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We present a novel application of a stochastic ecological model to the study and analysis of microbial growth
dynamics as influenced by environmental conditions in an extensive experimental data set. The model proved
to be useful in bridging the gap between theoretical ideas in ecology and an applied problem in microbiology.
The data consisted of recorded growth curves of Escherichia coli grown in triplicate in a base medium with all
32 possible combinations of five supplements: glucose, NH4Cl, HCl, EDTA, and NaCl. The potential complexity
of 25 experimental treatments and their effects was reduced to 22 as just the metal chelator EDTA, the
presumed osmotic pressure imposed by NaCl, and the interaction between these two factors were enough to
explain the variability seen in the data. The statistical analysis showed that the positive and negative effects of
the five chemical supplements and their combinations were directly translated into an increase or decrease in
time required to attain stationary phase and the population size at which the stationary phase started. The
stochastic ecological model proved to be useful, as it effectively explained and summarized the uncertainty seen
in the recorded growth curves. Our findings have broad implications for both basic and applied research and
illustrate how stochastic mathematical modeling coupled with rigorous statistical methods can be of great
assistance in understanding basic processes in microbial ecology.

Mathematical modeling coupled with rigorous statistical
methods can be of great assistance in understanding the inter-
action of organisms with their physical and biological environ-
ment (8, 47, 48, 50, 52, 56). Studies in the field of predictive
microbiology have shown that successful modeling requires
both adequate models and thorough data sets (57; for exten-
sive reviews, see references 10, 42, and 55). In predictive mi-
crobiology a two-step modeling approach is used (reference 55
and citations therein). Primary models describe the basic rules
of how microbial numbers change over time (52). Next, these
simple models are used to derive secondary models that ac-
count for the effect of a set of factors in microbial growth.

The forces of the environment and the events of reproduc-
tion and growth are themselves stochastic in nature (3, 21, 24,
32, 36, 39, 44, 45, 51, 53), yet simple ecological models, such as
the Verhulst logistic equation, result in deterministic predic-
tions. However, smooth convergence to asymptotic results is
not what is usually seen, even in rigorous experimental settings
(17, 31). Hence, a more realistic alternative to population
growth modeling is to confront stochastic equations with the
data at hand (references 5, 14, and 17 and citations therein and
references 41 and 47).

In this paper, we describe a novel application of a stochastic
population model to analyze how environmental conditions
influence microbial growth dynamics using an extensive exper-
imental data set. The primary model used was the stochastic
Ricker (SR) equation (27, 51). Our secondary model was a

novel use and application of the SR model in an analysis of
variance (ANOVA)-like format to account for differences be-
tween and within experimental conditions. We use rigorous
statistical methods to characterize the effects of chemical sup-
plements on the following aspects of bacterial growth: the rate
of attaining stationary phase, the population density at which
stationary phase occurs, and the variability associated with the
growth process. The experimental data were time series mea-
sures of Escherichia coli growth in a basal medium amended
with all 32 possible combinations of five supplements, namely,
glucose, NH4Cl, HCl, EDTA, and NaCl (Fig. 1). All supple-
ment combinations were tested in triplicate. The methods and
results presented here have broad implications and can be
applied to any situation in which the experimentalist wishes to
determine the factors that affect growth responses of microbial
isolates.

The organization of this paper is as follows. In the first
section, we present the experimental procedures used. Next,
we present a theoretical background section that is divided into
three parts. In the first part, we provide a brief description of
the SR model and maximum-likelihood parameter estimation
methods. In the second part, we present details of how we
derived various secondary models to explain the data. Among
those models, the best one was chosen using information the-
oretic criteria (1, 15, 54). This model selection procedure is
described in the third part of the theoretical background sec-
tion. After presenting the results, we discuss how the SR model
compares to other stochastic models and how it can be used to
approach the following important problems in predictive mi-
crobiology: (i) building a stochastic lag phase model and ac-
counting for the three main phases of microbial growth, (ii)
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accounting for time-varying environmental factors, (iii) ac-
counting for microbial interactions in the model predictions,
and (iv) using an adequate model selection tool that accounts
for overparameterization and considers all the models simul-
taneously instead of stepwise.

MATERIALS AND METHODS

Growth curve experiments. The organism used for the experiments was Esch-
erichia coli HB101. As a basal medium, a diluted and modified Luria-Bertani
(LB) broth was used (1 g/liter tryptone, 0.5 g/liter yeast extract, and 10 g/liter
NaCl). The basal medium was supplemented with all 32 possible combinations of
five chemicals in the following concentrations: glucose, 8 g/liter; NH4Cl, 10
g/liter; HCl, 0.0005 M; Na2EDTA · 2H2O, 0.05 g/liter; and NaCl, 20 g/liter. Each
growth medium was inoculated with a 10�3 dilution of an overnight (22-h)
culture of the organism grown in undiluted LB broth at 37°C and shaken at 200
rpm. A 25 factorial design with 32 experimental treatments was achieved by
transferring triplicate 200-�l aliquots of each medium to a 96-well microtiter

plate. This plate was sealed with a breathable membrane (Breathe-Easy; Diver-
sified Biotech, Boston, Mass.) and incubated in an automated plate reader
(PowerWave HT; Bio-Tek Instruments, Inc., Winooski, Vt.). The plate was
continuously shaken between readings at level 4, and optical density (OD) values
of the cultures were measured at 15-min intervals. Thus, 96 growth curves, each
consisting of 193 measurements, were obtained. The experimental design is
summarized in the plot titles in Fig. 1. Since the maximum recorded OD value
was 0.362, we assume a linear relationship between OD and population size
throughout this work.

Theoretical background. (i) Primary model: the SR model. We modeled the
growth dynamics of each treatment combination using a stochastic logistic
growth model based on the Ricker model (51). The Ricker model has a long
history in population ecology modeling (35) and has been used as a discrete
version of the well-known Verhulst logistic differential equation (40). The Ricker
equation expresses the one-step-ahead population size as a function of the
current population size and includes a density-dependent effect:

Nt�1 � Nt exp�a � bNt� (1)

FIG. 1. Plotted are the three replicated growth curves (OD � 100 as a function of time [min]) of each of the 32 design types (or treatment
combinations). Each replicated growth curve is marked with a different line type. In the titles above each plot, the factors present or absent are
indicated by 0 or 1, respectively, with the sequence of treatments being glucose, NH4Cl, HCl, EDTA, and NaCl.
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Let Nt be the population size at time t. The parameter a can be thought of as the
speed at which equilibrium is reached (mathematically, it is the eigenvalue of the
Jacobian matrix, found after linearization around the equilibrium [39, 40]). The
parameter b represents the effect of the current population size on the rate of
growth. For example, if b is �0, then the current population size has a negative
effect on growth, thus expressing density dependence. In that case, the model has
a nontrivial stable equilibrium whose position is given by N� 	 �a/b. The dy-
namic behavior of this model up to and including chaos is well known (17, 27, 40).

A stochastic version of this model bridges the gap between theoretical ideas
and available data sets. The stochastic formulation of the deterministic model
leads to a hypothesis that explains how the departures from the deterministic
predictions occur in a given time series of population growth (17). The sources
of variability may come from observational error or from process error. Obser-
vational error relates to the fact that at a given time, the total number of
individuals cannot be known exactly, and the experimenter’s estimate is based on
a sample. Process error comes from uncertainty inherent in the process of growth
itself. Population dynamics theory further subdivides the process error into
“demographic” and “environmental” stochasticity. Demographic stochasticity
represents the variability due to random contributions of births, deaths, and
migrations of individuals in the population (17, 33). Environmental stochasticity
represents the effect of external factors on the individuals of the population (23).
For example, in Baranyi’s stochastic models (5, 6, 7), the equations’ coefficients
are random variables that represent the biological variability between the indi-
vidual cells in the population. In the ecological theory context, this is a model for
demographic stochasticity (23). Cushing et al. (17) have shown that considering
both demographic and environmental stochasticity is essential to adequate pop-
ulation dynamics modeling but that integrating both sources of uncertainty in a
single model is not an easy task.

Because we were dealing with an experiment in which a given environment was
imposed on bacterial populations, we chose to model environmental stochasticity
alone. The stochastic Ricker model is written as follows (27):

Nt�1 � Nt exp�a � bNt � 
Et� (2)

where 
Et is a random shock to the population growth rate at time t, and the Et

are independent and normally distributed with mean zero and variance one.
Because the current population size depends on the previous observation, this
model has the Markov property and in the log scale it becomes a first-order
nonlinear autoregressive model:

Xt�1 � Xt � a � b exp�Xt� � 
Et (3)

where Xt 	 ln Nt.
Setting a equal to 0 and b equal to 0 defines a discrete-time Brownian motion

process with zero drift where there is no population density feedback typical of
ecological processes (11, 23, 27). When a is not equal to 0 and b is equal to 0, the
model is also a discrete-time Brownian motion with added drift. If a is not equal
to 0 and b is not equal to 0, the model includes (positive or negative) density
dependence. In particular, the model in which a is not equal to 0 and b is �0
represents a stochastic logistic growth. Under this model, the population no
longer attains a single deterministic equilibrium, as in the Ricker equation, but
instead, it approaches a “cloud of points” (60), a stationary distribution which
can be approximated by a gamma probability density function (20, 24) whose
mean is �a/b. The point �a/b represents a center for return tendencies: it is the
population abundance at which the average change is Nt, conditional on Nt�1

being zero, thus accounting for the stationary phase. Note that the stochastic
Ricker model does not include a term to account for the lag and death phases of
bacterial growth in a batch culture, but as will be shown, the model serves as a
very good approximation of these growth phases during the monitored period,
despite the fact that the death phase is often evident. We later propose and
briefly explore simple modifications to the stochastic Ricker model and other
models to account for the processes occurring during these two phases of bac-
terial growth in batch cultures.

The problem of connecting a time series of observations with the proposed
model in equation 2 requires the specification of a likelihood function. For each
of the treatments, we estimated the corresponding parameters of the SR model
as follows: suppose population abundances of a single culture are observed from
time 0 to q. The likelihood function is a function of the unknown model param-
eters � 	 [a, b, 
2]�. It is the joint probability density function for the vector of
random variables X 	 [X1, X2, . . ., Xq]� conditional on X0 	 x0 and evaluated at
the recorded vector of values x 	 [ln n0, ln n1, . . ., ln nq]� 	 [x0, x1, . . ., xq]� (25,
27). Because of the Markov property, the joint probability density function of the
observed data, given our proposed model, is just the product of the individual
transition density functions. The maximum-likelihood parameter estimates

(MLEs) are the parameter values that make the observed data “most probable”
or “most likely,” i.e., they maximize the likelihood function for time series data,
which is given by (27):

L
a, b, 
2� � �
t	1

q

p
xt � xt�1�

� 

2 2���q/2 exp� �
1

2
2�
t�1

q


xt � xt�1 � a � bext�1�2� (4)

Let Yt 	 Xt � Xt�1 denote the one-step differences of the logarithmic population
size. Dennis and Taper (27) show that the MLEs of a, b, and 
2 under this model
are identical to the least-squares estimates obtained by a linear regression of the
observed yt on nt�1, where t 	 1,2, . . ., q. This makes parameter estimation a
straightforward task, and many commercial statistical packages can be used. We
note that the confidence intervals returned by those packages are not correct in
this case, because the observations at each time step are not independent of each
other. Furthermore, the value b 	 0 is at the edge of the set of values b � 0 for
which the stochastic process Nt is ergodic, thus violating one of the regularity
conditions under which a �2 approximation to the likelihood ratio test is valid.
Using the �2 approximation thus yields inflated type I error rates (27). Instead,
confidence intervals for the parameter estimates have to be found using the
parametric bootstrap (PB) (29, 38). The PB of a stochastic model of population
dynamics involves the following steps (26, 27). From a given data set, the ML
estimates of the parameters are calculated for the chosen stochastic model and
used to simulate many time series data sets (e.g., 2,000) of the same length as the
original data set, using the same model. The ML estimates are then found for
each of these data sets. Their histogram (or kernel density estimate) represents
an estimate of their sampling distribution, from which various descriptive statis-
tics can be obtained (e.g., the 2.5 and 97.5 percentiles).

(ii) Secondary model: an ANOVA variant of the SR model. In predictive
microbiology, secondary models describe the dependence of primary-model pa-
rameters on environmental factors. Here, the primary-model parameters are
contained in the stochastic growth rate function (i.e., the terms in brackets in
equation 2). Hence, the natural way to rigorously determine whether a certain
combination of environmental factors affects the growth rate is to adopt an
approach that is conceptually “ANOVA-like” and test whether there are differ-
ences in the estimated model parameters within and between experimental
scenarios. Inference using this approach was greatly facilitated in this study
because our data set was a perfect 25 factorial design with three replicates of each
experimental treatment. If the general hypothesis that each of the 32 treatments
has a distinct effect on the population dynamics of bacteria is supported by the
data, then the speed of attaining stationary phase, the population size around
which the cell counts vary in stationary phase, and the variability of the process
(i.e., each of the SR model parameters) should differ between the 32 experimen-
tal treatments. To estimate the model parameters for a single treatment, the joint
likelihood of the three replicated time series has to be considered. Because a
treatment’s replicates were independent, the likelihood function for a given
experimental treatment was taken as the product of the individual likelihoods.
Note that although the ideal situation is having a full factorial design, just like in
the traditional ANOVA methods, the overall procedure could be modified to
account for unbalanced designs.

Various hypotheses were contained in the general hypothesis described above,
and modified multivariate techniques can be used to identify patterns in the SR
model parameter space. If there is no difference between the model parameters
found in, e.g., two experimental treatments, the data for these two treatments can
be pooled and the SR model parameters can be estimated anew. In that fashion,
the total number of possible treatment effects, combinations, and interactions
can be reduced and the main factors that drive the system dynamics can be
identified. The patterns of variation in the 96 data sets were summarized in order
to propose a set of competing hypotheses consistent with the observations and to
group the data accordingly. To do so, the model parameters for each of the 96
data sets were calculated as described before. These values were used as coor-
dinates in a three-dimensional space. Canonical-variates analysis was used to
identify patterns of variation among treatments. The design types were plotted in
a two-dimensional canonical-variates space. A careful inspection of the canoni-
cal-variates plot allowed the formulation of seven hypotheses that were consis-
tent with the data. Each hypothesis grouped all of the 32 experimental treat-
ments in a particular way and proposed that distinct population dynamics
occurred within each group. We then tested and compared the degree to which
each of the seven hypotheses was in agreement with the observed patterns of
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variation. Confidence intervals using a PB were calculated for the model param-
eters under each hypothesis (see reference 27 for details).

(iii) Model selection. Statistical theory and evidence from many biological
disciplines (15) show that traditional stepwise regression methods based on a
series of likelihood ratio tests may miss the best model or hypothesis consistent
with the data. Also, a series of pairwise comparisons can lead to erroneous P
values in likelihood ratio tests and inflated type I errors. Therefore, we relied
here on the Akaike information criterion (AIC) (1) and on the Bayesian infor-
mation criterion (BIC) (54) to simultaneously assess the quality of each of those
hypotheses to explain the data.

The use of the AIC and BIC for hypothesis selection has a strong theoretical
rooting in information theory. For a given data set, the AIC gives an estimate of
the expected, relative, directed distance between the fitted model and the un-
known true mechanism that generated the data (15). Thus, the decision rule for
model selection using those statistics is to choose the model with the lowest AIC
or BIC. For a fixed data set, adding more parameters to the model reduces that
distance but further increases uncertainty in the estimation process. That trade-
off between underfitting and overfitting is directly expressed in both the AIC and
BIC as a term that penalizes their scores as a function of the number of estimated
parameters in the model. We note that Schwarz (54) showed that if the true
model is within the suite of evaluated models, then the BIC is guaranteed to find
it. Hence, we used both statistics to derive the conclusions of the hypothesis
selection. For the stochastic Ricker model, the AIC is equal to:

AIC � � 2 � ln
L̂� � 2p (5)

where ln(L̂) is the likelihood function evaluated at the MLEs and p is the number
of model parameters. The BIC is calculated with:

BIC � � 2 ln
L̂� � pln
q� (6)

where q is the number of data points used in the parameter estimation process.
A disagreement between the two statistics would indicate that there is not
enough evidence in the data to support the best model, and a decision would
have to be taken after investigating the type I error rates of each model using
extensive simulations (26, 33a).

Finally, an evaluation of the quality of the best-fitted model was done via a
residual analysis. Under the proposed model, the residuals should be normally
distributed, centered around zero, and nonautocorrelated. A strong deviation
from normality, if it appears, is an indicator that the current model mechanism
is insufficient to explain the available data. All the calculations were done using
MATLAB 6.5.1, release 13 (The MathWorks, Inc., Natick, Mass.).

RESULTS

Growth curve experiments. A biological data set was ob-
tained by growing E. coli in a microtiter plate in a base medium
that contained all 32 possible combinations of five supplements
(glucose, NH4Cl, HCl, EDTA, and NaCl) in triplicate. The
growth that occurred with each supplement combination was
recorded using an automated plate reader. Figure 1 shows how
the recorded population size (OD � 100) varies for each of the
32 treatments.

Primary model: the SR model. The SR model predictions
found through a process error fit were superior to those gen-
erated by alternative models using an observation error fit, as
is clearly illustrated in Fig. 2. In fact, even improved observa-
tion error models including a death phase do not fit as well as
the SR model. This figure also illustrates the fact that a process
error model fit is conceptually different from an observation
error fit in that it naturally yields a stochastic one-step-ahead
prediction of future population sizes. The advantage of this
becomes evident while plotting the predictions from both types
of statistical fit (Fig. 2). The residuals obtained by an observa-
tion error fit of the Ricker model were at least 1 order of
magnitude larger than the process error fit residuals. A typical
deterministic prediction using an observation error fit differs

dramatically from the one-step-ahead predictions generated
using the stochastic Ricker model parameter estimates.

The estimates of the parameters a, b, and 
2 of the stochas-
tic logistic growth models fitted to each of the experimental
growth curves are reported in Fig. 3a to c. In Fig. 3d to f, the
parameters for supplement combinations 26 through 32 were
omitted for clarity.

Secondary model: an ANOVA variant of the stochastic
Ricker model. After estimating the parameters using the pop-
ulation dynamics modeling approach for each of the 96 growth
curves, we grouped the data in various ways to establish how
the data could best be explained. We used a graphical ap-
proach to develop seven hypotheses to explain the treatment
groupings. Further data analysis showed that not all of the 32
different chemical supplement combinations had a significant
effect on the population dynamics of the microbial cultures.
The data were best explained with just four distinct dynamics,
corresponding to the cases in which either NaCl or EDTA was
present, both were present, and both were absent. Further-
more, we found a positive interaction effect between these two
supplements.

The MLEs of the stochastic Ricker model for each of the 96
data sets were used to run a canonical-variate analysis. Fisher’s
discriminant function based on the estimated parameter values
of the stochastic Ricker models identified the vectors in the
multidimensional space on which, when the data points were
orthogonally projected, the experimental designs were maxi-
mally separated (34). The test for the relative contributions of
the three selected eigenvalues and the total canonical structure
extracted by Fisher’s discriminant function indicated that only

FIG. 2. Stochastic (Stoch.) Ricker model predictions compared to
the observed data, an observation error fit of the Ricker equation, and
an observation error fit of an ordinary differential equation (ODE)
model that accounts for the rate of substrate consumption. In the ODE
model, n is the population abundance, r is the resource variable, and
�max, k, �, and � are constants:

dn
dt

� �max

r
r � k

n � �n

dr
dt

� � �n�max

r
r � k

This model assumes that a population is growing according to the well-
known Monod function and that individuals are dying at a rate �n.
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the first two eigenvalues were significant (P values of � 0.001,
� 0.001, and 0.0684, respectively). Furthermore, they cumula-
tively explained 87.26% of the variation in the three-dimen-
sional space of [a,b,
2]. A closer examination of the canonical
structure indicated that the extracted canonical variate number
3 was not very useful to explain the variation in the three-
dimensional space. The plot of the designs in the discriminant
space (Fig. 4) was used to identify possible design groupings
and to formulate the following hypotheses.

(i) Hypothesis 0. Only two groups (A and B) can be identi-
fied: group A consists of designs 26 to 32, and group B consists
of designs 1 to 25. The first group corresponds to the case
where EDTA and NaCl are both present at the same time
regardless of any other supplement addition. The second
group corresponds to the case where EDTA and NaCl are not
present at the same time (Fig. 1). Group A dramatically in-
creased the value of a, the rate at which stationary phase is
reached (Fig. 3a), and lowered the mean level (�a/b) at which
this occurred by decreasing the value of b (Fig. 3b).

(ii) Hypothesis 1. Because the variability in the data coming
from design 26 was much higher than the rest (Fig. 3c), this
design can be separated from the rest and constitute another
treatment by itself, besides the two proposed by hypothesis 0.
Hence, this hypothesis proposes to divide the designs into
three groups, corresponding to three separate population dy-
namics types.

(iii) Hypothesis 2. Four groups explain the data: designs 27
to 32, in which EDTA and NaCl are both present and at least
one of NH4Cl and HCl is present; design 26; designs 16 and 24;
and all other designs.

(iv) Hypothesis 3. Four experimental groups defined by just
two supplements explain the data. The treatments are EDTA
and NaCl, and the experimental groups are as follows: EDTA
and NaCl absent, EDTA present and NaCl absent, EDTA
absent and NaCl present, and both present. This hypothesis
suggests that there is a significant interaction between EDTA
and NaCl and that the effects of that interaction drive the
dynamics of the system.

FIG. 3. Box plots of the stochastic Ricker model parameter estimates as a function of the design type for treatments 1 to 32 (a, b, and c) and
for designs 1 to 25 (d, e, and f). The bar inside the box indicates the median, the boxes delimit the interquartile range, and the vertical lines extend
to the maximum and minimum.
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(v) Hypothesis 4. Hypothesis 4 considers the same experi-
mental groups as in hypothesis 3 but also includes the presence
or absence of glucose as a factor. Hence, a total of eight ex-
perimental groups are proposed by this hypothesis.

(vi) Hypothesis 5. All of the supplements except glucose
have an effect, and interactions exist between EDTA plus NaCl
and NH4Cl plus HCl. There are a total of 16 experimental
groups.

(vii) Hypothesis 6: full model. The data at hand can be best
explained by proposing 32 distinct types of population dynam-
ics types corresponding to each of the 32 experimental treat-
ments with three replicates each.

Model selection. To evaluate the consistency of each hypoth-
esis with the data, the BIC and AIC statistics were calculated
from the likelihood of each hypothesis evaluated at the MLEs.
To estimate the parameters under each hypothesis, we pooled
the replicates of designs contained within each group proposed
by the seven hypotheses. The joint likelihood function for each
group was computed as the product of the individual time
series likelihoods.

Both the AIC and the BIC clearly favored hypothesis 3
(Table 1), implying that a good explanation of the changes in
a, b, and 
2 was obtained while considering just the presence or
absence of EDTA and NaCl. With the parameter estimates
and confidence intervals obtained using PB (Table 2), interac-
tion plots were drawn (Fig. 5). The interaction plots show that
the order of the effect of NaCl changed as the state of the
EDTA treatment changed. Thus, the effects of these two fac-
tors were not simply additive. When the data coming from the

treatments with the above-mentioned interaction were exclud-
ed, then the effects of the other factors became visible (Fig. 3d
to f). The BIC values of hypotheses 0, 1, 2, 4, and 5 show that
even when other tentative explanations may be valid and better
than the full model, the patterns of variation in the time series
cannot be explained as well as with hypothesis 3. The confi-
dence intervals obtained with a PB of hypothesis 5 showed that
the interactions between NaCl plus EDTA and NH4Cl plus
HCl were not significant (Fig. 5). Thus, in hypotheses 4 to 6,
the treatment effects were just additive and could not generate
as much variation as the one generated by the interaction
between EDTA and NaCl. The second-best hypothesis was the
reduced hypothesis (hypothesis 0), which considered just two
groups. This hypothesis had the benefit of a reduced number of

FIG. 4. (Left) Experimental treatments plotted in a two-dimensional space according to their mean coordinate values in canonical variates 1
and 2. (Right) Same as before, but treatment 26 is excluded for clarity. The two canonical variates represent the two axes in the three-dimensional
space of a, b, and 
2 along which the highest separation of the data points is obtained, i.e., these are the vectors along which most of the variability
seen in the values of the model parameters occurs. Hence, two treatments for which the biochemical environment leads to similar growth patterns
will appear closer when plotted in the two-canonical-variates space.

TABLE 1. Hypothesis selectiona

Hypothesis BIC AIC

0 47,749.02 47,702.08
1 52,180.67 52,110.27
2 52,286.17 52,192.31
3 47,484.81 47,390.95
4 49,538.95 49,351.22
5 52,093.93 51,718.49
6 53,879.65 53,128.76

a BIC and AIC values of the seven hypotheses proposed and defined in Re-
sults. The decision rule is to pick the hypothesis with the lowest AIC and BIC.
The hypothesis that explains the variation in the stochastic Ricker model param-
eter estimates best is hypothesis 3.
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parameters to estimate. However, with just two groups it is not
possible to estimate the interaction effects.

Once chosen, the best hypothesis was further scrutinized via
a residual analysis. The model residuals for the best hypothesis,
hypothesis 3, were approximately normally distributed and
centered around zero, suggesting that the stochastic Ricker
model was a good first approximation to differentiate between
various population dynamics (Fig. 6). However, some devia-
tions from the assumptions occurred in the extreme data
points; at the early stage of the process, during the lag phase;
and as expected, at the late stage of the process, during the
death phase. Those deviations were accompanied in some cases
with an autocorrelation pattern, which suggested a significant
effect of an observational error.

DISCUSSION

Uncertainty in the trajectories of population growth seen in
our 96 microbial growth curves was effectively explained and
summarized by the stochastic Ricker model. It was shown that
the positive and negative effects of the five supplements and
combinations of them directly resulted in an increase or de-
crease in the time required to attain stationary phase and the
population size at which the stationary phase started. Further-
more, the potential complexity of 25 experimental treatments
and their effects was reduced to 22, as just the metal chelator
EDTA, the presumed osmotic pressure imposed by NaCl, and
the interaction between these two factors were enough to ex-
plain the variability seen in the data. These findings seem to be
in agreement with previous studies (30, 49, 57).

Model selection via the AIC and BIC overcomes two major
problems reported in the literature. The first one is overpa-
rameterization. In the search for more mechanistic models,
many parameters are introduced, for example, to model the
probability of growth as a long nonlinear function (57). Baranyi
et al. (9) have already warned about the effects of overparam-
eterization in predictive microbiology. Our results show that by
using the AIC or BIC, a good compromise between the num-
ber of parameters included in the model and the quality of the
predictions is reached. The second problem is stepwise regres-
sion as a model selection tool. As mentioned before, it has
been repeatedly shown that stepwise regression can lead to an
erroneous choice of the best available model. The information
criteria used here overcome that problem by evaluating all the
models at the same time, thereby allowing a proper identifica-
tion of the best available model.

Process error fitting is a more realistic and mechanistic mod-
eling approach. It is a realistic approach because it aims to
explain the variability seen in time series of population abun-

dance by proposing stepwise stochastic changes in the growth
rate as a function of the experimental medium (Fig. 2). It is a
mechanistic approach because it effectively explains and repro-
duces the observed growth patterns through proposed biolog-
ical processes well rooted in first principles. Our model basi-
cally states that exponential growth and density-dependent
effects are random and change as a function of the growth
medium. The effects of the environmental factors were directly
translated into changes in the basic growth characteristics.

Modeling the process error is not a mere fitting technique.
Deterministic mathematical models (e.g., Gompertz and logis-
tic equations) are often proposed as the true underlying “per-
fect” mechanism and fitted to the data via nonlinear fitting
techniques (8, 13, 16, 19, 52, 59). Deviations from the deter-
ministic predictions are accounted for as observational uncer-

FIG. 5. Interaction plots for hypothesis 3 and hypothesis 5. (Left)
Closed circles represent absence of NaCl, open circles, presence of
NaCl. (Right) Open circles represent absence of both NH4Cl and HCl,
closed circles, presence of both chemicals. Parametric bootstrap con-
fidence limits are marked with crosses.

TABLE 2. Stochastic Ricker model parameter estimates and PB confidence intervals for the model specified by hypothesis 3a

Groupa âLCL â âUCL b̂LCL b̂ b̂UCL 
̂2LCL 
̂2 
̂2UCL

1 1.500E-02 1.645E-02 1.792E-02 �5.496E-04 �4.802E-04 �4.164E-04 2.598E-04 2.713E-04 2.820E-04
2 7.261E-03 8.539E-03 9.896E-03 �2.781E-04 �1.955E-04 �1.206E-04 1.885E-04 1.967E-04 2.047E-04
3 7.680E-03 8.977E-03 1.042E-02 �3.351E-04 �2.453E-04 �1.647E-04 2.185E-04 2.279E-04 2.369E-04
4 5.231E-03 8.722E-03 1.439E-02 �1.542E-03 �9.183E-04 �5.546E04 1.091E-03 1.139E-03 1.185E-03

a The data are best explained by considering the following four experimental groups: 1, both EDTA and NaCl absent; 2, EDTA present and NaCl absent; 3, EDTA
absent and NaCl present; 4, both EDTA and NaCl present. LCL and UCL are the lower and upper confidence limits, respectively. â, b̂, and 
̂2 are the estimates of
the stochastic Ricker model parameters.
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tainty. On the other hand, the SR model asserts that the pro-
cess of population growth is stochastic by nature and can be
modeled with a Markov process. The transition probability
density function of this Markov process is used to predict
trends and also as a natural tool for parameter estimation via
ML. In the presence of substantial observation error, the pro-
cess error model ML parameter estimates and predictions are
biased, and the converse is also true (25, 28, 43, 46). However,
in the context of this paper, because the microtiter plate reader
is highly accurate (coefficient of variation 	 standard devia-
tion/mean 	 1.08%) and large populations are being sampled,
observation error can be neglected. Further evidence support-
ing the use of the SR model was given here by the quantile
residual plots (Fig. 6), in which generally the assumptions of
normally distributed errors were met. However, we saw devi-
ations from the normal model at the early stages (lag phase)
and toward the end (death phase). Early deviations can possi-
bly be additionally affected by the detectability limitations of
the use of OD as a surrogate for population size (18), as well
as by a lag phase.

The SR model can be modified to accurately predict more
complex biological phenomena of bacterial batch cultures,
such as the lag and death phases, the effect of time-varying
environmental factors, and multiple-species microbial interac-
tions. Well-known ideas in ecology can be translated into sto-
chastic population models to explain the data. As an example,
suppose that at small initial population sizes bacteria cannot
grow well due to harsh environmental conditions, e.g., low pH
values. This situation might change at larger population sizes,
as metabolic products could increase the pH. That is, at inter-
mediate population sizes, the population might grow much
better than at small population sizes. Furthermore, a critical
initial population size might exist below which bacteria cannot
grow and above which they succeed. This phenomenon is well
known in ecology as the Allee effect (2, 20), and stochastic
population models exist in the literature that account for it (20,
21). A stochastic modeling approach to this problem could, for
instance, lead to accurate estimates of that critical initial pop-
ulation size below which bacteria fail to grow.

To account for environmental stochasticity and the fluctua-

FIG. 6. Plotted are the quantile-quantile graphs of the residuals for each of the four experimental design groups in hypothesis 3 (see “Model
selection” for details). The points far from the straight lines in the lower right plot represent the individual model residuals that deviated from the
model normality assumption.
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tions over time in resources and in the concentrations of the
chemical supplements, the stochastic Ricker model could be
easily modified. To include the main effects of the chemical
factors without the interactions, the growth function in the
exponential term of the stochastic Ricker model could be writ-
ten as follows:

a � bNt � �
i	1

5

ciSit

where c1,c2,. . .,c5 are parameters to be estimated and Sit is the
concentration of the chemical supplement Si at time t. This
model has been successfully used to model long trends in
populations whose growth depends on climatic fluctuations,
such as “El Niño” rainfall (26). In the model described above,
the chemical supplements are included as covariates that may
enhance or suppress bacterial growth, depending on the values
of the constants ci. This model has the advantage that it takes
into account the variation of the concentration of the supple-
ments over time, and substrate depletion can be easily ac-
counted for. However, to estimate the parameters in this
model, the concentration of each chemical supplement and
substrate at each time step is needed (12). In the context of our
experiment, measuring these concentrations was not experi-
mentally feasible. We opted to sacrifice the number of vari-
ables recorded in order to have a large number of data points
and a perfectly balanced factorial design. From the point of
view of improving statistical power, it is preferable to have
many replicates of the same univariate process rather than to
gather data on a large multivariate process with small sample
sizes. Another extension of the model would be to consider
several levels of the initial concentration of the supplements,
and like most ANOVA models, our current approach can be
easily expanded in such a way.

Accounting for the population lag phase (in the sense of
Baranyi [5]) is also straightforward using the SR model. During
lag phase, bacterial numbers seem to fluctuate randomly
around the initial density. However, the case of zero growth is
just a special case of the SR model. Indeed, no growth is
equivalent to setting a equal to 0 and b equal to 0 in equation
2 (see “Theoretical background” above). Then, accounting for
the lag phase amounts to specifying what is known in the
statistics literature as a stochastic change point problem. While
our model effectively accounts for the pattern of variability
seen in the data, there are other aspects of growth dynamics
that could be modeled in future work. For example, delay
differential equation models, like the one proposed by Baker et
al. (4), are useful in estimating the fraction of cells that are
dividing, the degree of initial synchronization of the cells, and
the initial distribution of cells in the cell cycle. It would be
interesting to extend Baker’s model to a stochastic differential
equation and properly account for stochastic effects. However,
parameter estimation via ML for stochastic differential equa-
tion models is a wide-open research area and presents many
challenging statistical problems. These topics constitute mate-
rials for future research.

Finally, another of the latest concerns in predictive micro-
biology is the consideration of microbial interactions (37, 58).
A two-species deterministic discrete Ricker model exists in the

literature (40). This model can be easily transformed into a
stochastic model in the form of equation 2 (22, 28). Prelimi-
nary results not presented here show that this competition
model can be effectively used to analyze the seminal data set of
Gause (31).

Stochastic modeling techniques are maturing, and there is
no reason why theoretical and applied studies in microbiology
should be deprived of such useful mathematical statistics tools
and concepts. The results of this paper have broad implications
for both basic and applied research and can be regarded as a
different starting point to fulfill the urgent need of simple
stochastic models of microbial growth.
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