

al., 2015; Bae & Luck, 2018), the specific implementation we provide for decoding speech 

stimuli is a novel elaboration on these prior demonstrations. Specifically, we introduce a 

new set of EEG features and a novel approach for decoding – and interpreting the decoding 

results – as the speech signal unfolds over time. While we do not argue that this fully 

captures word recognition, the processes of auditory evidence accumulation and decision 

making that we are attempting to capture is well worked out for spoken words, as are many 

of the developmental and clinical concerns that raise the need for this approach. We thus 

start with a short discussion of the cognitive science and cognitive neuroscience of spoken 

word recognition.

1.1. The Cognitive Science of Auditory Integration in Word Recognition

Word recognition fundamentally requires listeners to build representations across large 

swaths of time in the auditory input and can be characterized by a dynamically unfolding 

decision among multiple candidates. Cognitive science offers clear mechanistic models of 

this process (Hannagan et al., 2013; McClelland & Elman, 1986). Such models agree that 

word recognition is characterized by competition (Fig. 1A): as soon as any portion of the 

input is heard, listeners activate a variety of candidates to the degree that they match the 

unfolding input. These may include onset competitors (cohorts, such as beetle while hearing 

beaker) and offset competitors (rhymes, such as speaker) (Allopenna et al., 1998). The 

strength with which these candidates are activated is affected by higher level and contextual 

factors such as word frequency (Marslen-Wilson, 1987), or sentential context (Dahan & 

Tanenhaus, 2004). Candidates inhibit each other (Dahan et al., 2001) until a winner emerges 

and the word is ultimately recognized. Such competition models are relevant to all areas of 

language comprehension (Elman & McClelland, 1986; MacDonald et al., 1994), suggesting 

word recognition can serve as a model system for understanding these time extended 

integration processes.

Competition accounts of word recognition have been built in part on results from 

psycholinguistic methods like the Visual World Paradigm (VWP) (Tanenhaus et al., 1995). 

In this task, listeners hear words and select the corresponding picture from a small array 

of visually depicted options (usually pictures) representing candidates that may compete 

for recognition (e.g., for a target word, beaker, pictures may include beetle and speaker). 
Listeners must execute a series of eye-movements to locate the correct picture. These 

eye-movements are launched during processing, and thus can reveal the degree to which 

specific classes of candidates are considered with millisecond precision (Fig. 1B).

The VWP has proven to be critical for revealing subtle patterns of deficits associated with 

language and hearing disorders (Desroches et al., 2006; McMurray et al., 2017; McMurray 

et al., 2010; Smith & McMurray, in press), for characterizing the auditory integration in 
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special populations such as bilinguals (Spivey & Marian, 1999), second language learners 

(Sarrett et al., in press), and aging adults (Revill & Spieler, 2012), and for understanding 

how even typical adults alter processing in the face of challenging listening conditions 

(Brouwer & Bradlow, 2015; Hendrickson et al., 2020). This work has highlighted the 

astonishing diversity of approaches to integrating auditory input to recognize words (for a 

partial review, see McMurray et al., 2022). For example, children with language disorders 

show changes in the asymptote of the functions in Fig. 1B – they do not fully commit 

to the target and maintain consideration of competitors. In contrast, younger typically 

developing children reach the same asymptotic level of fixations, fully fixating the target and 

suppressing the competitor. However, they are slower to do so, and competitors take longer 

to be suppressed (Rigler et al., 2015). An even more dramatic departure from the typical 

pattern is shown by pre-lingually deaf children (and by adults facing severely degraded input 

or very quiet input): they appear to delay lexical access until more information has arrived, 

with significantly slowed fixations to the target (by as much as 200 msec). Consequently, 

they show less competition (since by the time they begin lexical access, the target can 

be disambiguated from the competitor). Many of these kinds of patterns have also been 

observed for individuals hearing speech under various forms or degrees of degradation (e.g., 

in noise, in quiet, vocoded) (Ben-David et al., 2011; Brouwer et al., 2012; Farris-Trimble et 

al., 2014; Hendrickson et al., 2020), a critical issue in work on hearing loss.

This explosion of clinical and applied work raises the need for better measures that are 

less constrained by task demands and more revealing of the underlying neural substrate. In 

this regard, three limitations to the VWP may render interpretations more difficult and limit 

its clinical utility. First, the VWP relies on slow eye-movement responses that lag behind 

the true on-line comprehension process (by upwards of 200 msec, and these delays can 

compound to lead to substantial noise over a trial;McMurray, in press). Second, the VWP 

relies on picturable objects; it cannot easily assess more abstract words such as democracy 
or patience. Third, the VWP may not be suitable when cognitive or neurological disorders 

create deficiencies in eye-movement control, visual attention, or picture recognition (e.g., 

ADD, agnosia).

However, the most important concern is that the “read out” of the word-recognition 

system in the VWP is via semantic processing, as names must be matched to visual/

semantic features of the pictured objects. Consequently, apparent differences in word 

recognition (e.g., across individuals or as a function of experimental conditions) could 

derive from differences in lexical, semantic, or even visual/attentional processes rather than 

the fundamental auditory integration process itself. Nevertheless, a crucial first step for 

assessing spoken word recognition in any subject population is to establish the integrity 

of the auditory/cognitive system that integrates auditory information. That is, if a listener 

delays lexical access in quiet speech or background noise, is this because the auditory 

system is slower to accumulate evidence, or is this because the lexical/semantic system is 

slower to access meaning from the speech signal? This needs to be examined separately 

from the downstream consequences of the overall auditory integration process for language 

understanding.
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These limitations could be overcome with a spatio-temporal neural index of auditory 

integration and spoken word recognition (see Getz & Toscano, 2021, for an analogous 

argument). Neuroimaging methods would allow for minimal tasks that are less confounded 

by higher level cognitive processes. They may also be able to isolate mechanisms of SWR 

(and any deficits) at the level of auditory encoding. Clinically, this could help reveal how 

peripheral auditory deficits (e.g., cochlear implants) or deficits in the early auditory system 

(neuropathy, central auditory processing disorder) impact cortical mechanisms of language 

processing such as how the brain accumulates auditory information into meaningful chunks.

1.2. Neural Measures of Auditory Integration and Word Recognition

Classic neuroimaging approaches to the study of lexical access and spoken word recognition 

focused on identifying brain regions whose activity was modulated by phonetic category 

“goodness” or presence/absence of lexical competitors. For example, Blumstein et al. (2005) 

showed gradient activity in the left IFG as a phonetic distinction varied from its prototypical 

value to the category boundary. Prabhakaran et al. (2006), Righi et al. (2009), Luthra 

et al. (2019) and Zhuang et al. (2011) all reported modulations in frontal and temporal 

cortical areas as words varied in frequency or neighborhood density (a metric of lexical 

competition). Unfortunately, these fMRI studies were not able to characterize the timecourse 

of lexical competition because of the sluggish hemodynamic response function. Thus, the 

use of neuroimaging methods with response times in the msec range – EEG and MEG – 

have been employed to address this question.

The primary advantage of EEG/MEG is its excellent temporal resolution, but it suffers from 

poor spatial resolution unless sophisticated cortical source modeling is utilized. Moreover, 

although traditional Event Related Potential (ERP) approaches to EEG have identified 

components in the average waveform associated with a range of language processing 

operations including speech cue encoding (Getz & Toscano, 2021), phonemic categorization 

(Kazanina et al., 2006), and semantic integration (e.g., the N400; Kutas & Federmeier, 

2011), there is no unique ERP signature of lexical competition. However, recent machine-

learning methods have been applied to EEG/MEG signals to capitalize on multivariate 

patterns of activity as a vehicle for building sophisticated models of the neural correlates of 

spoken language processing (Xie et al., 2019). These models fall into two complementary 

categories – encoding and decoding – that establish reliable relationships between the 

dimensions of the speech signal and features embedded in the EEG/MEG responses during 

listening epochs.

1.2.1. Encoding models—The fundamental logic of encoding models (DiLiberto et al., 

2015) is to map a set of properties in the speech signal (e.g., amplitude envelope, phonemes, 

semantic features) to the EEG/MEG signals. This mapping is performed iteratively by 

seeking a weighting function (or temporal filter) for each channel of the EEG/MEG 

signal that best predicts the EEG/MEG response for a given property of the speech signal 

(from low-level acoustics to high-level semantics). If successful, this multivariate temporal 

response function (mTRF) can then be applied to withheld (or novel) speech signals to 

predict the expected EEG/MEG responses. Thus, an encoding model is evaluated by how 

accurately the mTRF performs; that is, the evaluation-metric is the correlation between the 
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actual properties of the speech signal and the predicted properties of the speech signal based 

on the EEG/MEG responses convolved with the relevant mTRF.

A powerful aspect of encoding models is that they can be deployed in the context of 

naturalistic (i.e., continuous) speech. That is, the mTRF can be fit to a speech signal of any 

length, including an entire narrative, and the resultant encoding model can then be evaluated 

over similarly lengthy speech passages. The metric for evaluating the encoding model is how 

well it predicts the sequence of linguistic properties (e.g., phonemes or semantic features) 

or other characteristics (e.g., emotional valence) in novel passages. Encoding models have 

been used to evaluate multiple linguistic levels, including phonemes (Brandmeyer et al., 

2013; Xie et al., 2019), phonemic and lexical surprisal (Donhauser & Baillet, 2020; Gillis 

et al., 2021; Weissbart et al., 2020), semantic surprisal (Broderick et al., 2021), and clarity 

of speech in noise and its resultant comprehension accuracy (Etard & Reichenbach, 2019). 

The superior source localization accuracy of MEG over EEG has enabled these encoding 

models to be mapped onto underlying brain regions, thereby providing further insights about 

the neural circuits involved in speech comprehension, including the number and ordering 

of competitors (Brodbeck, Presacco, et al., 2018; Gwilliams et al., 2020; Gwilliams et al., 

2018; Kocagoncu et al., 2017), and the predictability of a segment from prior context (Blank 

& Davis, 2016; Choi et al., 2020; Gagnepain et al., 2012).

While encoding models have been powerful at illuminating the levels of speech processing, 

there are several limitations as currently implemented. First, because encoding models 

predict the amount of neural activity, they can directly reveal what conditions cause a 

particular brain region to work more or less hard, but they may not be able to reveal the 

unfolding of the speech-based information or the lexical decision itself (as does the VWP) 

(c.f., Gagnepain et al., 2012) as individual lexical items are presumably not represented by 

localized neural regions. Second, encoding models are typically based on group estimates 

(relating activity to lexical statistics), and do not provide assessments of SWR for individual 

participants or for specific words. This is important for ultimately meeting the clinical goals 

described above.

Third, and most importantly, missing so far from the implementation of encoding models 

for speech is a detailed estimate of the time-course of lexical competition. There is ample 

evidence that lexical competition plays a role in encoding models. However, the precision 

with which timecourse information has been estimated remains rather coarse. In principle, 

the phoneme-level mTRF could be evaluated for each word in the speech stream to address 

this timecourse question, but the mTRF in current encoding models is based on aggregating 

across relatively few exemplars of each word. In fact, that is one of the powerful aspects of 

encoding models – they are designed to generalize across all of the acoustic/phonetic and 

talker variability contained in natural speech corpora. Thus, unless the training data fed into 

the encoding model is more constrained (or more voluminous), it is not clear that timecourse 

information about lexical competition derived from the mTRF will have sufficient fidelity to 

answer the kinds of questions that have already been revealed at the behavioral level using 

eye-tracking data from the Visual World Paradigm.
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The critical distinction in achieving such a measure is that the profile of lexical competition 

entails more than just encoding accuracy. Rather, the hallmark of lexical competition is 

that the system goes through states in which multiple options are briefly entertained (e.g., 

Fig. 1) before many are suppressed with some characteristic timecourse. While this is not 

inconsistent with encoding models, it has not been attempted, and doing so may require 

a large number of repetitions of specific words so that their encoding patterns can be 

identified.

1.2.2. Decoding models—As with encoding models, the key logic of decoding models 

is to find a link between the multivariate patterns present in the EEG/MEG signal and 

some relevant linguistic property of the speech signal. However, rather than predicting the 

EEG/MEG signal from the model and comparing predicted to actual EEG/MEG, a decoding 

model operates in the opposite direction by predicting the linguistic property from the 

EEG/MEG signal itself. That is, a set of features from each EEG channel provides a pattern 

of neural activity that, with an appropriate weighting function (much like the mTRF in 

encoding models), is used to predict the likelihood that a given word elicited the multivariate 

pattern of EEG activity. Then the trained model is evaluated on a withheld (or novel) set of 

trials to determine how accurately the EEG pattern predicts the stimulus on each trial.

Importantly, decoding models can be trained at each time-point post stimulus onset, thereby 

providing precise temporal resolution about the magnitude of lexical competition. Moreover, 

with a finite set of words or nonwords, each of which has a unique pattern of elicited EEG 

activity, the relative decoding accuracy of all items in that trained set can be assessed at 

each time point. Critically, by focusing on the pattern of confusion – not just the pattern 

of accuracy – decoding models can in principle track the partial decision-states that are the 

hallmark of lexical competition.

Decoding models have not been extensively applied to speech perception. Thus, the present 

study deploys the decoding approach to harness the power of machine learning techniques 

applied to multivariate patterns of EEG activity to estimate the strength of evidence that 

a listener has heard a given speech stimulus at each time-point after the onset of a word. 

As mentioned above, the choice of EEG features is critical. Unlike encoding models where 

the critical features in the EEG signal are discovered, in a decoding model they must be 

specified in advance. Consequently, a decoding model that fails to capture the relevant 

features from the EEG signal that map reliably onto linguistic events will result in decoding 

accuracy that does not exceed change levels (established by permutation tests). Our goal 

is to provide a metric of how speech-related neural activity is integrated after word onset 

and builds incrementally as the speech signal unfolds during word recognition to reveal 

lexical competition (e.g., Fig. 1). Importantly, our decoding approach offers the promise 

of providing evidence of lexical competition at the level of individual participants, which 

is precisely what is needed to characterize the kinds of variations observed in typical 

development and in clinical populations.
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1.3. The Present Approach

The present project combines recent advances in machine learning with standard EEG 

techniques to develop a method to estimate the dynamics of real-time auditory integration 

and decision making in SWR. To be clear, there are limits to what can be concluded from 

any neural measure of SWR because SWR consists of at least two fundamental levels of 

information − the acoustic/phonetic level and the meaning/semantic level. Any familiar 

acoustic event (e.g., the sound of a bell) can be retained in memory for later recognition, 

but words allow the mapping of that sound-based memory onto the referential meaning 

associated with that sound. For example, an infant who has not yet learned that the sound 

ball refers to a solid round object could nevertheless recognize the familiar sound pattern 

(ball) and discriminate it from the similar sound fall. Thus, a sound-based recognition 

process could be sufficient for SWR as long as the acoustic/phonetic analysis of the words 

had sufficient sensitivity and a robust representation in memory (unlikely for unfamiliar 

non-native phonetic categories) (Goldinger, 1998). Words, of course, add the possibility 

of semantics. However, even recognizing a word at the acoustic/phonetic level requires 

listeners to integrate material over time, and to sort out competing sound patterns.

As described in earlier sections, the VWP has a long history of addressing this mapping of 

spoken words to picturable referents. It therefore circumvents the problem faced by neural 

measures which do not rely on picture-based matching of the spoken words, and therefore 

do not unambiguously tap into the semantic product of word recognition. However, the 

concerns raised above about the limitations of the VWP raise the need for a complementary 

decoding paradigm that can identify the auditory precursors to word recognition. Thus, the 

present EEG-based paradigm has no referential component except the internal mapping of 

sounds to meanings that is already established for known words (such a mapping is absent 

in the case of unknown words or nonce words). Nevertheless, it is important to obtain a 

measure of purely sound-based neural decoding because a necessary component of SWR 

involves the decoding of the acoustic/phonetic information that defines a word-form over 

time. This could be crucial for identifying auditory integration deficits that could underlie 

a variety of clinical disorders and real-world challenges (e.g., speech in noise). Thus, the 

present approach evaluates how well an EEG-based paradigm in a non-referential context 

can assess the time-course of SWR even if the meaning-based component of SWR is not 

necessarily engaged.

As a first step, our approach focuses on sensor-space (scalp-based) EEG signals. We begin 

by asking whether there is a paradigm with sufficient sensitivity and selectivity to decode 

spoken words without attempting to determine how these scalp-based signals map onto the 

underlying neural substrate. When this computational approach is eventually coupled with 

source-localization, MEG, intercranial EEG (iEEG), or MRI, it could reveal not just what 

brain areas are involved in integrating auditory information to support word recognition, but 

what cognitive functions they perform. Such approaches could also reveal how these neural 

networks emerge over development or differ with communicative impairment. Furthermore, 

by isolating auditory cortical mechanisms we could address fundamental questions such as 

how high-level context shapes auditory perception (Gow & Olson, 2016), or how lower level 

auditory processes cascade to enable language understanding (Sarrett et al., 2020). This is 

McMurray et al. Page 8

Neuroimage. Author manuscript; available in PMC 2024 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



crucial for revealing the causal mechanisms of a variety of clinical disorders and applied 

situations in which word recognition differs, as it may help reveal the degree to which 

differences are due to auditory integration or to downstream lexico-semantic processes.

The primary goal of the present project, therefore, was to develop tools that use EEG 

to recover the dynamics of auditory information integration and decision-making even if 

a meaning-based level of information was not engaged. We used straightforward – and 

publicly available – machine learning tools to create a paradigm that can be easily deployed 

in the laboratory or potentially in the clinic. While machine learning and multivariate 

techniques have long been used with fMRI (Norman et al., 2006), their application to 

continuous time varying signals is fairly novel (Bae & Luck, 2018; Grootswagers et al., 

2017; King & Dehaene, 2014), and only a handful of studies have deployed such techniques 

with human speech (Beach et al., 2021; Brandmeyer et al., 2013). To date, these approaches 

have largely focused on the overall accuracy of classification after the entire word has 

been heard; however, as Fig. 1 illustrates, the primary issue we investigate is not decoding 

accuracy per se, but the pattern of partial confusions as the word unfolds over time due to 

lexical competition. These confusions are inferred in the VWP by aggregating probabilities 

of eye-movements to pictured referents across multiple repetitions of trials with the same 

spoken word. But because eye-movements are not a continuous variable (i.e., fixations can 

only occur every 200 msec), on any given trial one cannot determine the level of confusion 

between the target word and its cohort. In contrast, in the present EEG paradigm, we can 

train multivariate “templates” for each word and then ask, on each individual trial, precisely 

how confusable the target and cohort templates are at each msec as the auditory word-form 

unfolds in real-time.

As noted above, we cannot be certain in the absence of pictured referents whether we are 

tapping into the meaning-based level of word representation. But regardless, SWR must 

rely on a lower-level acoustic/phonetic decoding process of auditory integration to enable 

the downstream recognition of high-level meaning/semantics. Here, a critical marker of 

this kind of integration is evidence of co-activation when items overlap (e.g., baggage and 

badger). That is, during the onset period of an item (e.g., the ba- in badger), would the 

classifier report evidence for both the target and a competitor (baggage)? And how does that 

competition resolve over time? This is relevant for any auditory stimulus (both words and 

nonwords) in a speeded task that must rely on a form of auditory memory.

Thus, the present approach provides an essential first step in evaluating the neural correlates 

of the SWR process, with two key advantages over psycholinguistic methods: (a) the neural 

paradigm is entirely passive and does not require control over an overt behavior (e.g., 

eye gaze), and (b) decoding of multiple word candidates can be assessed in parallel on a 

msec-by-msec basis for a given trial. The long-term goal of the methods introduced here 

is to develop a neural paradigm that could be used with a variety of populations – from 

infancy to elderly adults, as well as people with communicative impairments. Thus, we 

focus on straightforward technologies and a minimal set of task demands to establish a 

robust proof-of-concept.
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In our neural paradigm, participants performed a simple task that was designed to keep them 

minimally attentive to a small set of words while EEG was recorded. Stimuli included eight 

word-pairs (cohorts) that overlapped at onset and would be expected to create a brief period 

of ambiguity or competition (e.g., badger/baggage, mushroom/muscle; see Table 1); these 

were matched to eight nonwords (e.g., babbid/baddow, musheme/muspil). We then trained 

a support vector machine (SVM) classifier to identify which of the eight words (for that 

individual subject) was the stimulus at each time window over the epoch, on each trial. The 

classifier was trained and tested at consecutive 20 msec increments over the post stimulus-

onset epoch. At each step we recorded the proportion of time the classifier chose the target 

word (e.g., badger), its cohort competitor (baggage), or one of the six unrelated words 

(mushroom) to construct classification curves analogous to Fig. 1. To test the extensibility of 

the procedure we tested participants in both a 64-channel, low impedance, active electrode 

system (N = 16 from the University of Iowa) and others on a 128-channel high impedance 

EGI system (N = 15 from the Haskins Laboratory). Thus, our analyses focus on the validity, 

utility, and reliability of the method with respect to factors like the number of trials, channel 

configuration and the EEG features that support categorization.

2. Methods

2.1. Participants

All subjects were right-handed, monolingual, native English speakers between 18 and 30 

years old. All participants had normal or corrected to normal vision. The Iowa sample 

consisted of 16 subjects (7 male, 9 female); the Haskins sample consisted of 15 subjects (1 

male, 14 female). One additional Haskins participant was dropped from analysis due to poor 

quality EEG.

2.2. Design and Items

Items consisted of pairs of bisyllabic words and nonwords with overlapping onset phonemes 

(Table 1). Pairs overlapped at onset by at least the initial two phonemes in order to elicit 

robust lexical competition. Half of the stimulus pairs were words and half were nonwords. 

Each pair had an onset phoneme that was unique from all other pairs, and that differed from 

all other pairs in multiple features. For example, the phoneme /b/ was only used in the word 

pair badger/baggage and the corresponding nonword pair babbid/baddow.

Over the course of the experiment, participants heard one of two sets of four word-pairs 

and four nonword-pairs (List A or List B in Table 1). Lists were counterbalanced such that 

each list had either a word- or a nonword-pair from the entire inventory of onset phonemes, 

but that any given subject was not tested on both the words and their matched non-words. 

For example, if badger/baggage served as a word pair for a given subject, babbid/baddow 
did not occur as a non-word pair for that subject. The lists did not differ in their average 

positional phoneme probability (MListA = .243, MListB = .23; t(30) = .621, p = .539) or 

biphone probability (MListA = .014, MListB = .010; t(24.212) = 1.564, p = .131), computed 

using Vitevitch and Luce (2004).
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We used five unique auditory exemplars of each stimulus item to ensure that the machine 

learning classifier did not rely on the unique acoustic properties (including background noise 

and pitch variations) of individual exemplars of a stimulus. Each of the 4 word-pairs and 4 

nonword-pairs (16 items total) was presented 60 times (5 exemplars × 12 repetitions), for 

960 trials.

2.3. Stimuli

Stimuli were recorded by a male native English speaker with a Mid-western dialect recorded 

at a sampling rate of 44,100 Hz. For each item we recorded 10–15 exemplars in a carrier 

sentence (He said badger) that was designed to ensure a more uniform prosody and speaking 

rate. We then selected the 5 clearest exemplars for use in the study.

Stimuli first underwent noise reduction in Audacity (Audacity Team, 2015). For this, we 

estimated the spectrum of the noise from a 1 second silent interval, and then subtracted 

this from the whole recording. Stimuli were then cut from the onset phoneme of the 

target word to the release of the final phoneme at the nearest zero crossing. Clicks were 

manually removed in Praat (Boersma & Weenink, 2009) at the nearest zero crossing. Finally, 

amplitudes were normalized using Praat and 0.100 sec of silence was added to the start and 

end of each stimulus to avoid artifacts from the sound card turning on. The average duration 

was 594 msec (SD = 90).

2.4. Procedure

Upon arrival in the lab, participants gave informed consent and completed a short 

demographic questionnaire. Then, participants were fitted with an electrode cap and moved 

to the EEG recording booth or room (see below for details on Iowa and Haskins EEG setups, 

respectively). Participants sat approximately 80 cm from the center of the display monitor. 

Target words were played over Etymotic ER1 insert earphones. Fourteen Iowa participants 

used an Acer monitor with a 1960 × 1080 display, and two Iowa participants used a Dell 

monitor with 1680 × 1050 display (both with a 60 Hz refresh rate). The Haskins participants 

used a 19” Dell monitor operating at 1280 × 1024 resolution (60 Hz refresh).

During EEG recording, participants completed a word identification task in which they 

reported the word they heard via a key press. Subjects heard a spoken word and matched it 

to one of two words (presented in text) that appeared about 1300 msec later, well after the 

word was complete. Participants used the left and right arrow keys to indicate their choice. 

Visual feedback (“Correct!” or “Incorrect”) was given after each response, and then the trial 

advanced.

On each trial, a black fixation cross on a gray background appeared on average 800 msec 

before the target word, to allow a “silent” period for later baselining of the EEG signal. 

This time was jittered by ±100 msec to avoid anticipatory effects on EEG between trials. 

When the audio file ended, two orthographic response options (the word and its foil) 

were presented. On half of the trials the response options were the target (e.g., badger) 
and its cohort competitor (baggage). On the other half of trials, the options were the 

target (e.g., badger) and an unrelated word (mushroom) from another set. These were 

randomized throughout the experiment. The interval between the start of the target word 
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to the response options was an average of 1350 msec, with a 100 msec jitter to avoid 

anticipatory effects in the data prior to response. Response options appeared 443 pixels to 

the left and right of the fixation cross. Visual feedback appeared 50 msec after the response. 

After a correct response, “Correct!” appeared in the center of the display for 500 msec 

and the experiment advanced automatically to the next trial. After an incorrect response the 

subjects saw “Incorrect, press the space bar to continue” and advanced to the next trial when 

the participant was ready. This allowed participants to take an optional break if needed. 

The intertrial interval was 700 msec with a 200 msec jitter. A mandatory break lasting 60 

seconds was inserted after every 240 trials.

2.5. EEG Methods

2.5.1. Iowa Equipment and Procedures—EEG signals were recorded in either an 

electrically shielded sound-attenuated booth (N = 14) or in a quiet room (N = 2), dimly 

lit by battery powered lights. EEG was recorded via a 64-channel Brain Vision actiSlim 

system, placed according to the International 10–20 system. Impedances at electrodes were 

less than 5 kOhms prior to recording. EEG was recorded at 500 Hz and amplified using 

a Brain Vision actiChamp system. Electrodes were referenced offline to the average of 

all electrodes for each subject. Horizontal and Vertical electrooculogram (EOG) recordings 

were recorded using Fp1 and Fp2, the two frontal-most electrodes. In the Iowa sample, 

EEG was synchronized to the auditory stimulus by recording audio data simultaneously to a 

separate channel of the EEG via a BrainVision StimTracker.

2.5.2. Haskins Equipment and Procedures—EEG was acquired in a quiet room 

with a testing area and a control area separated by a partial wall. The Electrical Geodesics 

Inc. (EGI) net amps 300 high-impedance amplifier EEG system and experiment presentation 

computers are located in one area, and the participant wearing the EEG net was located in 

the other area. EEG was collected at a 1000 Hz sampling rate via a 128-electrode geodesic 

sensor net. Online recordings were referenced to the vertex (Cz) and were later re-referenced 

to the average of all electrodes for each subject. The maximal impedance was kept under 

40 kΩ (impedances were rechecked periodically through the testing session). EEG was 

continuously recorded using Netstation 5.4 on a MacPro. Synchronization was performed by 

sending triggers directly from the subject computer to the EEG system at sound onset.

2.5.3. EEG preprocessing—Both data collection teams used an identical custom 

preprocessing pipeline based on EEGLab functions (Delorme & Makeig, 2004) and 

implemented in Matlab. First, we excluded bad channels from the continuous data with 

bad impedances that were identified by the experimenter during recording. Second, we 

sequentially high-pass and low-pass filtered the continuous signal from 0.1 Hz to 30 Hz, 

both with an 8 dB/octave rolloff. Non-stereotypic artifacts were then manually removed 

from the signal. Eye movement artifacts were removed using Independent Component 

Analysis.

Trials were then time-locked to the onset of the target word. For the Iowa sample, this 

was detected by identifying the first sample in the secondary audio channel that crossed a 

predetermined threshold. In the Haskins data, this was identified by the stimulus triggers 
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sent by ExperimentBuilder, the experimental software, to NetStation, the EEG recording 

software. Epochs started at −0.5 sec relative to target word onset and ended 1 sec after 

the target word onset. EEG was baseline-corrected based on a 300 msec window (from 

−300 msec to 0). After epoching, additional trials containing artifacts with an absolute value 

greater than 150 microvolts were excluded (3.13% of trials).

2.6. Machine Learning Analyses

Machine learning was performed on individual subjects on the basis of individual trials 

(not averaged data), using techniques largely similar to those we have pioneered with iEEG 

(Nourski et al., 2015). This consisted of three steps: feature selection, SVM parameter 

setting, and validation. Completely commented Matlab code along with data for one single 

subject are available on our OSF site at https://osf.io/wa3qr/.

2.6.1. General Methods—All machine learning analyses were conducted using a 

Support Vector Machine (SVM) framework implemented in LibSVM (Chang & Lin, 2011). 

The SVM used a radial basis function transformation of the data. Consequently, there were 

two free parameters, the cost parameter (C) and the width of the basis function (λ). SVMs 

were trained on two eight-alternative tasks to identify which of the 8 words (or 8 non-words) 

the subject heard on that trial. We also explored a full 16AFC training task (among all words 

and nonwords simultaneously). While performance was above chance, it was too low to 

reflect meaningful dynamics.

All analyses were implemented with a 15-fold cross validation procedure in which the SVM 

was trained on 14/15ths of the trials and tested on the remaining 1/15th. This was repeated 

15 times, such that each trial served as test trial once. Decoding accuracy (or identification 

proportions) were then computed as the average across all trials. Assignment of trials to each 

fold was random with the constraint that we attempted to equalize the number of trials from 

each word in each fold. This procedure was then repeated 30 times to allow for sampling 

noise created by the assignment of trials to folds. Data used to train the classifier represented 

several features computed separately for each trial for each channel. Each feature was 

Z-scored across trials (within subject) prior to entering the machine learning analyses.

2.6.2. Feature Selection—The goal of feature selection was to determine which 

properties of the EEG signal were most useful in decoding wordform identity. Prior work 

using ECoG has systematically explored the space of both electrophysiological and time/

frequency parameters to find optimal properties for speech decoding (Nourski et al., 2015). 

However, given the spatial imprecision of EEG signals compared to cortical electrodes, as 

well as the fact that some frequency bands are severely attenuated by the skull/scalp/dura 

mater, these could not be assumed for EEG.

To avoid overfitting the data, our strategy was to systematically explore a full space of 

features for the first five Iowa participants. We then locked these features for all further 

subjects (including the participants run at Haskins on a different EEG system). Feature 

selection focused on the following properties of the data: First, we considered the mean 

EEG voltage in each channel over a given time window. Second, we added higher order 

polynomial terms (slope, quadratic, cubic, etc.) reflecting the change in voltage at that 

McMurray et al. Page 13

Neuroimage. Author manuscript; available in PMC 2024 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/wa3qr/


channel over one of several time windows. This captures something akin to the phase of the 

signal, though unlike phase-based time/frequency approaches it makes no assumptions about 

the frequency band. Whenever a higher order polynomial term (e.g., a cubic) was added, all 

lower order terms (quadratic, linear, intercept) were also retained. Third, we considered the 

mean power within frequency bands for each channel, within that time window. We explored 

five frequency bands: delta (δ, 0 – 3 Hz), theta (θ, 4 – 7 Hz), alpha (α, 8–15 Hz), beta (β, 15 

– 30 Hz), and gamma (λ,30 −70 Hz)1 .

At this stage, each feature was extracted for each trial, for each channel at a fixed time 

window starting at 200 msec (which was suggested by exploratory work showing maximum 

performance near that range). We explored three time-window lengths (75, 125, and 250 

msec). This led to about 100 permutations of these basic features (e.g., EEG slope + θ 
over a 75 msec window). Within each particular set of features, we performed a 16 × 16 

brute force search of possible settings for C and λ (the free parameters of the SVM). C 

ranged from 2−2 to 218 and λ from 2−19 to 2−3 . This was done in a 15-fold cross-validation 

procedure, with the accuracy of the held out trials serving as the performance for that feature 

set. Each feature set was then run 30 times to smooth out variation due to the random 

foldings. Finally, test performance across each run was averaged and saved for that feature. 

The maximum performance across this matrix of possible features was then saved.

We found substantially better performance at longer time windows in the first five subjects. 

We also found that coding the EEG as a cubic (plus the lower order quadratic, slope and 

mean terms) within that time window yields the best results (there were few further gains for 

quartic and quintic terms). None of the time/frequency measures were useful by themselves, 

or in addition to the polynomial terms. This was later confirmed with the entire sample (see 

Results).

2.6.3. SVM Parameter Selection—With the features selected, we next set the two free 

parameters of the SVM. This was done using a hybrid search approach. For each subject, 

we extracted the features identified from our initial search (the cubic polynomial of the 

EEG over a 250 msec window) for each channel, starting at 200 msec. The SVM was then 

trained and tested at a particular combination of C and λ. Again, this was done in a 15-fold 

cross-validation procedure with 30 runs to smooth out the effects of the random assignments 

of trials to foils. Accuracy for that particular combination of C and λ was the average of the 

test-trials across 30 runs .

The optimal C and λ for that subject were initially based on an 8 × 8 brute force search using 

the same ranges described above. After this coarse search, we used the maximum values 

as the starting point for a constrained gradient descent method using a GPS/pattern search 

approach. This was done separately for words and nonwords to find the optimal parameters 

for each iteration through the analysis pipeline for each subject.

1Preliminary analyses also attempted a msec-by-msec decoder (no time window) that has been used in decoding studies of visual 
stimuli (Bayet et al., 2018, 2020; Cichy et al., 2015), but that set of features (the voltage from each electrode after low-pass filtering) 
did not result in significant decoding accuracy.
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2.6.4. Final Time-course Analyses—The final analysis deployed the SVM-

classification pipeline using the features and free parameters identified from the initial 

feature-selection process on the first five subjects, but now generalized across successive 

time windows. At each starting time (ranging from −.5 sec to +1 sec), the EEG was 

extracted and the polynomial was fit to extract the four parameters that served as features. 

Next, a new SVM was trained to identify which of the 8 words or nonwords was the target. 

Rather than extracting a parametric value for accuracy, on each trial we determined which 

of the 8 words or nonwords was the most likely response. This was then classified as target 

(the SVM reported the correct word), cohort (the SVM reported the onset competitor, e.g., 

baggage when the target was badger) or one of the other six unrelated words. These were 

averaged across trials for the target word and further averaged across the six non-targets 

to compute the response at each timepoint. The time window was moved in 20 msec 

increments to compute the overall decoding accuracy function across the entire timecourse.

2.7. Statistical Approach for Analyzing Decoding Performance

Identification responses (e.g., proportion target/cohort/unrelated identification at a given 

time) served as the dependent variable in all analyses. This can serve as a common metric 

that allows for pooling data across subjects with different numbers of electrodes, features 

etc.

2.7.1. Figures—For visualization, data were averaged across trials, within subject, and 

smoothed with a 0.1 sec triangular window. Error bars reflect standard error of the mean 

across subjects.

2.7.2. Detailed analysis of the timecourse of competition (mixed models)—
To characterize the timecourse of competition, we asked when the SVM identification of 

different competitor types (i.e., target, cohort, unrelated) differed significantly from each 

other. We ran a set of linear mixed effects (LME) models every 20 msec over the full 

timecourse epoch, from 100 msec before the onset of the target word to 1150 msec after 

the target word began. This model predicted SVM classification performance from a set of 

contrast codes designed to capture key variables of interest (e.g., target vs. cohort, cohort 

vs. unrelated). Models were run using the lme4 (v. 1.1–23; Bates & Sarkar, 2011) in R (v. 

4.0.3).

Separate models were run for the word and nonword results. Data were smoothed using 

a 100 msec triangular window. The DV in each model was the proportion of SVM 

classification of a specific word-type (e.g., target, cohort and unrelated). The fixed effects in 

each model were two contrast codes. The first captured a specific planned comparison (e.g., 

Target vs. unrelated); the second was orthogonal to it (Target and Unrelated vs. cohort). 

This latter contrast was obviously not of scientific interest, but it was included in the model 

as an orthogonal contrast code to the intended contrast (in this example, the Target vs. 

Unrelated contrast) so that the error variance reflected the full dataset rather than just the 

two conditions in the intended contrast (since all datapoints were relevant to either the 

primary or secondary contrast).
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The first model quantified whether SVM classification of target items differed from the 

phonologically unrelated item. This model included the fixed effect of Target vs. Unrelated 

as the contrast of interest, coded as Target (+0.5), Unrelated (−0.5), and Cohort (0). The 

second contrast of this model was Target + Unrelated vs. Cohort (Target or Unrelated: 

+0.33; Cohort: −0.66). The second model quantified whether SVM classification of the 

cohort differed from the unrelated as the primary contrast (Cohort: +0.5; Unrelated: −0.5; 

Target: 0). The secondary contrast was Cohort + Unrelated (+0.33) v. Target (−0.66). The 

third model asked if target identification (+0.5) significantly differed from cohorts (−0.5, 

with unrelated at 0). This model included the fixed effect of Target (+0.5) v. Cohort (−0.5, 

with unrelated at 0). The secondary contrast in this model was Target + Cohort (+0.33) v. 

Unrelated (−0.66).

Potential random effects in these models included Subject and Item. The random effects 

structure for each of these models was chosen using the model space approach developed by 

Seedorff et al. (submitted). In this approach, one tests all possible random effects structures, 

and chooses the model with the lowest Aikake’s Information Criterion (AIC). This approach 

has been shown to hold Type I error constant at 0.05 while maximizing statistical power, so 

as not to be overly conservative. Because we ran multiple models across time, the random 

effects structure was determined by using this model space approach across all three models 

and at multiple representative timepoints throughout the epoch. Then, the distribution of 

AICs by random effects structure was inspected, and the model which had the lowest AIC 

at the highest number of timepoints was selected to run across the full timecourse. For each 

model for both Words and Nonwords, this resulted in the maximal random effects structure: 

with both contrast codes serving as random slopes for both subject and item.

Finally, due to the large number of models (e.g., across time points), it was critical to 

control for family wise error. However, the results of significance tests over a timeseries are 

autocorrelated, and therefore are not truly independent tests. We thus used the familywise 

error correction of the Bootstrapped Difference of Timeseries (Oleson et al., 2017) analysis 

package in R to correct for family error. It computes the auto-correlation (ρ) of the t-statistic 

over the timeseries, and then computes a corrected significance level (α*).

2.7.3. Peak Detection—For analyses examining permutations of the basic paradigm 

(e.g., fewer trials, channels, etc), we employed simpler statistics based on the “peak” 

(maxima) identification responses. Here, better decoding performance should yield higher 

target and cohort identification rates and lower unrelated rates. To perform this analysis, we 

first extracted the data for each subject for each condition (e.g., 64 vs. 32 vs. 16 channels). 

We next averaged performance on words and nonwords (unless otherwise specified). Target, 

Cohort and Unrelated identification rates were then smoothed with a 160 msec triangular 

window2 . Lastly, we extracted the peak identification rates for each competitor type. 

These were manually checked against the full timecourse for a subset of subjects and then 

compared against the baseline in a series of paired t-tests.

2Note that this smoothing window was larger than the 100 msec window used for most visualizations because indices like peak 
needed to be identified from individual subjects and was highly susceptible to noise; in contrast visualizations were usually averaged 
across subjects and therefore required less smoothing.
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3. Results

3.1. The Timecourse of Auditory Integration

Fig. 2 shows the results of our primary analysis. Results for both words (Panels A,C) and 

nonwords (Panels B,D) showed clear evidence of integrating auditory information over time, 

and of partial parallel activation of the competing wordform (compare to Fig. 1). Within 

about 100 msec of word onset, classification responses favored the target (baggage) and 

cohort (badger) over the unrelated words (mushroom). These in turn were indistinguishable 

from each other until about 300 msec when the cohort began to be suppressed. There was 

remarkably similar performance across the two EEG systems.

To identify the time periods in which these curves differed, we used the mixed model 

approach described in the Methods. This tested the contrast between targets and cohorts, 

cohorts and unrelated and targets and unrelated at each 20 msec timeslice. Alpha was 

adjusted for the large number of contrasts (corrected for family-wise error using: Oleson et 

al., 2017), and the relevant statistics are shown in Fig. 2. This was done separately for words 

and nonwords for each of the two samples.

Table 2 shows a summary of the significant time windows for each contrast and for each 

sample. Across all four analyses (word/nonword × EEG system), the target deviated from 

the unrelated item from about 150 msec to 850 msec. Cohorts deviated from unrelated 

items at a similar point (roughly 150 msec) but persisted for a shorter period of time, 

ending at about 500–600 msec. Targets did not differ from cohorts until later around 350–

400 msec, and generally stayed separated until about 700–800 msec. Words and nonwords 

did not show substantial differences; however, results (particularly for cohort vs. unrelated 

identification) were somewhat less robust for the high impedance system. This suggests the 

additional channels afforded by that system may not fully offset the loss of signal fidelity 

(Kappenman & Luck, 2010), though we note that differences were not substantial.

As a follow-up analysis, we asked whether there were differences in competition dynamics 

between words and nonwords. Thus, following the approach described above, we combined 

the data from the word and nonword classifications and added a factor indicating which 

type of stimulus was heard (this was done separately for each of the two samples). We 

then ran three additional models which started with the same contrasts as in the model 

described above and added Word/Nonword (coded as Word: +1; Nonword: −1), along with 

its interactions with the contrasts (e.g., Target v. Cohort). No significant main effect of 

Word/Nonword nor any significant interactions with the three contrasts of interest were 

found.

3.2. The Timecourse of Auditory Integration in Individual Subjects

Fig. 3 shows the same results for 16 randomly selected subjects (8 from each sample). The 

pattern of competition observed in Fig. 2 at the group level is robustly observed in each 

individual subject across both the low impedance (top 8 panels) and high impedance (bottom 

8 panels) samples. The between-subject variability is broadly consistent with what is often 

observed in the VWP (McMurray et al., 2010).
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These visualizations suggest that the machine learning approach here can yield data that is 

interpretable at the level of single subjects. This raises the potential of using this technique 

for studies of development, special populations, or individual differences. To set the stage 

for this work, it is important to compute the reliability of this neural paradigm to determine 

how stable these differences are.

Testing for this work was done during the Covid-19 pandemic when it was important to 

limit contact with subjects, and there were some institutional constraints on data collection. 

Consequently, it was not feasible to bring subjects in twice to assess test-retest reliability. 

We considered using split-half reliability by training the classifier on two separate sets of 

trials and correlating the results. However, our analysis of the number of trials needed for 

accurate decoding (presented shortly) suggested that limiting decoding to 50% of the data 

would yield less reliable results.

Thus, we adopted a hybrid split-half approach that computes a measure of reliability that 

assesses the coherence of the data across trials akin to Cronbach’s α. First, the classifier was 

trained on the entire dataset (the same primary classification analysis as in Fig. 2). Next, 

trials were randomly assigned to set A or set B. Random assignment was constrained to 

have approximately equal numbers of trials from each item. From these subsets of trials, the 

time-course of identification (e.g., Fig. 2) was saved for each subset. We then averaged the 

data from each set (A or B) and smoothed it with a 0.2 sec window.

Second, we extracted summary indices from these time-course functions. These indices 

describe critical aspects of these time-course functions that have proven useful indicators in 

prior VWP studies. These include:

• Peak Target, Cohort: estimated using the same procedures described above. 

These have been linked to DLD (McMurray et al., 2010)

• Time of Target and Cohort Peak, Unrelated Minimum: Time post-stimulus onset 

at which the peak or minimum was first detected. Target and cohort peak times 

have been linked to hearing loss (McMurray et al., 2017).

• Minimum unrelated: estimated using similar procedure to peak.

• Slope of Target at 50%: linear slope of target identification as a function of time 

over 0.1 sec surrounding the point where the target crossed 50% of its maximum. 

This has been linked to typical development (Rigler et al., 2015; Zangl et al., 

2005).

• Time when Target+Cohort deviates from Unrelated: First, we computed the sum 

of the target and cohort identification; this was normalized to be a proportion 

of its maximum value; then saved the time at which this crossed 40% of its 

maximum. Measures like these have also been used to assess development 

(Rigler et al., 2015).

• Time when Target deviates from Cohort: First we computed the target – cohort 

identification curve. This was normalized to be a proportion of its maximum 
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value. Then saved the time at which this crossed 40% of its maximum. Measures 

like these have also been used to assess development (Rigler et al., 2015).

These indices were identified for the A and B sets of trials for each subject. We then 

computed a correlation coefficient across the 16 subjects to estimate the reliability of the 

measure across the two subsets. This was then repeated 12 times (with different random 

assignments of trials to sets) to compute the average correlation among sets. This measure of 

reliability assesses the coherence of the data across trials (rather than across sessions).

Results are shown in Table 3. Most of the reliability estimates (expressed as correlation 

coefficients) were moderate to large and reliability was very high (r>.90) for peak target 

and cohort identification for both types of EEG systems. Other metrics listed in Table 3 

showed mixed results. The peak time was highly reliable for the low impedance system 

for words, but less so for the high impedance systems and for non-words for both systems. 

Slope and deviation indices were modest across words/nonwords and both systems. Virtually 

all of these correlations were significant. The lower correlations may reflect the difficulty 

of estimating some of these parameters from noisy data (rather than the coherence of 

the measure), and future work should explore more sophisticated analytic approaches for 

obtaining precise estimates of temporal properties of the decoding results (Oleson et al., 

2017).

3.3. An overpowered classifier?

One concern with any machine learning approach is whether the paradigm is “too powerful” 

– perhaps this paradigm can yield above chance performance even when the data do not 

show an underlying separation between the categories? The analyses described previously 

took several steps to avoid this. First, we used a 15-fold cross validation procedure (so that 

the “test” data is never part of the training set). Second, we selected features based on only 

a small set of subjects and then fixed them for all subsequent analyses. Finally, while the 

parameters of the SVM (C and λ) are fit to each subject, they are only fit at a single time bin 

and then locked for the entire timecourse. Nonetheless this last step raises the possibility that 

we could be overfitting the data by optimizing these two free parameters for each subject’s 

data.

To rule out this possibility, we ran permutation tests on a subset of the data. In these 

tests, the assignment of words to trials was randomly shuffled. This should disrupt any 

relationship between the EEG patterns and its source in the auditory stimulus. We then 

repeated the entire analysis pipeline. If above chance performance was observed, this would 

be problematic.

These permutation tests were conducted on three subjects whose data were used in the initial 

round of feature selection (as these subjects would be most susceptible to overfitting), and 

an additional three subjects from outside of this select group of five. All subjects came 

from the low impedance / Iowa sample. For each these six subjects, we randomly shuffled 

the assignment of words to trials. Next, we optimized the free parameters of the SVM for 

that shuffled dataset, using the same procedure described above: a short brute-force search, 

followed by a gradient descent algorithm. As before, this was conducted only at a time bin 
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centered at 200 msec. Next, we used those free parameters to assess the full timecourse of 

processing. This was then repeated 100 times, and the full timecourse at each repetition was 

saved. To compute 95% confidence intervals, we extracted the results for each repetition and 

computed the average target, cohort and unrelated identifications at each time bin (averaging 

across the words). This was smoothed with a 100 triangular window. Finally, at each time 

bin, we sorted the resulting identification performance and identified the range at which 95% 

of the observed data fell.

Results are shown in Fig. 3. For each subject, the mean of the permutation tests (the magenta 

bar) hovered close to chance (0.125). This suggests that on average there was no systematic 

bias. Moreover, confidence intervals included chance at every point, and at many points, 

target cohort and unrelated fixations were outside of this range. This validates that the 

procedure used here does not artificially inflate performance.

In summary, the foregoing analyses establish the basic viability of the paradigm. The 

decoding analysis shows a dynamic pattern of classification that fits a lexical competition 

profile, featuring early consideration of both the correct item (target) and overlapping ones 

(cohort), but suppression of the incorrect ones later. This was seen for both words and 

nonwords, and nearly identical across different EEG recording systems. This pattern was 

observed in individual listeners and appears reliable. It is not an artifact of the classification 

approach.

With these basic properties established we next turn to several analyses that examine the 

extensibility of this paradigm and what the classification response means.

3.4. Electrode configurations

We next asked whether equivalent classification performance is obtained with different 

electrode configurations. We first addressed this question by reducing the number of 

channels contributing to the analysis. This is important for future applications to children 

or clinical populations where high-density arrays may not be feasible (due to setup time or 

cost). We used the same machine-learning approach with smaller arrays of channels. For 

the low impedance sample, this was done for 32 and 16 channels; for subjects tested with a 

high impedance EEG system this was done at 64 and 32. Channels were retained along the 

standard 10/20 grid, covering the full scalp but with lower density by sub-sampling.

Fig. 4 shows the results, averaged across words and nonwords for each recording system. 

In these plots, the original results using all available channels are shown in black; colored 

lines reflect the new analysis with fewer channels. For the low impedance systems, we 

observed no differences when the number of channels was reduced from the full 64 to 32 

(Panel A)—the black lines (all channels) are indistinguishable from the reduced (colored) 

lines. Statistically, there was no difference in peak identification for targets (t(15) = 0.19, d = 

−0.05, p = 0.85), cohorts (t(15) = 0.18, d = −0.05, p = 0.86) or unrelateds (t(15) = 0.12, d = 

0.03, p = 0.91). Further reducing the number of channels to 16 channels (Panel B), however, 

showed a significant performance decrement for all three word types (Target: t(15) = 3.39, d 

= 0.85, p = 0.0041; Cohort: t(15) = 2.50, d = 0.62, p = 0.0247; Unrelated: t(15) = 4.20, d = 

−1.05, p = 0.0008).
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A similar pattern was observed for the high impedance (128 channel) system. As before, 

when the number of channels was reduced by half (64 channels, Fig. 5C), performance was 

again indistinguishable from the original analysis, with no difference for target peak (t(14) 

= 1.00, d = 0.26, p = 0.33), cohort peak (t(14) = 0.83, d = −0.21, p = 0.42) or unrelated 

peak (t(14) = 0.25, d = −0.06, p = 0.81). However, again when the number of channels was 

reduced to a quarter of the original size (32, Fig. 5D), significant performance decrements 

were noted for targets (Target: t(14) = 4.73, d = 1.22, p = 0.0003) and unrelateds (t(14) = 

2.85, d = −0.74, p = 0.013), but not for cohorts (t(14) = 1.06, d = 0.27, p = 0.31).

Thus, the number of channels can easily be reduced by half in either EEG system. More 

importantly, the robustness can be plainly seen in individual subjects (Fig. 5F, H for the 

two systems respectively). The low impedance system may be slightly more robust to the 

absolute number of channels (32 channels showed no decrement with this system, but a 

decrement for the high impedance system).

We next asked if decoding performance was driven by whole head coverage or was primarily 

based on responses from auditory areas. Early auditory ERP components such as the P50, 

N1 and P2 are typically strongest at fronto-central electrodes. This reflects the origin of 

these components in Heschl’s Gyrus and the Superior Temporal Gyrus, which have dipoles 

oriented toward the top of the head. We thus compared the analyses with half of the channels 

(32 or 64) distributed evenly across the scalp to a new analysis with the same number of 

channels but centered in the fronto-central region (Fig. 5E,G for the two EEG systems). This 

showed a significant reduction in decoding performance for both low impedance (target: 

t(15) = 4.20, d = 1.05, p = 0.0008; cohort: t(15) = 2.85, d = 0.71, p = 0.0121; unrelated: 

t(15) = 4.68, d = −1.17, p = 0.0003) and high impedance systems for targets (t(14) = 3.84, 

d = 0.99, p = 0.0018) and unrelateds (t(14) = 3.36, d = −0.87, p = 0.0047), but not cohorts 

(t(14) = 1.29, d = 0.33, p = 0.22). This performance decrement cannot be attributed merely 

to the loss of channels since no decrement was observed with 32 channels across the full 

scalp, suggesting that the neural basis of decoding performance requires contributions from 

electrode locations that tap into neural systems beyond early auditory processing areas.

3.5. How many trials are needed?

The long-term goal of this project was to develop a method that could be used with children 

and clinical populations for evaluating the integrity of cortical processes that integrate 

auditory input over time. The current experiment used 960 trials (60 repetitions/word). This 

could be completed in about an hour by a typical adult, but this is too long for other 

populations.

Thus, we replicated the analysis with fewer trials to determine if a robust response could be 

obtained with less data. The analysis was repeated using the first 75% (45 repetitions/item), 

50% (30 repetitions/item) or 25% (15 repetitions/item) of trials. For each subject, this subset 

of the data was first extracted. We then estimated the two free parameters for the SVM using 

the same hybrid brute-force/pattern-search procedure at a single time (0.2 sec). Lastly, we 

repeated the timecourse analysis using these parameters. Note that at 25% of trials we could 

not use our standard 15-fold cross-validation which required at least one stimulus in each 

“fold” of the data – a single rejected trial (e.g., due to eye-blink or muscle artifact) would 
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make this impossible. Thus, we backed off to a 10-fold cross-validation for this analysis of 

the first 25% of trials.

Fig. 6 shows the results. At 75% of trials (45 repetitions / item; Panel A, D), performance 

was barely reduced and not significantly different from baseline for subjects tested with both 

low impedance (Target: t(15) = 1.14, d = 0.28, p = 0.27; Cohort: t(15) = 0.59, d = −0.15, p = 

0.56; Unrelated: t(15) = 1.08, d = −0.27, p = 0.30) and high impedance EEG (Target: t(14) = 

1.48, d = −0.38, p = 0.16; Cohort: t(14) = 1.28, d = −0.33, p = 0.22; Unrelated: t(14) = 1.31, 

d = 0.34, p = 0.21). This can also be seen in individual subjects. Fig. 7 (top row) shows 6 

representative subjects at 75% of trials and shows nearly identical performance to that with 

all trials (black curves).

With only 50% of trials (30 repetitions, Fig. 6B, E), we found a slight reduction in 

identification rates compared to 100% of trials for targets which was significant for low 

impedance EEG (t(14) = 2.23, d = 0.58, p = 0.043) but not high impedance: t(14) = 1.60, 

d = 0.41, p = 0.131). There was no significant effect for cohorts (Low Impedance: t(15) = 

1.45, d = 0.36, p = 0.17; High Impedance: t(14) = 0.02, d = − 0.01, p = 0.98) and a moderate 

increase for unrelated items for low impedance: t(15) = 2.70, d = −0.68, p = 0.0163) but not 

high impedance (t(14) = 0.89, d = −0.23, p = 0.39). This was coupled with a breakdown in 

the pattern for some subjects (Fig. 7, subjects 1,2,23), but not others (e.g., 24, 25).

Finally, at 25% of trials (Fig. 6, C,F), the overall pattern still showed a competition profile, 

but it was dramatically reduced, with large differences for targets (Low Impedance: t(15) = 

5.99, d = 1.50, p<0.001; High Impedance: t(14) = 3.71, d = 0.96, p = 0.0023), cohorts (High 

Impedance: t(15) = 3.00, d = 0.75, p = 0.0090; Low Impedance: t(14) = 2.12, d = 0.55, p 

= 0.0525), and unrelated items (High Impedance: t(15) = 6.64, d = −1.66, p<0.001; Low 

Impedance: t(14) = 3.83, d = −0.99, p = 0.0018). Few subjects showed the canonical profile 

(Fig. 7, bottom row).

Thus, good performance at the individual level can be obtained with 75% of the repetitions 

(45 reps / item) and group-level patterns are robust at 50% (30 repetitions). Note that 

this is on par with the number of repetitions used in machine learning approaches with 

electrocorticography (Nourski et al., 2015), which has much lower noise. While 640 trials 

are still substantial for many applications, experimenters may be able to reduce the number 

of items to further reduce the scale of the test, or possibly test across multiple sessions. A 

purely passive listening paradigm may also enable this larger number of trials feasible as 

the participant does not need to be actively engaged, and there is no time needed for an 

inter-trial interval or a behavioral response.

At a very small number of repetitions (25% / 15 repetitions), we found a weak pattern. These 

should be interpreted with caution, as not only is there less absolute data, but also because 

we could not perform a 15-fold validation with this data and had to back off to a 10-fold – a 

reduction in the amount of data actually used to train any individual SVM by about a third. 

While in principle one could employ less rigorous constraints on the cross validation, SVMs 

are sensitive to differences in the base frequency of individual words so we are cautious to 

recommend such a reduced number of trials per item.
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3.6. Training Effects: Are the nonwords words?

The primary analysis found little evidence that words and nonwords were treated differently 

by the decoding approach. This suggests that decoding performance may be tapping 

something more akin to auditory memory and integration processes that serve spoken 

word recognition (and lexical access) rather than word recognition itself. An alternative 

hypothesis however is that with 60 repetitions, the non-words may have rapidly become 

lexicalized. Prior work has shown rapid integration of novel words into the lexicon using 

fewer repetitions and with minimal task demands such as used here (Kapnoula et al., 2015). 

One can address this by performing classification analyses separately on the first and second 

halves of the trials. If nonwords were rapidly lexicalized, then one might expect differences 

between words and non-words during the first half of the experiment but not the second.

To address this possibility, we conducted a new analysis in which subjects’ trials were split 

in half, and the classification analysis was repeated separately for the early and late halves 

of the experiment. Because this hypothesis does not concern the kinds of measurement 

issues described above, and because our prior analyses show few differences in performance 

across the two EEG systems, we pooled across the two samples for a larger total sample 

size (N = 31). While this would not normally be done in a standard EEG analysis, this 

illustrates the power of using machine learning to convert the raw EEG to a performance 

metric which can now be appropriately pooled across systems. We note that our analysis of 

the number of trials needed for decoding (Fig.s 6,7) suggests that 50% (30 repetitions) is 

likely the minimum number of trials needed, and even this is likely only usable at the group 

level, not the individual level. Thus, we were anticipating an underpowered analysis and any 

conclusions drawn must be tentative.

Fig. 8 shows the results. When we compare the performance for words between early and 

late trials, we see few differences – targets and cohorts deviate from each other around 0.2 

sec in both conditions, and the target remains higher than the cohort until a little before 

1 second. However, in nonwords we see a subtly different pattern. During the early trials, 

targets and cohorts do not deviate until much later (after 400 msec) and show an overall 

smaller difference. In contrast the late nonword trials look quite similar to the words. This 

can be seen in Fig. 9, which shows the difference between target and cohort identification 

for words and nonwords separately in the early trials (Panel A) and late trials (Panel B).

To characterize these subtle differences, we used a simplified version of the analysis applied 

to the primary data set, conducting a significance test at each time window and correcting 

for multiple comparisons using the family-wise error correction of (Oleson et al., 2017). 

First, we compared targets to cohorts within each of the four conditions (early/late × words/

nonwords). For the early word trials (Fig. 9A), the target deviated from the cohorts from 

330 to 810 msec (σ = 0.962, α* = .0082). In contrast for nonwords, the deviation did not 

begin until later and was significant from 390 to 770 msec (σ = .965, α* = .0084). This 

suggests that during the early trials nonwords were not as robustly differentiated between 

targets and cohorts. When we turned to the late trials, however, we saw a different pattern 

in that both words (significant from 330 to 830 msec, σ = 0.966, α* = .0085) and nonwords 

(significant from 330 to 770 msec; σ = 0.953, α* = .0076) showed target and cohort onset 

at the same time. This supports the idea that the non-words may have been lexicalized over 
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repeated presentations. Importantly, however, these conclusions should be tempered by the 

fact when we subtracted the target/cohort difference (e.g., Fig. 9), this metric did not differ 

between words and nonwords (e.g., comparing the purple and green bars in each panel) in 

either the early or late phase of the experiment. This is likely because the experiment was 

underpowered for detecting effects, particularly when only 50% of the data contributed to 

decoding.

Thus, there is some evidence that at early trials non-words behave differently than words, 

and in a way that is consistent with the idea that words more stably engage lexical 

competition. However, evidence is mixed, and we cannot rule out the possibility that words 

and non-words behave similarly at both early and late trials within the one-hour exposure to 

60 tokens/item.

3.7. What features of the EEG support performance?

Finally, we asked which features of the EEG signal were essential for the excellent decoding 

seen in Fig.s 2 and 3, and to ask whether other theoretically driven features could be 

relevant. To do this, we used an approach similar to the feature selection that was initially 

run on the first five Iowa subjects, examining overall performance at a time window starting 

at 200 msec (where peak performance was observed; see Fig. 2), and testing a large set 

of features and other parameters. For each set of features, we saved the accuracy of target 

identification, after optimizing the cost and width of the basis function (the free parameters 

of the SVM). This was examined separately for each type of EEG system.

We began this examination by varying the duration of the time window using only the EEG 

features from our preliminary set (Fig. 10, left side of each panel). These were analyzed in 

a three-way ANOVA with impedance (high vs. low, between), duration (75, 125, 250 msec, 

within) and stimulus type (word/nonword, within). This showed a significant main effect of 

duration (F(2,58) = 34.1, p<.0001). This did not interact with lab (F(2,58) = 1.096, p = .34) 

or stimulus type (F<1). Follow-up comparisons showed that reducing the window size from 

250 to 125 msec (starting in both cases at 200 msec) led to significantly lower performance 

(averaged across words and nonword (t(30) = 2.16, d = 0.39, p = 0.039) and a further 

reduction to 75 msec showed an even more substantial decrease (t(30) = 9.42, d = 1.69, 

p<0.0001). There was no main effect of impedance (F<1), impedance × mapping interaction 

(F<1), or three-way interaction (F<1). This confirms that our selection of EEG features from 

the first five subjects was robust for the performance of all subsequent subjects. Longer 

time windows may be necessary to accurately decode words, particularly when higher order 

temporal properties of the signal are extracted (e.g., slope, quadratic, cubic).

Next, we investigated the contribution of time-frequency features. On each trial, for each 

channel, we estimated the band-pass filtered power over time in five frequency bands: delta 

(0–3 Hz), theta (4–7 Hz.), alpha (8–15 Hz.), beta (15–30 Hz.) and gamma (30–70 Hz). 

Theta, was of particular interest given claims that it is involved in grouping acoustic input 

for speech perception (Giraud & Poeppel, 2012). We trained the classifier on the average 

power from 200 to 450 msec in a single frequency band, or by combining that band with the 

ERP features (3rd order polynomial) (Nourski et al., 2015).
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Fig. 10 (right side of each panel) shows the results. These were analyzed with an ANOVA 

assessing impedance (high/low, within), EP (EP+TF vs. TF only, within), frequency band 

(δ, θ, α, β, γ, within), and item type (word/nonword, within). Frequency-band features 

alone showed performance that was slightly (∼2%) above chance. Moreover, there was 

no main effect of frequency band (F(3,87) = 1.083, p = .361) suggesting a similar effect 

across all bands. While frequency-band information was significantly above chance overall 

(p<.001 by one sample t-tests), this was within the limits of the permutation analyses in 

Fig. 4. Finally, exploratory smaller scale permutation analyses on just the frequency-band 

information confirmed that there was no significant evidence that these frequency bands 

contribute to decoding performance. In contrast, decoding accuracy improved dramatically 

when ERP features were added (F(1,29) = 255.4, p<.0001), and this did not interact with 

impedance (F<1), or frequency band (F<1). There was no effect of impedance (F(3,87) = 

1.359, p = .26).or of word/nonword status (F<1) and no interaction with any other factors 

(all p>.2).

Finally, adding the frequency-band information to the ERP features showed a small but 

significant decrement compared to the ERP features alone for all four frequency bands 

(θ: t(30) = 5.97, p<.0001; α: t(30) = 4.64, p = .0038; β: t(30) = 4.32, p = .0006; λ: 

t(15) = 6.15, p<.0001). This probably reflects the fact that SVM classifiers performs more 

poorly in general with too many variables. Thus, we see little evidence that time-frequency 

information carries any useful information for decoding the auditory input, and substantially 

more information is carried by the ERP.

4. Discussion

This project sought to develop a robust neural paradigm that can reveal the detailed 

timecourse of auditory integration and phonological competition using standard EEG 

procedures combined with off-the-shelf machine-learning techniques. Cognitive science 

largely using the Visual World Paradigm has shown distinct differences in the detailed 

timecourse of lexical competition associated with a variety of language and cognitive 

disorders (Desroches et al., 2006; McMurray et al., 2017; McMurray et al., 2010). However, 

the VWP may be of limited use with special populations who cannot follow instructions 

or who have impairments of attention/eye-movement control, and it can only test a limited 

subset of words (cf., those that are picturable). Moreover, the VWP relies on eye-movements 

that exhibit intrinsic delays compared to the actual rate of processing spoken language 

(McMurray, in press). A neural measure (EEG) could not only more directly tap into the 

underlining SWR process, but also would not require visual referents, opening up the entire 

lexicon for detailed scrutiny.

Our results provide compelling evidence that EEG can yield a highly reliable assay of the 

competition processes that undergird word recognition. In fact, there was a remarkable level 

of similarity between results from computational models (Fig. 1A), canonical VWP studies 

(Fig. 1B) and our neural paradigm (Fig. 2). Our decoding analyses confirmed the same 

characteristic pattern in which the target word and its phonological (cohort) competitor are 

active immediately after word onset (at levels that were greater than unrelated items). This 

is followed by a further rise in target activation and a fall-off in cohort activation. These 
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results using non-invasive EEG signals are similar to those obtained using ECoG (Rhone et 

al., 2022), lending support to the inference that they are measuring a similar neural substrate, 

despite the spatial filtering that occurs from scalp-based electrodes.

These EEG measures of speech decoding were remarkably sensitive at the individual subject 

level. Decoding performance for individual subjects accurately reflected the group patterns 

(Fig. 3), and cross-trial reliability was very high for many aspects of the decoding functions 

(Table 1). While more detailed psychometric work is necessary, our analyses suggest that 

our neural paradigm has great promise for developmental and clinical applications, an 

essential milestone for diagnostic work. Specifically, a variety of clinical disorders (delayed 

language development, developmental language disorder, dyslexia, hearing loss, auditory 

neuropathy) have been associated with impairments in phonological processing, auditory 

integration, and lexical competition (McMurray et al., 2022). This suggests that many of 

these disorders may show distinct profiles when we examine the timecourse of speech 

processing using our neural paradigm.

Also encouraging was the fact that our neural paradigm was robust across several factors 

(see Table 4 for a summary). First, two different EEG systems (gel-based and saline-based) 

provided nearly identical results despite different numbers of electrodes and different levels 

of impedance. This latter factor is important as traditional ERPs are highly sensitive to 

this variable (Kappenman & Luck, 2010). This cross-platform consistency was impressive 

since the specific EEG features and time-windows that were optimized for one system 

were applied directly to the other. Second, the number of channels did not affect decoding 

accuracy unless they were reduced below 32 or were limited to the fronto-central electordes. 

This suggests that our neural paradigm is amenable to less expensive low-density EEG 

systems used for clinical and developmental applications. Third, the number of stimulus 

repetitions per item required for reliable decoding of the timecourse of SWR is not so high 

as to prevent its utility for special populations (e.g., reducing the set of items from 16 to 8 

and the number of repetitions from 60 to 30 would result in the entire training and testing 

protocol being completed in 30 minutes).

An unresolved interpretive issue is what the classifier is using as the “neural code” for 

words. Our classifier performed best with longer time windows, and with a higher-order 

polynomial description of the EEG signal over time. Thus, there is substantial information 

in the dynamics of the EEG signal over a temporal window of 200 msec. This may 

reflect in part some form of neural entrainment to the envelope of the signal (Brodbeck 

& Simon, 2020) and this kind of information may be embedded in analyses based on 

the phase of oscillations in specific frequency bands. However, we note that the absolute 

magnitude of entrainment detectable in scalp EEG is often quite low (cross correlations ∼ 
0.1), suggesting this may not be sufficient. Moreover, decoding accuracy was remarkably 

reduced if only fronto-central electrodes (which respond to auditory areas) were used (Fig. 

5E-H). This suggests the need for a broadly distributed set of neural generators to maximize 

SWR performance in our neural paradigm, rather than just the fronto-central electrodes 

that typically have the strongest association with auditory areas. In addition, we found 

poor performance with features based on power in traditional EEG frequency bands alone, 

and they did not improve performance over and above the ERP features alone. While 
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these oscillations are undoubtedly involved in language, this suggests they do not carry 

information about the content of auditory input, but may play a role as modulators of this 

content (e.g., participating in word segmentation).

One final question is whether our neural measure is tapping lexical processing or the 

prelexical auditory analysis of speech signals. Our goal was not to distinguish these 

two levels, but to focus on the prelexical auditory analysis where there is a distinct 

methodological need. Nonetheless, this remains an important question. In this regard, overall 

performance did not differ between words and nonwords (Fig. 2). Critically, we note that our 

decoding approach was not asked to discriminate words from nonwords (indeed, this was 

not possible3 ). Rather, we asked if word/non-word status modulated the decision dynamics 

and found no difference. There are several possibilities for interpreting the absence of this 

lexical/nonlexical effect.

First, our measure may actually reflect some aspect of word recognition, but with 60 

repetitions per item, the nonwords may have become rapidly lexicalized over the course 

of the experiment (Kapnoula et al., 2015), and Fig. 8 shows limited evidence for such a 

learning effect. Supporting this, we note that performance was maximal with electrodes 

across the whole head. This suggests that our response does not merely reflect low-level 

auditory encoding.

Second, there may have been a subtle word/non-word difference but we were unable to 

detect it. Gwilliams et al. (2020), present an encoding model that shows much more robust 

effects of surprisal in sentence context than isolated words (as was used here). This seems 

unlikely to account for the differences between our results and those of Gwilliams et al. as 

our measure was not surprisal but the efficiency of activating words, and recent work with 

the VWP suggests little effect of sentence contexts on this measure (Smith & McMurray, in 

press). However prior work using encoding models also suggests that word/nonword effects 

may only be detectable for words with late points of disambiguation (Di Liberto et al., 

2019), while most of our words could be disambiguated after the 2nd or 3rd phoneme. This 

seems like a more likely explanation for the failure to find word/nonword differences in our 

results.

Third, because the encoding approach has been implemented with continuous speech 

containing sequences of words, rather than isolated words as in the present work, measures 

of surprisal (at both the phonemic and lexical levels) can be obtained (Brodbeck, Hong, 

et al., 2018; Gwilliams et al., 2018). These surprisal results provide clear evidence that 

listeners are sensitive to the ordering of linguistic events, which differ between sequences 

of words and nonwords. In contrast, because our nonwords were highly phonotactically 

legal and repeated many times, there may have been little surprisal. Future work using 

our decoding approach could be expanded to include words and nonwords embedded in 

sentences (potentially eliciting surprisal effects) to determine whether effects of phoneme 

or lexical sequencing alter decoding accuracy. The fact that it did not suggests that at some 

3The set of words and nonwords for a given subject were highly distinct (e.g., a subject who heard badger/baggage as words did not 
also hear babbid/baddow as nonwords). Consequently, attempts to use the classifier to decode word vs. nonword performance were not 
attempted as good performance could be driven entirely by phonemic dissimilarity of the words and nonwords.
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level the processes of integrating auditory information over time to support a decision may 

be similar for both words with a rich semantic structure and meaningless (but with familiar 

wordforms) non-words.

Finally, an intriguing possibility is that we found no differences because the words were 

treated as nonwords. Our words were heard in isolation, in a task that required no semantic 

analysis, and were repeated many times. As a result, the words may not have fully engaged 

the language network, and subjects may have been somewhat inattentive to higher level 

lexical factors by the end of the experiment. Consequently, the words may have been 

processed as efficiently as the nonwords.

In summary, while our results do not unambiguously index word recognition, they provide 

clear evidence of tracking a host of processes that are relevant to it: rapid encoding of 

the auditory input, integration and accumulation of input over time, and dynamic decision 

making. Some of these processes may be seen as a form of “speech tracking” in which the 

EEG signal passively reflects the auditory input. Indeed the longer time window for analysis, 

for example, may be crucial for picking up things like the morphology of the N1/P2 complex 

which lasts several hundred msec and has been linked to specific phonetic features like 

voicing (Frye et al., 2007; Toscano et al., 2010). Such processes are likely critical to the 

broader set of processes needed to support word recognition. What is critical here is the 

ability to see how those processes are integrated to lead to the temporal dynamics of word 

recognition, a picture that may be crucial to understanding a variety of communication 

disorders. Thus, the paradigm we have described here may serve as a robust indicator of 

the integrity of a constellation of critical complex auditory functions that are essential for 

spoken word recognition and cannot be assessed in other ways in subject populations who 

are unable to perform standard psycholinguistic tasks.
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Fig. 1. The dynamics of spoken word recognition: model and human behavior.
A) activation as a function of time in the TRACE model (McClelland & Elman, 1986) as a 

target word (here, beaker) is heard. Words are differentially active depending on match to the 

input. Activations generated with TRACE (Strauss et al., 2007). B) Competition dynamics 

can be characterized in humans using the Visual World Paradigm (Allopenna et al., 1998; 

Salverda et al., 2003) in which eye movements to pictures representing various lexical 

candidates are monitored while the subject hears a target word (here, wizard) Shown is the 

likelihood of fixating each object over time after hearing wizard for 40 typical adolescents 

(Clayards et al., 2008; McMurray et al., 2010).
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Fig. 2. 
Results of machine learning analysis. Each panel shows the likelihood of the classifier 

choosing the target (the word that was heard, e.g., badger), its cohort (an onset competitor, 

e.g., baggage) or an unrelated word (e.g., mushroom) as a function of time. Word onset is 

at 0 sec. Each point marks the onset of a bin (e.g., data at .25 sec represents a classification 

analysis using EEG data from .250 to .500 sec). Chance (thin gray line) is 0.125. A) Results 

for classification among the 8 words in subjects tested on a 64-channel low impedance EEG 

at Iowa (N = 16). B) Results for classification among the 8 nonwords in the Iowa sample. 

C) Results for classification among the words for subjects tested in a 128-channel high 

impedance EEG at Haskins (N = 15). D) Results for classification among nonwords for 

Haskins sample.
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Fig. 3. 
Performance on the classifier over time for representative individual subjects. Each panel 

shows the likelihood of selecting the target (the word the subject heard, e.g., baggage), its 

onset competitor or cohort (badger) or an unrelated word at each time. Each point represents 

the start of the time-window used for the training data. Chance (marked in black) – is 0.125. 

The first 8 subjects are from the low impedance / Iowa sample; the next 8 are from the high 

impedance / Haskins sample.
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Fig. 4. 
Results of a permutation test conducted on fix individual subjects. Shown is each subject’s 

proportion of target, cohort, and unrelated identifications over time (e.g., Fig. 3, main text). 

The magenta bar represents the mean of 100 runs in which the assignment of stimuli to 

trials was randomized; the confidence intervals represent the values between which 95% of 

the observed results fell. Note that subjects 1,3 and 4 (top row) were subjects on which the 

initial feature identification was conducted; subjects 6–8 (bottom row) were not.
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Fig. 5. 
Performance of the classifier as a function of channel configuration averaged across words 

and nonwords. In each panel, the original data (e.g., the average of words and nonwords) 

is shown in black; red, blue and gray lines depict results of an identical analysis with a 

reduced number of channels. A) For low impedance EEG, 32 channels (sampled from across 

the scalp) yields identical performance to 64 (the black curves are behind the colored); B) 

For low impedance systems, 16 channels yield significant reductions in both peak target and 

cohort identification. C) High impedance systems with 64 channels show little performance 

decrement relative to the full 128 channels: D) High impedance EEG with 32 channels 

shows noticeable reductions. E) In contrast to A, the use of only the 32 fronto-central 

channels shows large drops in performance. F) Four representative low impedance subjects 

for analyses with 32 channels (full scalp), matching A. G) In contrast to C, the use of 

only the 64 fronto-central channels shows a decrement in performance for high impedance 

systems. H) Four representative high impedance subjects for analyses with 64 channels (full 

scalp), matching C.
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Fig. 6. 
Effect of number of trials on performance. In each curve, the black represents the original 

data trained on 100% of trials (e.g., Fig. 2, main text). Colored curves are the same results 

trained on the first 75%, 50% or 25% of trials. Top row: Low impedance systems; Bottom 

row: High impedance.
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Fig. 7. 
Effect of number of trials on performance in individual subjects. Each column represents a 

subject. Top row: 75% of trials; Middle: 50% of trials, Bottom: 25% of trials. The left 3 

subjects were tested with the low impedance EEG; the right three with a high impedance 

system.
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Fig. 8. 
Effect of word/nonword status and early vs. late trials on performance. Each curve shows the 

proportion of identifications as the target, cohort and unrelated at each 0.020 sec bin.
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Fig. 9. 
Target minus competitor identification rates as a function of time and time in the experiment. 

Results are pooled over both samples. Here, a value of 0 indicates that the target did not 

differ from the cohort. A) Early trials (1st half of trials). B) Late trials (2nd half of trials). 

Significance bars test the difference between target and cohort at each time (corrected 

for family wise error), asking if the curve deviates from 0. At no point did the curves 

significantly differ from each other. (early vs. late trials) on performance.
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Fig. 10. 
Performance (accuracy) of the classifier at 200 msec for different feature sets. For each 

model, the maximum performance across a range of C and λ (free parameters of the SVM) 

was saved and averaged across subjects. Error bars represent SEM. Purple bars on the 

left of each panel show performance of classifiers trained on the ERP only for a range 

of window lengths. In all three window lengths, the features consisted of the mean, linear 

slope, quadratic and cubic over that time window. In the right portion of each panel is shown 

a 2 × 5 analysis crossing the mean power in five frequency bands and whether the ERP was 

also included. The time-window was always 250 msec and the ERP (if present) was coded 

as the mean, linear slope and quadratic within the time -window.
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Table 1

Items used in the experiment. Note that each participant only heard four words and four nonwords. Words in 

set A were paired with non-matching nonwords from set B (or vice versa) to avoid confusion.

Words Nonwords

List Items List Items

A badger baggage B babbid baddow

A muscle mushroom B muspil musheme

A desert devil B dethin dezhune

A waffles washer B wathind wassa

B captive cashew A cathrung caffo

B lobster lodging A lodrum logort

B peaches peacock A peatash peapung

B sunburn sundae A sungoom sunjee
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Table 3

Hybrid split half reliability for several measures extracted from the dynamic identification curves. Reliability 

is expressed as a pearson correlation after trials are randomly split into two groups. Correlations are averaged 

across 12 random splits. With 16 subjects, the threshold for significance at α = .05 (marked with *) is r>.498, 

and at α = .10 (marked with +) is r>.426.

Measure
Words Nonwords

Low High Low High

Peak Target Identification Rate 0.872* 0.928* 0.933* 0.963*

Peak Cohort Identification Rate 0.940* 0.951* 0.954* 0.948*

Minimum Unrelated Identification Rate 0.963* 0.971* 0.978* 0.980*

Time of Target Peak 0.834* 0.535* 0.581* −0.001

Time of Cohort Peak 0.876* 0.028 0.734* 0.517*

Time of Unrelated Minimum 0.923* 0.476+ 0.442+ −0.174

Slope of Target at 50% 0.645* 0.710* 0.677* 0.873*

Time when T+C deviates from Unrelated 0.924* 0.715* 0.656* 0.352*

Time when Target deviates from Cohort 0.248 0.018 0.368 0.664*
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Table 4

Summary of decoding performance across methodological factors. Rows in gray are the baseline for 

comparison. √ indicates that a given level of the factor showed no significant departure from that baseline; ∼ 
indicates mixed evidence with one or more significant departures; ✗ indicates a significant deparature in 

almost all levels. n/a: not tested. F/C: fronto-central electrodes only.

Factor Level Low-Z (Iowa) Hi-Z (Haskins)

Number of Electrodes 128 √ √

64 √ √

32 √ ✗

16 ✗ n/a

Electrode Geometry Reps/Item 64 – F/C n/a ✗

32 – F/C ✗ n/a

60 √ √

45 √ √

30 ~ √

15 ✗ ✗
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