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Graphical Abstract

1. AIDPI is a robust biomarker for stratifying high-risk OSA patients charac-
terized by dysregulated cholesterol homeostasis, and SQLE is a metabolic
vulnerability of these patients.

2. Silencing SQLE impedes OSA by reducing cholesterol and inhibiting the
FAK/PI3K/Akt/mTOR pathway.

3. SQLE inhibitor suppresses OSA progression in vivo and enhances chemother-
apy efficacy.
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Abstract
Background: Osteosarcoma (OSA) presents a clinical challenge and has a low
5-year survival rate. Currently, the lack of advanced stratification models makes
personalized therapy difficult. This study aims to identify novel biomarkers to
stratify high-risk OSA patients and guide treatment.
Methods: We combined 10 machine-learning algorithms into 101 combina-
tions, from which the optimal model was established for predicting overall
survival based on transcriptomic profiles for 254 samples. Alterations in tran-
scriptomic, genomic and epigenomic landscapes were assessed to elucidate
mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq)
unveiled genes overexpressed in OSA cells as potential therapeutic targets, one
of which was validated via tissue staining, knockdown and pharmacological
inhibition. We characterized changes in multiple phenotypes, including prolif-
eration, colony formation, migration, invasion, apoptosis, chemosensitivity and
in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of
squalene epoxidase (SQLE) suppression on signalling pathways.
Results: The artificial intelligence-derived prognostic index (AIDPI), generated
by our model, was an independent prognostic biomarker, outperforming clin-
icopathological factors and previously published signatures. Incorporating the
AIDPI with clinical factors into a nomogram improved predictive accuracy. For
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user convenience, both the model and nomogram are accessible online. Patients
in the high-AIDPI group exhibited chemoresistance, coupled with overexpres-
sion of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K–Akt
signalling, and diminished immune infiltration. ScRNA-seq revealed high
expression ofMYC and SQLE in OSA cells. Elevated SQLE expression correlated
with chemoresistance and worse outcomes in OSA patients. Therapeutically,
silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity,
mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR
pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-
OSA effects in vivo and exhibited synergistic effects with chemotherapeutic
agents.
Conclusions: AIDPI is a robust biomarker for identifying the high-risk subset
of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these
patients, providing a target with translational potential.
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machine learning, osteosarcoma, prognostic model, squalene epoxidase

1 INTRODUCTION

Osteosarcoma (OSA), the most prevalent primary malig-
nant bone tumour, is notorious for its aggressive nature,
and it predominantly affects adolescents and individuals
over 60 years of age.1 Despite advancements in surgical
techniques and the adoption of the MAP regimen, consist-
ing of high-dose methotrexate (MTX), adriamycin (ADM),
and cisplatin (DDP), high-grade OSA has shown persis-
tent chemoresistance, so outcomes have not markedly
improved since the 1980s.2 Although several chemoresis-
tant cell models have been established in vitro and various
differentially expressed messenger RNAs (mRNAs) and
noncoding RNAs have been identified,3,4 new drugs with
translational potential remain limited. These challenges
drove us to investigate the real-world variations among
OSA patients with differing outcomes and the intrin-
sic mechanisms to identify therapeutic targets for those
with a dismal prognosis. This initiative underscores the
critical need for advanced biomarkers to identify high-
risk patients potentially resistant to standard treatments
but who might benefit from additional therapies, thereby
paving the way for more personalized treatment.
In clinical practice, factors such as Musculoskeletal

Tumor Society (MSTS) stage III and an axial skeletal loca-
tion for the primary tumour are prominent pretreatment
indicators associated with unfavourable outcomes.5 Nev-
ertheless, the standard chemotherapy strategy remains
unchanged, irrespective of the MSTS stage or primary
tumour location.1 Unfavourable outcomes also stem from

incomplete surgical resection and a poor response to
chemotherapy.6 The Huvos grading system quantifies the
response to neoadjuvant chemotherapy by assessing the
tumour necrosis rate in surgically resected samples.7 In
this system, grade I denotes 0%–49% necrotic cells, grade II
denotes 50%–89% necrotic cells, grade III denotes 90%–99%
necrotic cells, and grade IV indicates total necrosis. Grades
I/II are referred to as a poor response, whereas grades
III/IV are labelled a good response. However, treatment
adjustments based on Huvos grading have not boosted
survival rates, leading to its diminished use.1,8
Recent advances in biotechnology have enabled the

integration of multiomics data from tumour biopsies
to refine prognosis predictions and individualize cancer
treatments.9 For instance, multiomics data was employed
to stratify OSA patients into four clusters, pinpointing
theMYC-driven cluster withMYC amplification, activated
mTOR signalling, and dampened immune responses as
the most aggressive OSA subtype. This subtype was linked
with chemoresistance and theworst outcomes.10 However,
the high costs of collecting transcriptomic, genomic, and
epigenomic profiles could hinder the clinical application
of this strategy. Conversely, emerging studies suggest that
simplified gene expression signatures could predict OSA
outcomes cost-effectively.11,12 However, many of these sig-
natures are based on specific gene sets or small datasets,
resulting in doubts regarding their potential for application
in clinical settings.
To address these challenges, we employed a method-

ology encompassing 101 machine-learning combinations
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proven effective in autonomously selecting pivotal genes
from whole transcriptomic profiles to develop depend-
able cancer prognostic models.13,14 Utilizing this artificial
intelligence-driven approach, we developed a prognostic
model based on combined algorithms of CoxBoost and gra-
dient boosting machine (GBM) to predict overall survival
(OS) for OSA patients. From this model, we derived a risk
score for each patient, termed the artificial intelligence-
derived prognostic index (AIDPI). This innovative metric
identified a high-risk OSA subset resistant to neoadju-
vant chemotherapy with a poor prognosis, characterized
by molecular traits such as MYC overexpression, upreg-
ulated mTORC1 signalling and decreased immune cell
infiltration. Notably, these features aligned with the char-
acteristics of the previously reportedMYC-driven subtype.
However, therapeutic guidance for this OSA subtype is still
lacking.10
Our study further identified squalene epoxidase

(SQLE), a crucial rate-limiting enzyme for cholesterol
biosynthesis,15 as a metabolic vulnerability for these
high-risk OSA patients. Silencing SQLE showed promise
in inhibiting OSA both in vitro and in vivo, mirroring
a recent study demonstrating that deploying a fungal
SQLE protein inhibitor, terbinafine, at 25 μM curtailed
OSA in vitro.16 However, this study did not elucidate the
underlying mechanisms or explore terbinafine’s in vivo
anti-OSA effects, raising questions about the feasibility of
achieving such a high concentration in vivo and casting
doubt on its translational potential. In contrast, our
investigation provides deeper insights, revealing that
the anti-OSA effects of silencing SQLE were achieved
through depleting cholesterol and subsequently inhibit-
ing the FAK/PI3K/Akt/mTOR signalling pathway. We
also introduced FR194738, a specific mammalian SQLE
inhibitor, which not only suppressed OSA cell growth
at a dose of just 2.5 μM but also demonstrated signifi-
cant anti-OSA efficacy in vivo without noticeable side
effects. Significantly, FR194738 demonstrated synergistic
effects with MAP regimen agents in targeting OSA cells,
underscoring its potential as a novel therapeutic for the
precision management of high-risk OSA patients.

2 METHODS

2.1 Selection of datasets

To develop and validate the AIDPI, we collected pub-
lic datasets based on the following criteria: (1) Tumours
were confirmed as OSA by histology. (2) The datasets had
complete OS-associated information. (3) RNA sequenc-
ing (RNA-seq) or microarray detection was performed on
fresh-frozen biopsy samples.

2.2 Datasets from the TARGET
programme

We obtained multiomics data, including bulk RNA-seq
data, gene-level copy number variants, masked somatic
mutation profiles, masked DNA methylome intensities,
and relevant clinical data from the Therapeutically Appli-
cable Research to Generate Effective Treatments (TAR-
GET) programme viaGenomicData CommonsData Portal
(GDC, https://portal.gdc.cancer.gov/) (up to 10, Octo-
ber 2022) using TCGAbiolinks.17 Hereafter, this dataset
is referred to as TARGET-OSA (n = 85). Gene expres-
sion levels were calculated as log2-transformed transcripts
per kilobase million (TPM) with a pseudocount value of
one. The average RNA expression value was used when
duplicate data were found.

2.3 Datasets from the GEO

We sourced various datasets from the Gene Expres-
sion Omnibus (GEO) via GEOquery, including GSE21257
(n = 53),18 GSE33382 (n = 82),19 GSE16091 (n = 34),20
GSE14827 (n = 27),21 GSE87437 (n = 21),22 GSE42352 (3
osteoblasts [OBs], 12 mesenchymal stem cells [MSCs] and
19OSAcell lines),19 GSE16089 (MTX-resistant Saos2 and its
parent cell line with 3 replicates, respectively),23 GSE9967
(RNA-seq data of OSA samples and paired normal bone
tissue from 18 patients)24 and GSE238110 (RNA-seq data
of 186 primary canine OSA samples).25 The survival infor-
mation of GSE33382 was obtained from R2: Genomics
Analysis and Visualization Platform (http://r2.amc.nl).
The survival data of GSE238110 were obtained from the
Supporting Information of the corresponding article.25 We
employed the oligo package and the beadarray package to
process the raw data from Affymetrix arrays and Illumina
BeadChip, respectively.26,27 Microarray data annotation
was achieved by using relevant packages (Table S2). All
probes were initially annotated into Ensembl IDs and
subsequently converted to official symbols, following the
annotation file of the TARGET-OSA dataset. For RNA-seq
datasets, the downloaded read count data were converted
to TPM using the IOBR package28 and underwent log2-
transformation with a pseudocount value of one. The
average RNA expression value was taken when duplicate
data were found.

2.4 Integration of multiple datasets

We merged GSE21257 and GSE16091 into the GEO-
OSA cohort. Moreover, a meta-OSA cohort was con-
structed by integratingGSE21257,GSE16091, GSE33382 and
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TARGET-OSA. Another combined cohort, OSA-Huvos,
consists of biopsy samples with information on Huvos
grade from GSE21257, GSE33382, GSE14827, GSE87437 and
TARGET-OSA. When performing integration, we only
included the genes detected across all datasets. The Rank-
In algorithmwas employed tomitigate batch effects during
dataset integration, and input files, including expression
data, sample class and platform information, were pre-
pared according to the corresponding example data (http://
www.badd-cao.net/rank-in/submission.html).29 Principal
component analysis (PCA) was conducted using Fac-
toMineR and visualized using the factoextra package.

2.5 Datasets from the Cancer Cell Line
Encyclopedia (CCLE) project

For cell lines’ multiomics data from Cancer Cell Line
Encyclopedia (CCLE), we directly downloaded bulk RNA-
seq, gene-level copy number data and model informa-
tion from the DepMap portal (https://depmap.org/portal/,
Public 23Q2). Immunofluorescence images of U2OS
cells were sourced from The Human Protein Atlas
(https://www.proteinatlas.org/).

2.6 Single-cell and bulk RNA-seq
datasets from the sequence read archive
(SRA)

We retrieved raw data from single-cell RNA sequencing
(scRNA-seq) of six OSA biopsy samples (PRJNA681896)30
using sra-tools (https://github.com/ncbi/sra-tools) and
analysed them with Cell Ranger (version 7.1) to gen-
erate expression profiles. Seurat was used for further
data processing and visualization.31 We filtered out
cells with fewer than 300 expressed genes or with
over 10% mitochondrial genes. Potential doublets were
removed using DoubletFinder.32 Batch effects were mit-
igated using Harmony.33 Furthermore, cell-type annota-
tions were achieved by using the scGate and infercna
packages.34,35 Differentially expressed genes (DEGs) for
each of the annotated cell clusters were obtained using the
FindAllmarkers function in Seurat with default settings.
To obtain the raw data of the PRJNA698672 BioProject

(including OSA tissues and paired adjacent normal tis-
sues from four patients), we used sra-tools. We obtained
reference genome files (hg38) and annotation files from
the GDC. We employed the latest TCGA mRNA analy-
sis pipeline (Dr32) for sample analysis and integration.
Detailed methodologies are available on the official GDC
website.

2.7 Pharmacogenomic datasets

The PharmacoGx packagewas used to download and anal-
yse pharmacogenomic datasets, including GDSC_2020
(v1-8.2) and GDSC_2020 (v2-8.2).36 The DrugSensitivitySig
function within this package was used to analyse the asso-
ciation between SQLE mRNA expression and the area
above the dose–response curve (AAC) in OSA cell lines.

2.8 Construction of the AIDPI

The AIDPI model for OSA was created following a well-
established workflow,13,14 which integrated ten classical
machine-learning algorithms, including least absolute
shrinkage and selection operator (LASSO), GBM, random
forest (RSF), partial least squares regression for Cox (plsR-
cox), stepwise Cox (StepCox), supervised principal compo-
nents (SuperPC), ridge, survival support vector machine
(Survival-SVM), CoxBoost and elastic network (Enet).
Among them, RSF, LASSO, CoxBoost, StepCox-both direc-
tions, and StepCox-backward direction were employed
for the first-step dimensionality reduction and variable
screening, which were combined with other algorithms,
resulting in 101 machine-learning algorithm combina-
tions. The generation of the AIDPI involved the following
steps: (1) We performed univariate Cox regression analy-
sis using the coxph function of the survival package on
both training and validation sets. Consistent prognostic
genes (CPGs) were identified based on the criteria of p-
values below .01 and consistent hazard ratios of either over
one or below one in both cohorts. (2) We utilized the 101
combinations to select genes from the CPGs and fit mul-
tiple prognostic models in the training set based on the
Z score of these genes’ expression values. (3) All mod-
els were assessed by calculating risk scores for patients in
the training set, validation set and an independent test set
using the predict function from the corresponding pack-
age based on establishedmodels. (4) Harrell’s concordance
index (C-index) was calculated by performing univariate
Cox regression analysis for the risk scores of all models
across these three sets. (5) The model displaying the high-
est average C-index was automatically selected as optimal.
The risk score calculated based on this optimal model was
termed the AIDPI.

2.9 Evaluating the predictive value of
the AIDPI

Weassessed the predictive value of theAIDPI acrossmulti-
ple cohorts, including a training set (GEO-OSA), validation

http://www.badd-cao.net/rank-in/submission.html
http://www.badd-cao.net/rank-in/submission.html
https://github.com/ncbi/sra-tools


WANG et al. 5 of 26

set (TARGET-OSA), independent test set (GSE33382-OSA),
GSE21257-OSA, GSE16091-OSA and meta-OSA, via time-
dependent receiver operating characteristic curve (tROC)
analysis, performed using timeROC. To determine the
optimal threshold for AIDPI in the training set, we used
the surv_cutpoint function from the survminer package.
Based on this identified threshold, patients in each cohort
were categorized into either a low- or high-AIDPI group.
Kaplan–Meier survival analysis (KMSA) was performed
to delineate the survival differences between these two
groups, utilizing the survival package for analysis and the
survminer package for visualization.

2.10 Comparison of published OSA
signatures

We reviewed PubMed for articles on prognostic signatures
of OSA published up to May 28th, 2023. Subsequently,
we calculated risk scores in all of the mentioned OSA
cohorts based on the Z scores of gene expression values
and the coefficients provided by the articles (Table S1).
The predictive performance of these models was evaluated
using univariate Cox regression analysis. We employed
the compareC package to assess the statistical signifi-
cance of differences in the C-index between two distinct
signatures.37

2.11 Construction of integrated models
for optimized risk stratification

In the meta-OSA cohort, we performed univariate Cox
regression and visualized results using the show_forest
function of the ezcox package. The ezcox_group function
was employed to perform univariate Cox regression analy-
sis in subgroups. Multivariate Cox regression analysis was
carried out using the coxph function from the survival
package, and the results were displayed with the forest-
model package. To generate a nomogram for prediction,we
used the regplot package. The calibration curve was cre-
ated using the rms package, and decision curve analysis
(DCA) was conducted using ggDCA. The pROC generated
smooth ROC curves. Finally, stacked column charts were
created using the ggstatplot package. To enhance the user
experience with our AIDPI-based nomogram, we devel-
oped a dedicated application employing the Shiny package.
This application facilitates the calculation of the AIDPI.
Furthermore, we used the DynNom package to design
and deploy a dynamic, interactive nomogram on a web
server.

2.12 Identification of AIDPI-related
biological processes

To identify biological processes related to AIDPI, we
performed differential expression analysis (DEA) using
DESeq2. For gene set enrichment analysis (GSEA), we
used the clusterProfiler package and gene sets pro-
vided by the msigdbr package. Genes with adjusted
p-values less than .05 and |log2FoldChange| > mean
(|log2FoldChange|) + 2 SD (|log2FoldChange|) were con-
sidered DEGs, which were then used for KEGG pathway
enrichment analysis. A heat map was generated using
ComplexHeatmap.38 To analyse masked somatic muta-
tion data, we used the maftools package.39 We employed
ChAMP to analyse the masked intensity data of the DNA
methylome data.40 IOBRwas used to evaluate the immune
score based on expression data.28 EpiDISH was used to
infer the fraction of infiltrated immune and stromal cells
based on methylome data.41

2.13 Cells and cell culture

OSA cell lines, including U2OS, MNNG/HOS (MNNG),
143B, Saos2, KHOS/NP (KHOS) and MG63, were obtained
from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) and authenticated via short tandem
repeat profiling. Additionally, cultivation procedures for
all cell lines strictly adhered to the guidelines provided by
the cell bank.

2.14 Plasmid construction

To modulate gene expression, we designed short hairpin
RNA (shRNA) constructs to target SQLEmRNA (shSQLE),
along with nontargeting scramble sequences (shControl).
These constructs were cloned and inserted into the pGIPZ
plasmid (Addgene). The specific targeting sequences for
the shRNAs can be found in Table S3. Verification of all
constructs was carried out through Sanger sequencing.

2.15 Lentivirus production

HEK293T cellswere cultured in 10-cmdishes at 1× 107 cells
per dish. Transfection was performed using Lipofectamine
3000 (Thermo Fisher Scientific) along with the respective
plasmids and packaging plasmid for lentiviral constructs
(Youbio) according to their protocol. The medium was
replaced 6 h posttransfection, and the viral supernatants
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were harvested after 48 h for subsequent infection of OSA
cell lines.

2.16 Selection of stably transfected cell
lines

Stably transfected cell lines were established through a
2-week selection process utilizing puromycin at 2 μg/mL
(Thermo Fisher Scientific). Gene knockdown or overex-
pression efficacy was verified via quantitative real-time
PCR (qRT-PCR) or Western blotting.

2.17 RNA extraction and qRT-PCR

Total RNA was extracted using TRIzol Reagent (Thermo
Fisher Scientific) and converted into cDNA using the
TransScript All-in-One First-Strand cDNA Synthesis
SuperMix for qPCR kit (TransGen Biotech). The qRT-PCR
assays were performed using QuantStudio 5 (Thermo
Fisher Scientific) and 2×RealStar Fast SYBR qPCR Mix
(GenStar). Experimental procedures followed the manu-
facturers’ guidelines, and primer sequences are provided
in Table S4.

2.18 Western blotting analysis

Whole-cell proteins were extracted using RIPA lysis buffer
supplemented with protease and phosphatase inhibitor
cocktails (Thermo Fisher Scientific). Equal amounts of cell
homogenates were separated by sodium dodecyl sulphate–
polyacrylamide gel electrophoresis and transferred onto
.45-μm polyvinylidene difluoride membranes (Millipore),
which were blocked with 5% bovine serum albumin in
TBST for phosphorylated proteins or 5% nonfat milk in
TBST for nonphosphorylated proteins. Primary antibodies
were incubated overnight at 4◦C, followed by incubation
with horseradish peroxidase-linked secondary antibodies.
Protein bands were visualized using SuperSignal West
Pico reagents (Thermo Fisher Scientific) and quantified
using ImageJ software (version 1.53a). Antibody details are
provided in Table S5.

2.19 Drug and cholesterol preparation

FR194738 (MCE, Cat HY-100303), terbinafine (MCE, Cat
HY-17395A), naftifine (Selleck, Cat S3156), MTX (Selleck,
Cat S1210), ADM (MCE, Cat HY-15142A), DDP (MCE,
Cat HY-17394) and cholesterol (Solarbio, Cat C8280) were
prepared as stock solutions according to their respective

instructions and subsequently diluted to various working
concentrations.

2.20 Cell proliferation assay

Cells were seeded in quintuplicate in 96-well plates at 2000
cells per well. Cell viability was assessed at various time
points. After removing the old medium, 100 μL of fresh
culture medium containing 10% CCK-8 reagent (Sangon
Biotech) was added to each well and incubated at 37◦C for
30 min. The optical density (OD) at 450 nm was measured
using a microplate reader (BioTek), with each OD value
normalized to average at the initial time point to obtain
relative cell viability.

2.21 Drug sensitivity assay

Cells were seeded in three or more replicates into 96-well
plates at a density of 5000 cells per well and subsequently
exposed to varying concentrations of drugs for at least 48 h.
The CCK-8 assay was then performed as described previ-
ously. In several experiments, cell viability was determined
when adding drugs to calculate the GR50, which indicates
the concentration of the drug at which the cell growth rate
(GR) is half that of the control group. This new metric
corrects for confounders in measuring sensitivity to can-
cer drugs, such as natural differences in the proliferation
rates of different cancer cells.42 The GRmetrics package
was employed to analyse dose–response data and perform
visualization.43

2.22 Synergistic effect assay

Cells were seeded in quadruplicate in 96-well plates at a
density of 5000 cells per well and treated with various drug
combination concentrations for 48 h. Subsequently, the
CCK-8 assay was conducted as described earlier. The pack-
age SynergyFinder in R software (version 4.3.0) was used
to calculate and visualize synergy scores according to four
major synergy scoring models, including the Highest Sin-
gle Agent, Loewe Additivity (Loewe), Bliss Independence
(Bliss) and Zero Interaction Potency models.44

2.23 Colony formation assay

Cells were seeded at a density of 1000 cells per well
in 6-cm dishes (NEST) and cultured for 14 days, with
medium changes every 5 days. Cells were fixed with ice-
cold methanol and stained with a crystal violet solution
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(Beyotime). Colonies consisting of more than 50 cells were
counted.

2.24 Transwell migration andMatrigel
invasion assays

For transwell assay, cells were pretreated with 10 μg/mL
mitomycin C (Selleck) for 2 h, then a total of 5× 104 cells in
100 μL of serum-free medium were seeded into the upper
Transwell chambers, and 600 μL of 10% FBS-containing
medium was added to the lower chambers. After a 24-h
incubation period, cells on the upper side of the Transwell
membrane were removed with cotton swabs, and the cells
that passed through the membrane to the lower cham-
ber were fixed with 4% paraformaldehyde, stained with 1%
crystal violet and photographed. The absorbance at 590 nm
was measured following crystal violet elution with 33%
glacial acetic acid.
For Matrigel invasion assays, 2 × 105 cells were seeded

into Corning BioCoat Matrigel Invasion Chambers. Cells
were then processed and analysed similarly to the migra-
tion assay.

2.25 Apoptosis assay

Apoptosis was assessed using Annexin V-APC/7-AAD
staining, following the manufacturer’s instructions
(YEASEN). Flow cytometry was performed using an
Attune NxT flow cytometer (Thermo Fisher Scientific).
Flow cytometry data were imported and analysed using
the flowCore and flowGate packages, with visualization
facilitated by the ggcyto package in R software (version
4.3.0).

2.26 RNA-seq and data analysis

High-throughput mRNA sequencing was conducted by
NewCore Biotech. In brief, total RNA was extracted using
TRIzol Reagent (Thermo Fisher Scientific), and mRNA
purification was performed using the NEBNext Poly(A)
mRNA Magnetic Isolation Module Kit (NEB) following
the provided manual. According to the manufacturer’s
instructions, mRNA libraries were prepared using an
Illumina TrueSeq mRNA sample preparation kit (Cat
RS-122-2101). Sequencing was performed on an Illumina
NovaSeq 6000 instrument, generating 151 bp paired-end
reads. NewCore BioTech also conducted bioinformatics
data analysis. Fastp software (version 0.20.0) was used
to trim adapters and remove low-quality reads, resulting
in high-quality and clean reads. These clean reads were

aligned to the human reference genome (hg38) using STAR
software (version 2.7.9a). FeatureCounts software (version
2.0) was employed to obtain raw gene-level mRNA read
counts. DEA was conducted as previously described.

2.27 Measurement of cholesterol
content

Cell and tissue homogenates were prepared for choles-
terol extraction using ethanol. The cholesterol content
was quantitatively measured using a commercial kit
(Jiancheng).

2.28 Xenograft models

Female BALB/c nudemice, aged 4–5weeks, were procured
from Hangzhou Ziyuan Experimental Animal Technology
Co. Ltd. Mice were housed in cages with a maximum of
five mice per cage.
To assess subcutaneous tumourigenic potential, we

injected 2 × 106 U2OS cells stably expressing shSQLE or
shControl in .1 mL of PBS into nude mice (n = 5 per
group). Tumour growth was monitored every 3 days, and
tumour volume was calculated using the formula: vol-
ume = .5 × length × width2. After 26 days, the mice were
euthanized for further analyses, including tumour photog-
raphy, weighing, immunohistochemistry (IHC) assay, and
detection of cholesterol levels.
To assess the efficacy and safety of FR194738, MNNG

cells in .1mLofMatrigel (Corning, Cat 354234)were subcu-
taneously injected into nudemice (5× 106 cells permouse).
Tumour growth and body weight were monitored every 3
days. After 9 days, when the tumour volume reached an
average of approximately 60 mm3, the mice were divided
into two groups (n= 5 per group). One group received daily
intraperitoneal injection of 10% DMSO, whereas the other
group received 100mg/kg FR194738. Sixteen days after cell
injection, the mice were euthanized for further analysis,
as mentioned earlier. The tumour growth inhibition (TGI)
rate was calculated based on the average tumour weights
using the formula: TGI = [1 − (FR194738 group/vehicle
group)] × 100.

2.29 Tissue microarray (TMA) and
immunohistochemistry (IHC)

From YEPCOME Biotechnology, we purchased a TMA
(Cat YP-BonSur2201) (n = 79) to analyse the association
of SQLE protein expression with the prognoses of OSA
patients. In this TMA, two samples were excluded because
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no sarcoma cells were found in them. Therefore, only
77 samples were analysed further. IHC staining was per-
formed using standard procedures with SQLE antibody
(H-6) (Santa Cruz Biotechnology, Cat sc-271651). All slides
were scanned with a PannoramicMidi II digital slide scan-
ner (3DHISTECH Ltd.). The demographic characteristics
and clinical data of the patients from the TMA are listed in
Table S6.
All tumour tissues from mice were fixed in 4%

paraformaldehyde for subsequent paraffin embedding and
cut into 5 μm thick sections. IHC staining was per-
formed using standard procedures with SQLE antibody
(Proteintech, Cat 12544-1-AP), Ki-67 antibody (Abcam,
Cat ab15580), and cleaved caspase-3 (Asp175) antibody
(Cell Signaling Technology, Cat 9661). The details of the
antibodies used are listed in Table S5.
The staining results were analysed with HALO image

analysis software (Indica Labs). The average OD was
defined as the integrated OD divided by the area of the
region of interest (ROI) and used to represent the strength
of SQLE abundance.

2.30 Statistical and computational
analyses

All results were derived from at least three independent
experiments, and data from one representative experiment
are shown. The sample size for all in vitro and in vivo
experiments was chosen empirically.
Unless stated otherwise, all statistical analyseswere con-

ducted using R software (version 4.2.3). Details of themain
packages and web tools used in this study are displayed
in Table S7. We used the shapiro_test function from the
rstatix package to assess normality. For correlation anal-
yses, the Pearson correlation coefficient was calculated
when both variables met the assumptions of normality.
Otherwise, Spearman’smethodwas used. Levene’s testwas
applied using the levene_test function in the rstatix pack-
age to assess the homogeneity of variance across groups.
Parametric statistical tests were used when the data met
the assumptions of both normality and homogeneity of
variances. Otherwise, nonparametric tests were employed.
Unless specified otherwise, all experiments used at least
three technical replicates in an independent test. If para-
metric statistical tests could be used, data were presented
as bar-dot plots, with horizontal bars representing means
and whiskers indicating standard deviations (SD). Oth-
erwise, boxplots were used to present the data. For two
independent groups, comparisons were conducted using
either Student’s t-test (parametric) or Wilcoxon rank-sum
test (nonparametric). Either one-way ANOVA (paramet-
ric) or the Kruskal–Wallis rank sum test (nonparametric)

was used to comparemultiple groups. p-Value adjustments
for multiple comparisons were performed using Holm’s
method.
For cell proliferation and tumour growth curve analyses,

repeated-measures ANOVA with the Greenhouse–Geisser
correction and Tukey’s honestly significant difference test
were performed using the anova_test function and the
Tukey_hsd functions in the rstatix package. Unless other-
wise mentioned, all p-values were derived from two-sided
statistical tests, and a p-value or adjusted p-value less than
.05 was considered to indicate statistical significance.

3 RESULTS

3.1 Development and validation of the
AIDPI

Wedeveloped theAIDPI following the schematic in Figure
S1A. Initially, we merged two cohorts, GSE21257-OSA and
GSE16091-OSA, into the GEO-OSA cohort and mitigated
batch effects (Figure S1B), and this cohort was employed
as a training set. Meanwhile, TARGET-OSA served as our
validation set. We identified 18 CPGs shared between the
training and validation sets (Figure S1C). These CPGs
were input into a machine-learning framework to gener-
ate multiple prognostic models in the training set. After
evaluation in the training set, validation set and an inde-
pendent test set (GSE33382-OSA), the model established
by the combination of CoxBoost and GBM was chosen
as the optimal model as its average C-index (.817) was
the highest one (Figure 1A). This model comprised 12
genes, which are presented with their relative influences
in Figure S1D. Utilizing this model, we calculated the
AIDPI for every patient across multiple cohorts. The tROC
analyses revealed that the areas under the ROC curves
(AUCs) in the training set were .981, .995 and .988 for 1-
, 3- and 5-year OS, respectively (Figure 1B). The AUCs
in the validation set were .817, .772 and .776 (Figure 1C).
For the independent test set, the AUCs were .886, .767
and .849 (Figure 1D). Based on the optimal threshold
of the AIDPI determined from the training set (Figure
S1E), OSA patients were categorized into low- and high-
AIDPI groups. KMSA revealed notably adverse outcomes
for the high-AIDPI group in the training set (p < .0001)
(Figure 1E), validation set (p< .0001) (Figure 1F) and inde-
pendent test set (p = .0025) (Figure 1G). This trend was
consistently observed across other cohorts (Figure 1H–M),
including a combinedmeta-OSA cohort (Figure 1J,M). The
harmonization in the transcriptomic profile after remov-
ing the batch effect, coupled with congruent OS results
across the four datasets, justified their consolidation into
a singular meta-OSA cohort (Figure S1F,G).



WANG et al. 9 of 26

F IGURE 1 Development and validation of the artificial intelligence-derived prognostic index (AIDPI). (A) C-indices of multiple models
derived from various machine-learning algorithm combinations in three cohorts. (B–D and H–J) Time-dependent ROC curve analysis of the
AIDPI across multiple cohorts. (E–G and K–M) Kaplan–Meier survival analyses of the AIDPI across multiple cohorts. (N) Results of
univariate Cox regression analyses of the AIDPI and previously published prognostic signatures. (O) Comparison of the C-indices of the
AIDPI and a signature established by Xu et al., ns: p > .05; *p < .05; ****p < .0001 by Z test.
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We further assessed the predictive ability of the AIDPI
and 68 previously published OSA signatures (Table S1) in
the sixmentioned cohorts. However, because of gene nam-
ing alterations and gene absences in microarray datasets,
only 53 published signatures and the AIDPI were tested
in at least one cohort, and the results were visualized in
a heat map (Figure 1N). Strikingly, this heat map showed
that only two signatures consistently exhibited statisti-
cal significance across all cohorts: our AIDPI and Xu
et al.’s signature.12 A direct C-index comparison under-
scored AIDPI’s definitive superiority over Xu et al.’s
signature within three cohorts (Figure 1O). These find-
ings demonstrate that the AIDPI can predict OSA patients’
outcomes and outperforms previously established signa-
tures. Additionally, we deployed an application (https://
yongjiewangosa.shinyapps.io/AIDPIshinyAPP/) that can
calculate the AIDPI.

3.2 Survival prediction enhancement
based on the AIDPI and clinical features

Given the recognized impact of multiple clinical vari-
ables on OSA patient outcomes, we sought to elucidate
relationships between these factors and the AIDPI for
authenticating the AIDPI as an independent prognos-
tic biomarker and enabling a comprehensive model for
enhanced survival prediction. Univariate Cox regression
analyses in meta-OSA revealed significant associations
between patients’ OS and parameters such as AIDPI,
age, MSTS stage, Huvos grade and primary tumour site
(Figure 2A). Further analysis of these variables showed
that patients with MSTS stage I/II, Huvos grade III/IV,
age over 18 years old or primary tumours in the lower
limbs tended to exhibit low AIDPI values (Figure S2A–D).
Furthermore, the AIDPI consistently emerged as an
unfavourable prognostic indicator across varying patient
subgroups determined by these clinical factors, with the
exception of those with axial skeleton tumours, potentially
due to the small sample size of this subset (Figure S2E–H).
In the TARGET-OSA cohort, where Huvos grade was

available for 43 patients, we observed a clear trend that
a high AIDPI score corresponded to Huvos grade I/II
(Figure 2B). When we assessed its predictive power in
chemotherapy responses, theAIDPI yielded anAUCof .713
(Figure 2C). This predictive property was reaffirmed in an
expanded OSA-Huvos dataset consisting of samples with
information on Huvos grade from five datasets (Figure
S2I), where once again Huvos grade I/II corresponded to
elevated AIDPI score (Figure 2D), and AIDPI achieved
an AUC of .756 in predicting the response to neoadjuvant
chemotherapy (Figure 2E).

Multivariate Cox regression analysis of the meta-OSA
cohort identified AIDPI, MSTS stage, Huvos grade, and
primary tumour site as independent prognostic factors
(Figure 2F). Given the Huvos grade with over 25% missing
values and the AIDPI’s high accuracy in predicting neoad-
juvant chemotherapy response, Huvos grade was excluded
from the multivariate Cox regression analysis (Figure 2G).
Based on this revised model, we constructed a nomo-
gram to predict patients’ survival probability (Figure 2H).
Calibration curves (Figure 2I) and tROC evaluations
(Figure 2J) confirmed the robust predictive capability of
this nomogram, which had AUCs of .938, .903 and .904 for
1-, 3- and 5-year OS, respectively. Furthermore, this nomo-
gram surpassed other factors in terms of performance
based on the AUC analysis (Figure 2K), and DCA revealed
that its net benefit was broader than those of other clinical
parameters (Figure 2L).
These findings highlight the AIDPI as an indepen-

dent prognostic indicator. Moreover, the nomogram
based on the AIDPI, age, MSTS stage, and primary
tumour site has emerged as a tool for prognosis pre-
diction for OSA patients that is superior to isolated
clinicopathological features. Additionally, we deployed
an application (https://yongjiewangosa.shinyapps.io/
AIDPIbasedNomogramForOSA/) that allows real-time
survival estimates using this nomogram.

3.3 Identifying dysregulated pathways
in high-AIDPI patients

A heat map derived from TARGET-OSA dataset showed
the AIDPI, immune score, and expression patterns of
the 12 genes used in AIDPI calculations (AIDPI genes).
Within the high-AIDPI group, seven AIDPI genes exhib-
ited marked upregulation, with five being inversely cor-
related with the immune score. On the other hand, five
AIDPI genes manifested notable downregulation, with
three displaying a positive correlation with the immune
score (Figure 3A). GSEA pinpointed enhanced gene sets in
the high-AIDPI group, includingMYC targetsV2,MYC tar-
gets V1, cholesterol homeostasis and mTORC1 signalling.
In contrast, gene sets on apoptosis and specific immune
responses were negatively enriched (Figure 3B). KEGG
enrichment analysis of the DEGs highlighted pathways
vital for OSA progression (Figure 3C), including PI3K–
Akt signalling,45 cytokine–cytokine receptor interaction,46
osteoclast differentiation,47 focal adhesion48 and extracel-
lular matrix (ECM)-receptor interaction.49 An enrichment
map highlighted a significant cluster incorporating the
PI3K–Akt signalling pathway, focal adhesion and ECM-
receptor interaction (Figure 3D).

https://yongjiewangosa.shinyapps.io/AIDPIshinyAPP/
https://yongjiewangosa.shinyapps.io/AIDPIshinyAPP/
https://yongjiewangosa.shinyapps.io/AIDPIbasedNomogramForOSA/
https://yongjiewangosa.shinyapps.io/AIDPIbasedNomogramForOSA/
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F IGURE 2 Survival prediction based on artificial intelligence-derived prognostic index (AIDPI) and clinical features: (A) univariate Cox
regression analyses of relations between AIDPI and clinicopathological features regarding prognostic value, (B and D) Boxplots displaying
AIDPI distributions across varying Huvos grades in the indicated cohorts, (C and E) the ROC curves for evaluating the ability of the AIDPI to
predict the response to neoadjuvant chemotherapy, (F–G) multivariate Cox regression analyses with or without the integration of Huvos
grade, (H) a nomogram was derived from meta-osteosarcoma (OSA), (I) calibration curve of the nomogram, (J) time-dependent ROC curve
analyses of the established nomogram, (K) the predictive performances were compared among various factors, (L) decision curve analysis
underscores the superior net benefit of the nomogram relative to other indicators. *p< .05; ****p < .0001 byWilcoxon rank-sum test (B and D).
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F IGURE 3 Identifying dysregulated pathways in high-artificial intelligence-derived prognostic index (AIDPI) patients. (A) A heat map
elucidates the expression of the AIDPI genes and their correlation with the immune score. Stars preceding brackets indicate adjusted p-values
from differential expression analysis (DEA), whereas numbers and stars within the brackets convey the correlation coefficient and associated
p-value, ns: p > .05; *p < .05; **p < .01; ***p < .001; ****p < .0001. (B) Gene set enrichment analysis (GSEA) results spotlight biological
processes notably correlated with high (red) or low (blue) AIDPI. (C) A bubble plot shows findings from KEGG enrichment analysis based on
differentially expressed genes (DEGs). (D) An enrichment map arranges enriched terms into a network, connecting the terms that have
shared genes. (E) Boxplot contrasts average DNA methylation levels between two AIDPI groups. (F) A bar chart manifests empirical Bayes
GSEA results based on epigenomic data. nREP, number of genes enriched in this pathway.
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Further exploration aimed to discern the origins of tran-
scriptomic dysregulation by delving into the genomic and
epigenomic data. Notably, AIDPI genes lacked somatic
mutations. Moreover, there was no significant distinc-
tion between the two AIDPI groups in terms of tumour
mutation burden (Figure S3A) or mutated genes sum-
marized by pathways (Figure S3B). However, copy num-
ber assessments suggested increased copy numbers for
the MCAM, MYC and SQLE genes in the high-AIDPI
group (Figure S3C), possibly explaining their overexpres-
sion and the dysregulation of corresponding gene sets.
Although methylome analysis did not uncover signifi-
cant shifts in average methylation levels between the
two AIDPI groups (Figure 3E), KEGG pathways enriched
through empirical Bayes GSEA,50 based on epigenomic
data revealed the most significant dysregulation in focal
adhesion (Figure 3F), mirroring transcriptomic insights
(Figure 3C). These findings indicate that the aberrant path-
ways at the transcriptomic level might be rooted in DNA
copy number variations and DNA methylation alterations
in the high AIDPI cluster.
Additionally, the transcriptomic analysis highlighted

that the hematopoietic cell lineage was enriched
(Figure 3C), hinting at immune cell infiltration mod-
ifications. Indeed, methylome-based estimations of cell
infiltration revealed a decline in CD4+ T cells, monocytes
and neutrophils in the high-AIDPI group, accompanied
by an increase in fibroblasts (Figure S3D).
These findings indicate that the unfavourable prognosis

of the high-AIDPI group may stem from pathway alter-
ations triggered by changes in DNA copy numbers, DNA
methylation and altered immune cell infiltration patterns
in OSA.

3.4 Identifying therapeutic targets for
high-AIDPI patients

To determine which cell type expressed the DEGs between
the low- and high-AIDPI groups from bulk RNA-seq data
and pinpoint therapeutic targets specific to OSA cells, we
assessed a scRNA-seq dataset for six OSA biopsy samples.
Utilizing the scGate package,34 we identified various cell
types in OSA tissues, primarily consisting of stromal and
immune cells, including lymphocytes (Figure S4A). We
isolated CD45-positive cells and employed 1000 of them
as reference cells for identifying OSA cells. Conversely,
CD45-negative cells were considered potential OSA cell
candidates. Using the infercna package,35 we inferred copy
number alterations (CNAs) based on the average expres-
sion of 150 genes per chromosomal region. Relative to the
signals of reference cells, those candidates showing height-
ened CNA signals and robust correlations with the entire
cell population were identified as OSA cells, whereas

others were classified as normal cells (Figure S4B,C).
Distinct chromosomal amplifications and deletions were
observed in the predicted OSA cells (Figure 4A) but were
absent in both reference and anticipated normal cells
(Figure S4D,E). For refined cell annotation, we assessed
the mRNA expression levels of selected markers: ACP5
for osteoclasts, VWF for endothelial cells and COL1A1
for stromal cells (Figure S4F,G).51,52 The scGate package
facilitated automated immune cell annotation, allowing
the annotation of nine primary clusters finally, including
OSA cells, B cells, endothelial cells, myeloid cells, NK
cells, osteoclasts, plasma cells, nontumour stromal cells
(stromal) and T cells (Figure 4B). The marker genes
defining each cluster were subsequently presented with
their expression patterns via a bubble plot (Figure 4C).
All delineated cell types were present across the six
biopsies, with OSA3 and OSA5 presenting the maximal
and minimal OSA cell frequencies, respectively (Figure
S4H), consistent with results reported by Liu et al.30
Based on the DEA results in the scRNA-seq dataset,

we illustrated positively expressed genes (PEGs) across
each cell cluster (Figure 4D), showing that CPE, IBSP
and CTHRC1 were the top three genes highly expressed
in OSA cells. By comparing the DEGs from the low- and
high-AIDPI groups with the PEGs of each cell cluster,
we discovered that only 8% of DEGs were predominantly
expressed in OSA cells (Figure 4E). The intersection of
the twelve AIDPI genes with DEGs and PEGs highlighted
three common genes (Figure 4F), whose expression pat-
terns were subsequently displayed through feature plots
(Figure 4G). According to the canSAR database (https://
cansar.ai/),53 only the proteins encoded byMYC and SQLE
possess druggable structures and emerge as potential
targets for high-AIDPI patients.

3.5 SQLE overexpression in OSA
correlates with tumour progression

Traditionally, elevatedMYC expression has been linked to
the adverse prognosis of OSA.54 Focusing on SQLE, we
observed a marked increase in its expression in OSA tis-
sues and cellular models when compared to their normal
adjacent tissues and putative progenitor cells, including
OB andMSCs (Figure 5A,B). Notably, OSA specimenswith
Huvos grade I/II, indicating poor response to neoadju-
vant chemotherapy, manifested elevated SQLE expression,
and the same trend was also observed in MTX-resistant
Saos2 cells (Saos2/MTX) compared to its parent cell line
(Figure 5C). These findings underscore the potential sig-
nificance of SQLE in the initiation and chemoresistance of
OSA.
We further investigated potential molecular mecha-

nisms underlying SQLE overexpression in OSA. A robust

https://cansar.ai/
https://cansar.ai/
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F IGURE 4 Identifying therapeutic targets for high-artificial intelligence-derived prognostic index (AIDPI) patients: (A) A heat map
shows inferred CNA in predicted osteosarcoma (OSA) cells, (B) a uniform manifold approximation and projection (UMAP) plot of nine
annotated cell types, (C) a bubble plot displays marker gene expression across nine identified cell clusters, (D) in a Manhattan plot, genes
highly expressed in specific cell clusters are pinpointed, (E) a donut chart displays the cellular sources of differentially expressed genes
(DEGs) between the two AIDPI groups, (F) a Venn diagram presents shared entities among the indicated gene groups and (G) feature plots
display normalized expression of the indicated genes across individual cells.



WANG et al. 15 of 26

F IGURE 5 Overexpression of squalene epoxidase (SQLE) in osteosarcoma (OSA) correlates with tumour progression. (A–C) Boxplots
demonstrate SQLE mRNA levels, contrasting OSA tissues versus their adjacent normal counterparts (A), OSA cell lines (OSACell) versus
osteoblasts (OB) and mesenchymal stem cells (MSC) (B), samples with different Huvos grades and methotrexate-resistant Saos2 (Saos2/MTX)
versus its parent cell line (C). (D and E) Scatter plots show the relationships between copy number and mRNA level of SQLE in OSA samples
and OSA cell lines. (F and G) Correlations between gene-level copy numbers for MYC and SQLE are portrayed through scatter plots in OSA
samples and OSA cell lines. (H) A scatter plot shows the correlation between the mRNA expression of MYC and SQLE in the indicated
datasets. (I–P) Kaplan–Meier survival analyses of SQLE mRNA levels were performed across multiple human and canine OSA cohorts. (Q)
Representative images of immunohistochemical (IHC) staining of SQLE in the TMA. (R) Kaplan–Meier survival analysis of a tissue
microarray (TMA) consisting of 26 OSA patients with low SQLE expression and 51 OSA patients with high SQLE expression. (S) A forest plot
shows the results of multivariate Cox regression analysis. CN, copy number; Exp, expression. *p < .05; **p < .01; ***p < .001; ****p < .0001, by
Wilcoxon rank-sum test (A and C) and adjusted using Holm’s method (B).
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positive correlation was observed between the SQLE
gene-level copy number and its mRNA expression level
within both OSA tissues and cell lines (Figure 5D,E).
The oncogene MYC, frequently amplified in OSA,55 is
proximate to SQLE in genomic location (8q24.13 for SQLE
vs. 8q24.21 for MYC). Strong correlations between their
gene copy numbers (Figure 5F,G) and mRNA expression
levels (Figure 5H) suggest that concurrent SQLE andMYC
amplifications might lead to their increased mRNA levels
in OSA.
Elevated SQLE expression is also linked to poor out-

comes in humans or canines with OSA, as evidenced
by KMSA across multiple cohorts, showing that patients
in the high-SQLE group had significantly lower OS or
event-free survival rates acrossmultiple human and canine
OSA cohorts (Figure 5I–P). Additionally, we detected the
SQLE protein abundance in 77 human OSA tissues using
a TMA and displayed representative staining images of
low and high SQLE protein expression (Figure 5Q), which
confirmed that high SQLE protein expression was asso-
ciated with poor survival in patients with OSA by KMSA
(p = .037) (Figure 5R). A multivariate Cox regression
analysis in meta-OSA indicated that both SQLE mRNA
expression and MYC mRNA expression are independent
indicators of mortality risk in OSA patients, even when
adjusted for clinical factors such as age, MSTS stage and
primary tumour site (Figure 5S).
Although the MYC protein remains a pivotal OSA

target,10,54 targeting it poses challenges due to its nuclear
localization and the absence of defined protein pockets.56
In contrast, the SQLE protein, located in the cytosol, as
shown in Figure 5Q and Figure S5A, presents a more
accessible target due to its nature as a metabolic enzyme.
In CCLE, both the gene-level copy number and mRNA
expression level for SQLE are much higher than those
in normal cells (Figure S5B,C), suggesting that targeting
SQLE protein in vivo may impair OSA cells more effec-
tively while sparing normal cells. Furthermore, an inverse
correlationwas observed between SQLEmRNAexpression
and the proportion of infiltratingCD4+ T cells in TARGET-
OSA samples (Figure S5D), implying SQLE’s influence on
the immune landscape of OSA.
These results suggest that the overexpression of SQLE

in OSA, due to its co-amplification with MYC at the
DNA level, could promote OSA progression by promot-
ing the chemoresistance of OSA cells and suppressing the
infiltration of anti-OSA immune cells.

3.6 SQLE knockdown impedes OSA in
vitro and in vivo

To unravel the role of SQLE in OSA, we constructed four
shRNAs and selected the optimal one (Figure S6A) to

silence SQLE inMNNGandU2OS cells (Figure 6A), which
have high endogenous SQLE protein expression (Figure
S6B). The knockdown of SQLE inhibited malignant phe-
notypes of these cells, including proliferation (Figure 6B),
colony formation (Figure 6C), migration (Figure 6D) and
invasion (Figure 6E). Furthermore, SQLE knockdown pro-
moted apoptosis both in the absence and presence of drug
treatment (Figure 6F,G) and enhanced sensitivity to agents
from the MAP regimen, as evidenced by decreased IC50
values in the shSQLE group (Figure 6H–J and Figure
S6C–E). In xenograft models, we found that silencing
SQLE inhibited tumour growth and decreased the weights
and cholesterol levels of tumours (Figure 6K–M). IHC
analyses confirmed reduced SQLE protein abundance and
Ki-67-positive cells post-SQLE silencing (Figure 6N,O).
These results demonstrate that targeting the SQLE protein
may be a reasonable approach to suppress OSA.

3.7 SQLE silencing impedes OSA by
reducing cholesterol and inhibiting the
FAK/PI3K/Akt/mTOR pathway

Having discerned the detrimental effect of SQLE silenc-
ing on OSA, our focus shifted to unveiling the underlying
molecular mechanisms. We performed RNA-seq on U2OS
cells that stably expressed either shSQLEor shControl. Dif-
ferences in transcriptomic profiles between the two groups
were displayed by a PCA plot (Figure S7A). A volcano
plot displayed an apparent decrease in SQLE mRNA in
the shSQLE group (Figure S7B). GSEA revealed a notable
downregulation of the cholesterol homeostasis gene set
following SQLE silencing (Figure 7A), consistent with our
findings of reduced intracellular cholesterol in MNNG
and U2OS cells after SQLE knockdown (Figure 7B). Upon
KEGG enrichment of DEGs, the PI3K–Akt signalling path-
way was significantly enriched, displaying the highest
gene ratio (Figure 7C). An enrichment map was used
to integrate enriched terms into a network, suggesting
a connection between the PI3K–Akt signalling pathway,
focal adhesion andECM-receptor interaction (Figure S7C).
Indeed, these pathways were combined into a broader
gene set, the focal adhesion-PI3K–Akt-mTOR pathway
(WP3932) in the WikiPathways database, which was sim-
ilarly downregulated after SQLE silencing in U2OS cells
(Figure 7D). Further analysis of drug-gene relationships
revealed positive correlations between SQLE mRNA level
and AAC values of various agents, notably GSK1059615, an
antagonist of the PI3K/mTOR signalling pathway (Figure
S7D). Higher AACs suggest increased drug sensitivity due
to their inverse relation with the IC50 values (Figure S7E).
Remarkably, the SQLEmRNA level exhibited a robust cor-
relation with AAC values of three PI3K/mTOR pathway
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F IGURE 6 Squalene epoxidase (SQLE) knockdown impedes osteosarcoma (OSA) progression in vitro and in vivo. (A) SQLE protein
abundances following transfection of either shSQLE or shControl are depicted via Western blot in labelled cell groups. (B–E) Assays of
cellular proliferation (B), clonogenic growth (C), migration (D) and invasion (E) in labelled cell groups. (F and G) Flow cytometric analyses,
employing Annexin V-APC/7-AAD staining, quantify apoptotic cells in labelled cell groups, either untreated (F) or following adriamycin
(ADM) exposure (G). Apoptotic cells exhibit Annexin V-APC positivity within the right-top and right-down quadrants. (H–J) Bar plots
contrast the sensitivities of the indicated cell groups to the indicated drugs. (K) Images of isolated tumours from subcutaneous xenograft
models established using U2OS cells either harbouring shControl or shSQLE. (L) Tumour growth curves of the indicated groups. (M) Weight
and cholesterol levels of tumour masses are presented in bar plots. (N) Representative images of immunohistochemistry for SQLE and Ki-67
staining in tumours derived from the xenograft model. (O) Bar plots contrast the SQLE abundance and percentage of Ki-67-positive cells.
AOD: average optical density. *p < .05; **p < .01; ***p < .001; ****p < .0001, by Student’s t-test for bar plots, or Tukey HSD test for cellular
proliferation and tumour growth curves.
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F IGURE 7 Squalene epoxidase (SQLE) silencing impedes osteosarcoma (OSA) by reducing cholesterol and inhibiting the
FAK/PI3K/Akt/mTOR pathway. (A and D) Gene set enrichment analysis (GSEA) plots illustrate enrichment trends for the indicated gene
sets. Genes are arranged in descending order based on their log2FoldChange value. (B) The bar graphs show intracellular cholesterol levels in
labelled cell groups. (C) KEGG enrichment results of differentially expressed genes (DEGs) are presented in a bubble plot. (E) Scatter plots
show correlations between SQLE mRNA levels and area above the dose–response curve (AAC) values of three specific inhibitors targeting the
PI3K/mTOR signalling cascade. (F and G) Protein expression profiles in labelled cell groups and subsequent quantifications of these profiles
are displayed. (H–K) Experimental outcomes of the indicated cell groups, including cellular proliferation (H), clonogenic potential (I),
migration (J) and invasion capabilities (K), are displayed. Cho: Cholesterol. For experiments involving multiple groups, the mean value of the
shSQLE group served as a comparative benchmark against other groups. ns: p > .05; *p < .05; **p < .01; ***p < .001; ****p < .0001, by Tukey
HSD test for all proliferation curves, or Student’s t-test adjusted using Holm’s method for other plots.



WANG et al. 19 of 26

antagonists (Figure 7E), emphasizing possible associations
between SQLE mRNA and the activation of this pathway
in OSA cell lines.
Considering the role of SQLE protein in cholesterol

synthesis and cholesterol’s pivotal role in cellular sig-
nalling modulation via lipid rafts,57 we hypothesized that
SQLE silencing reduced intracellular cholesterol levels
and subsequently deactivated the FAK/PI3K/Akt/mTOR
signalling pathway and finally inhibited OSA progres-
sion. Consistent with this hypothesis, SQLE silencing in
MNNG and U2OS cells led to decreased phosphoryla-
tion of crucial proteins, including focal adhesion kinase
(FAK), PI3K, Akt and mTOR. However, cholesterol sup-
plementation (100 μg/mL) restored these phosphorylation
patterns (Figure 7F,G) and counteracted the suppressive
effects of SQLE knockdown on these OSA cell malignant
phenotypes (Figure 7H–K). These findings suggest that
SQLE silencing inhibits OSA by reducing cholesterol lev-
els and subsequently inhibiting the FAK/PI3K/Akt/mTOR
pathway.

3.8 Pharmacologic SQLE inhibition
suppresses OSA progression and enhances
chemotherapy efficacy

The observed suppressive effects of SQLE silencing on
OSA led us to explore its therapeutic potential further.
Fungal SQLE inhibitors such as naftifine and terbinafine
have demonstrated anti-tumour effects on various cancer
lines, and they exhibited no effect on healthy fibrob-
lasts at similar concentrations.16,58,59 Given their design
for fungal SQLE, their utility in human OSA therapy
may be constrained. FR194738, however, has been rec-
ognized as a potent mammalian SQLE inhibitor, show-
ing superior efficacy and bioavailability compared to its
precursor compound.60 Remarkably, preclinical studies
have confirmed the effectiveness of FR194738 against
prostate cancer.61 Both MNNG and U2OS cells notably
displayed enhanced sensitivity to FR194738, with IC50 val-
ues markedly lower than those of naftifine and terbinafine
(Figure S8A–C), driving us to assess FR194738’s therapeu-
tic promise for OSA.
In our initial assessment, we gauged the sensitivity of

four distinct OSA cell lines to FR194738. Both the IC50
and GR50 values for MNNG and U2OS were appreciably
reduced in comparison to those of MG63 and 143B cells
(Figure S8D–F). At a 72-h exposure to 4 μM FR194738, a
significant decrease in GR and cell viability was observed
in MNNG and U2OS cells but not in MG63 and 143B cells
(Figure S8G), which might be attributed to the dimin-
ished SQLE protein levels in MG63 and 143B cells (Figure
S6B), signifying FR194738’s specificity for cells express-

ing SQLE protein. Intriguingly, under standard culture
conditions, MG63 cells exhibited the lowest division rate
over 72 h (Figure S8H), suggesting the lowest cholesterol
requirement, which could partially explain why these cells
presented the lowest sensitivity to FR194738. Our findings
infer that SQLE inhibition by FR194738 could be benign for
cells with low SQLE protein expression or low GRs.
In subsequent analyses, FR194738 induced dose-

dependent suppression of both proliferation and colony
formation in U2OS and MNNG cells (Figure 8A,B). After
FR194738 treatment, a congruent decline in intracellular
cholesterol was observed (Figure S8I). Efficacy assess-
ment in vivo utilizing MNNG-bearing xenograft models
corroborated our in vitro observations. FR194738 stunted
tumour growth and cholesterol content without inducing
weight loss in the subjects (Figure 8C–F). Dissected
tumour weight comparisons revealed a TGI rate of 59.67%
(Figure 8E). Furthermore, IHC analyses for Ki-67 and
cleaved caspase-3 confirmed reduced cell proliferation and
heightened apoptosis in OSA xenografts post-FR194738
administration (Figure 8G,H), highlighting the thera-
peutic potential of SQLE pharmacological inhibition for
OSA.
Building on the observation that SQLE silencing deac-

tivated the FAK/PI3K/Akt/mTOR signalling pathway,
which, when inhibited, increases OSA cells’ sensitivity to
MTX, ADM and DDP,45 we hypothesized that FR194738
synergizes with these first-line chemotherapy drugs in
OSA. We thus assessed cellular responses to various drug
combinations using MNNG (Figure 8I) and U2OS (Figure
S8J). Most synergy scores suggested potent synergistic
effects (Figure 8J,K). Alongside synergy scores, we evalu-
ated the efficacy of drug combinations using the combina-
tion sensitivity score (CSS).62 Both CSS values and synergy
scores were plotted for all examined drug combinations.
Remarkably, the combination of FR194738 and DDP stood
out as the best combination (Figure 8L,M). These find-
ings suggest that the efficacy of chemotherapy, especially
DDP, could be improved in OSA patients through SQLE
targeting via FR194738. In line with our findings, we advo-
cate for the clinical potential of the AIDPI in stratifying
OSA patients. Although traditional therapies could suf-
fice for low-AIDPI patients, high-AIDPI patients might
benefit from an integrated approach incorporating tradi-
tional therapies and SQLE inhibitors such as FR194738
(Figure 8N).

4 DISCUSSION

The 5-year survival rate for OSA remains below 70%,63
highlighting the fact that many OSA patients do not
respond to standard therapies. By identifying these high-
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F IGURE 8 Pharmacologic squalene epoxidase (SQLE) inhibition suppresses osteosarcoma (OSA) progression and enhances
chemotherapy efficacy. (A and B) Experiments demonstrate the effects of two concentrations of FR194738 compared to the vehicle control on
cell proliferation (A) and colony formation ability (B). (C) Images of isolated tumours from the subcutaneous xenograft models treated with
vehicle or FR194738. (D) Tumour growth curves of the indicated groups. (E) Weight and cholesterol levels of tumour masses are presented in
bar plots. (F) Body weight curves of the indicated groups. (G) Representative images of immunohistochemistry for Ki-67 and cleaved
caspase-3 staining in tumour sections. (H) Bar plots contrast the percentage of Ki-67- and cleaved caspase-3-positive cells. (I) Heat maps
provide dose–response visualizations of MNNG to a spectrum of drug combinations. (J and K) Heat maps present synergy scores when
coadministering FR194738 with the indicated agents against the indicated OSA cell lines. (L–M) Scatter plots show both sensitivity metrics
and synergistic metrics in the indicated OSA cell lines. (N) Schematic diagram displays the possible way of applying artificial
intelligence-derived prognostic index (AIDPI) in clinical practice. ns: p > .05; *p < .05; **p < .01; ***p < .001; ****p < .0001, by Tukey HSD test
for all line plots, Student’s t-test for all bar plots and adjusted using Holm’s method for multiple comparisons.
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risk patients and tailoring supplementary treatments,
outcomes may be improved. In pursuit of this objec-
tive, we built multiple prognostic models by using 101
machine-learning algorithm combinations based on the
whole-transcriptome profiles of 254 OSA biopsy samples.
Subsequently, the 12-gene AIDPI, derived from the combi-
nation of the CoxBoost and GBM algorithms, emerged as
superior.
CoxBoost can be used to fit a Cox proportional hazards

model by componentwise likelihood-based boosting.64
This approach is particularly effective formodels involving
many predictors. In our initial modelling phase, CoxBoost
was used primarily for dimensionality reduction and vari-
able screening. However, the model’s direct application
yielded modest accuracy, achieving an average C-index
of .768. We also used the gbm package, which extends
Friedman’s GBM,65 covering some regression methods,
including Cox proportional hazards partial likelihood.
A significant challenge with GBM is its lack of inher-
ent dimensionality reduction capabilities, coupled with a
heightened risk of overfitting. Consequently, although the
GBM-only model exhibited a high C-index of .941 in the
training set, its performance dropped in the validation and
independent testing sets, with C-indices of .775 and .695,
respectively. To address these challenges, we combined the
strengths of CoxBoost and GBM. Initially, CoxBoost was
employed to select 12 prognosis-associated genes from the
initial set of 18 genes. This step was crucial in reducing the
risk of overfitting. Subsequently, the finalmodel was estab-
lished using GBM, which significantly enhanced accuracy.
This combined approach proved to be the most effective,
outperforming other models in our study.
In recent years, numerous OSA prognostic signatures

have emerged. However, many of these signatures have
been derived from limited cohorts or have focused solely
on specific gene sets, such as the unfolded protein response
gene set,11 while ignoring the influence of other biolog-
ical processes on OSA progression. Our 12 AIDPI genes
were selected from the entire transcriptomic profile and
encompassed multiple biological processes. MYC is a piv-
otal oncogene whose overexpression is recurrently linked
to unfavourable OSA outcomes.10 SQLE andMUC1, associ-
ated with cholesterol biosynthesis and mucin production,
respectively, are connected to OSA’s proliferation and
migration.16,66 Furthermore, the augmented expression of
CORT and MCAM might also drive OSA progression.67,68
FDPS promotes prostate cancer progression,69 hinting at
its potential unfavourable role in OSA. The observed anti-
OSA effects of anti-TPD52 antiserum in vivo warrant
attention.70 Conversely, PMEPA1, which suppresses the
TGF-beta signalling pathway,71 might act as an OSA sup-
pressor, especially given this pathway’s oncogenic roles

in OSA.72 The promoting role of the WNT signalling
pathway in OSA73 also makes CTNNBIP1, a WNT path-
way antagonist,74 a potential OSA suppressor. Elevated
GLIPR1 expression correlates with macrophage differen-
tiation and displays anti-OSA effects via miR-16.75 EVI2B
protein has been identified in CD8+ T cells within OSA
tissues.76 The FPR1 protein is present in multiple immune
cells.77 These results indicate that our AIDPI, established
by using these 12 genes, reflects the influence of multi-
ple biological processes associated with OSA progression,
which could explain its increased predictive precision over
clinicopathological markers and existing OSA signatures.
Apart from introducing an AIDPI for stratifying high-

risk OSA patients, we also identified SQLE as a therapeutic
target for these patients. SQLE, which oxidizes squa-
lene to (S)-2,3-epoxy squalene, is a pivotal rate-limiting
enzyme in cholesterol synthesis.15 Cholesterol modulates
several pathways via cholesterol/sphingolipid-rich lipid
rafts in cell membranes.57 Both heightened endogenous
cholesterol synthesis and elevated circulating cholesterol
promoted cancer’s resistance to multiple drugs, spurring
interest in repurposing lipid-modifying drugs for can-
cer treatment.78 Although drugs targeting lipids, such as
HMG-CoA reductase inhibitors (e.g. simvastatin), have
shown promise against OSA in preclinical settings,79,80
their efficacy in humans remains uncertain.81 Previous
studies indicated ectopic expression of SQLE contributes
to enhanced growth and elevated cholesterol levels in the
U2OS cell line.82 Conversely, the inhibition of SQLE pro-
tein has demonstrated an enhanced efficacy of chemother-
apy in colorectal cancer,83 and silencing SQLE decreases
cholesterol levels and inhibits the proliferation, colony
formation and migration of both U2OS and Saos2 cell
lines.16,82 However, the mechanisms behind these effects
and the in vivo anti-OSA potential of SQLE inhibitors
remain under-investigated.
In this study, we reported that SQLE expression was

upregulated in the high-AIDPI patients, especially in the
OSA cells, and high SQLE expression was associated with
poor prognoses in OSA cohorts. Interestingly, we linked
SQLE overexpression in OSA to its concurrent amplifi-
cation with MYC, which was previously identified but
overlooked.55,84 Additionally, we found that SQLE knock-
down in OSA cell lines led to reduced proliferation and
increased apoptosis, attributed to cholesterol reduction
and subsequent suppression of the FAK/PI3K/Akt/mTOR
pathway, which aligns with prior findings that cholesterol
depletion triggers apoptosis through FAK inactivation,
internalization of lipid rafts and reduced cell adhesion.85
The osteoid-rich ECM uniquely produced by OSA offers
not only a structural scaffold for cells but also functional
stimulation.49 Focal adhesions, comprising integrins,
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FAK, and other proteins, are hubs that relay stimulat-
ing signals from ECM to the cytoplasm, regulating cell
activities such as survival, proliferation and migration.86,87
The importance of the FAK/PI3K/Akt/mTOR pathway
in OSA is accentuated by a genomic study,88 and exper-
imental findings including that CXCL1 promotes OSA
lung metastasis via the CXCR2/FAK/PI3K/Akt pathway
and that anti-OSA effects can be achieved by inhibiting
the FAK/PI3K/Akt pathway.89,90 In this study, the same
OSA progression-associated pathways, including PI3K–
Akt signalling, focal adhesion and ECM-receptor interac-
tion, were simultaneously enriched in KEGG enrichment
analyses based on DEGs between low- and high-AIDPI
patients and DEGs of U2OS following silencing SQLE.
Crucially, silencing SQLE was proven to deactivate the
FAK/PI3K/Akt/mTOR pathway, indicating that targeting
SQLE protein has considerable therapeutic potential for
high-risk OSA patients.
Furthermore, we selected the SQLE protein inhibitor,

FR194738, for an in-depth study due to its significant effi-
cacy and specificity. FR194738 showed a promising ability
to suppress OSAprogression in animalmodels without sig-
nificant side effects. Its synergistic potential was evident
when combined with agents from theMAP regimen, espe-
cially with DDP. This synergistic effect echoes a recent
report that attributed DDP resistance to SQLE mRNA
upregulation, emphasizing that SQLE inhibition can bol-
ster DDP’s therapeutic effects in head-and-neck squamous
cell carcinoma.91
These results suggest that, in clinical practice, we

can procure biopsy samples from newly diagnosed OSA
patients and conduct RNA-seq analysis to elucidate their
transcriptomic profiles. Subsequently, we can harmonize
these profiles with the meta-OSA cohort and employ our
established Shiny app to compute the AIDPI. Based on the
AIDPI cutoff value, these OSA patients can be categorized
into either low- or high-AIDPI groups. Conventional thera-
pies could be adequate for patients in the low-AIDPI group,
and those patients in the high-AIDPI group could poten-
tially benefit from integrating traditional treatments with
SQLE inhibitors.
Nevertheless, the limitations of our study deserve

mention. Our retrospective approach has its drawbacks,
emphasizing the need for subsequent prospective trials
to validate the predictive capacity of the AIDPI. Beyond
cholesterol reduction, it remains to be explored whether
SQLE inhibition induces anti-OSA effects through squa-
lene accumulation, a phenomenon observed in neu-
roendocrine tumours.92 The observed inverse correlation
between SQLE mRNA and CD4+ T-cell infiltration, cou-
pled with improved outcomes of SQLE inhibition along-
side immune checkpoint blockades in glioblastoma,93

suggests a need to scrutinize the effects of SQLE and
FR194738 on OSA’s immune response. Although our find-
ings, combined with those of prior animal studies,94
indicate FR194738’s safety and efficacy, rigorous eval-
uation through additional preclinical models, such as
OSA patient-derived xenografts and transgenic mouse
models,95 remains necessary.

5 CONCLUSIONS

In summary, this research introduced AIDPI as a poten-
tial tool for identifying a high-risk subset of OSA patients
and revealed that SQLEprotein is ametabolic vulnerability
for these patients. Through cholesterol reduction and dis-
ruption of the FAK/PI3K/Akt/mTOR signalling pathway,
SQLE inhibition using FR194738 offered a promising ther-
apeutic avenue, representing a potential supplementary
treatment for high-risk OSA patients.
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