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Neuregulin‑1 and ALS19 (ERBB4): 
at the crossroads of amyotrophic lateral sclerosis 
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Abstract 

Background  Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic 
lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology 
in regard to these genes and their functions.

Main body  Approximately 0.15–0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence 
that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/
antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression 
is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function 
germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. 
Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS 
pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors 
and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing 
in ALS.

Conclusion  Common signaling cascades between cancer and ALS may represent novel therapeutic targets 
for both diseases.
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Background
Neuregulins, a family of epidermal growth factor (EGF)-
like signaling molecules, are involved in cell-to-cell cross-
talk and also participate in the development and repair 
of diverse body elements including those of the nervous 
system, skeletal muscle, heart, breast, and other organs 
[1–3]. The neuregulin family includes NRG1 (types I–
VI), NRG2, NRG3, and NRG4.

The NRG1 gene is located on the 8p12 region of the 
short arm of chromosome 8; it can translate to six differ-
ent NRG1 (neuregulin1) protein types and over 30 dif-
ferent isoforms that act as extracellular EGF-like ligands 
for ERBB3/HER3 and ERRB4/HER41; the many differ-
ent isoforms may be the reason why NRG1 can influence 
diverse functions such as proliferation and differentia-
tion of glial, neuronal, and Schwann cells, expression of 
acetylcholine receptors in synaptic vesicles during neu-
romuscular junction formation, growth of skeletal mus-
cle cells, lobuloalveolar budding/milk production in 
the breast, differentiation of breast cancer cells, and the 
development of the myocardium [4]. Neurohypophyseal 
NRG1 is derived from the hypothalamus as a prolactin 
modulator and is mainly expressed in rat pituitary gon-
adotrope cells and possibly regulates prolactin secretion 
in a juxtacrine manner [5, 6].

As mentioned, NRG1 binds to ERBB3/HER3 and 
ERBB4/HER4. ERBB3/HER3 lacks or has little intrinsic 

tyrosine kinase enzymatic activity; however, it frequently 
forms heterodimers with other ERBB/HER tyrosine 
kinases and, in cancer cells, can activate oncogenic sign-
aling. While EGFR/ERBB1/HER1, ERBB3/HER3 and 
ERBB4/HER4 have ligands, ERBB2/HER2 has no known 
ligand. When a ligand binds to the extracellular region 
of EGFR/ERBB1/HER1, ERBB3/HER3, or ERBB4/HER4, 
the dimerization arm in domain II is exposed leading to 
receptor-receptor interaction; dimerization is a crucial 
step for receptor function and activation of cytoplasmic 
signaling [7]. In contrast, ERBB2/HER2 is always in a 
constitutively active conformation with its dimerization 
arm opening even without ligand binding.

Importantly, the NRG family, of which NRG1 is a 
member, includes three other subtypes (NRG-2 (Don-1, 
NTAK), NRG-3, and NRG-4), each with unique function-
ality profiles and binding sites (Fig. 1 panels A–F; Table 1) 
[1, 4, 8–20]. Specifically, NRG1-2 serve as ligands that 
bind to ERBB3/HER3, and NRG1-4 bind to ERBB4/
HER4 (Fig.  1A). Because ERBB3/HER3 and ERBB4/
HER4 can each heterodimerize with EGFR/ERBB1/HER1 
and ERBB2/HER2 (and with each other), NRG1 can also 
indirectly affect the function of EGFR/ERBB1/HER1 
and ERBB2/HER2 through ERBB3/HER3 and ERBB4/
HER4 by recruiting the former co-receptors, resulting 
in ligand-induced tyrosine phosphorylation. Depend-
ing on which receptor NRG has bound itself to, and its 

(See figure on next page.)
Fig. 1  A (i) ERBB/HER family members and their cognate ligands (ii) Structural difference of various (I-VI) types of NRG1. Abbreviations: CD, 
cytoplastmic domain; CRD, Cysteine-rich domain; ECD, extracellular domain; EGF, epidermal growth factor; EGF-L; EGF-like repeat; HB-EGF, 
heparin-binding EGF-like growth factor; Ig, Ig-like C2-type domain; LIMK, LIM kinase; N-CoR, Nuclear receptor co-repressor; TA B2, TGF-Beta 
Activated Kinase 1 (MAP3K7) Binding Protein 2); TGF, transforming growth factor; TM, transmembrane; TMD, transmembrane domain; WT, wild 
type. B Examples of various fusions of NRG1. The structure of some representative variants of NRG1 fusions is shown. The EGF domain is preserved 
in all fusion proteins. C ERBB/HER family and potential downstream cascades. Figure represents possible sets for ERBB3/HER3 or ERBB4/HER4 
dimerization with other ERBB/HER family members (HER1:HER4, HER1:HER3, HER2:HER4, HER4:HER4, HER3:HER4, and HER2:HER3) and their ligand(s) 
(e.g., NRG1, 2, 3, and 4) binding or their binding with EGF-like structure of NRG1 fusion-protein. Note that ERBB4/HER4 is also known as ALS19. 
NRG1 fusion-protein exerts a tumorigenic effect that requires HER2:HER3 heterodimerization-mediated activation, which can result in oncogenic 
signaling. The NRG1 fusion product is a transmembrane protein with an extracellular EGF-like domain that binds to ERBB3/HER3 in the cell 
membrane (see inside the box). NRG or NRG1-fusion-induced HER2:HER3 heterodimerization is depicted as the inset. The binding of ligands 
to receptors triggers dimerization and activation of the downstream signaling events responsible for tumorigenesis. Out of four family members, 
ERBB3/HER3 has six YXXM motifs responsible for the recruitment of p85, leading to activation of the PI3K-AKT-mTOR pathway. Other receptor 
dimerization also activates the RAS-RAF-MAPK pathway responsible for proliferation and survival. The NRG-HER signaling pathway also activates 
downstream JAK-STAT and PLCγ-PKC pathways, and both play a role in various oncogenic phenotypes. Examples of FDA-approved drugs are shown 
in the red color font, and examples of non-approved drugs are presented in blue font (inside the box). ERBB2/HER2 may also interact with ERBB3/
HER3 and IGF1R to form heterotrimeric complex (HER2-HER3-IGF1R) [not shown in the figure] in trastuzumab-resistant breast cancer cells. D 
NRG1-mediated ERBB4/HER4 activation forward signaling (non-canonical). Non-canonical ERBB4/HER4 (also known as ALS19) forward signaling 
is shown. The ERBB4/HER4 intracellular domain is cleaved by γ-secretase (or others) (separated from the extracellular domain (ECD); the ERBB4/HER4 
intracellular domain translocates to the nucleus to regulate gene expression. Also, NRG1-mediated HER4 activation (phosphorylation) promotes 
the association with an adaptor protein TA B2. TA B2 also recruits N-CoR and forms a signaling complex that, upon translocation to the nucleus, 
represses the transcription of certain genes required for the differentiation of neuronal precursor cells. E NRG1- mediated backward signaling. 
For NRG1-mediated backward signaling, the C-terminal fragment of NRG1 (CD: cytoplasmic domain) is cleaved from the Pro-NRG1 by the help 
of a protease; NRG1 CD may translocate to the nucleus to regulate gene transcription. The CD of Pro-NRG1 also interacts with LIM kinase (LIMK). 
LIMK (a non-receptor tyrosine kinase) has been shown to regulate cytoskeletal rearrangement/actin dynamics in many cell types including neuronal 
cells. In addition, ERBB4/HER4 (ALS19) or its diffusible extracellular domain can act as a ligand for pro-NRG1
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heterodimerization or homodimerization partners, a 
downstream signaling cascade is activated via PI3K-
AKT-mTOR pathway, RAS-RAF-MAPK, JAK-STAT, and 
PLCγ-PKC pathways (Fig. 1C) [21].

Recently, molecular alterations in ERBB4/HER4 recep-
tor (loss-of-function) or in NRG1 have been linked to 
several neurological diseases such as amyotrophic lateral 
sclerosis (ALS) and schizophrenia [8, 9, 22]. Indeed, the 
ERBB4/HER4 gene is designated ALS19 in the neuro-
logic literature [11]. Furthermore, NRG1 genomic abnor-
malities (especially fusions, which enhance the activity of 
NRG1) have been found in advanced cancers. These dis-
coveries could be therapeutically important for both can-
cer and non-cancer conditions (Fig. 1B) [23–25].

Herein we discuss the diverse role of NRG1 in various 
disease types, as well as possible implications for preci-
sion targeted therapeutics in both neurologic disease and 

cancer, based on cross-fertilization of knowledge from 
each field to the other [22, 26]. Additionally, we present 
a case of a woman with pancreatic cancer harboring a 
VTCN1-NRG1 fusion whose tumor had progressed after 
multiple treatments but was responsive to pertuzumab 
and trastuzumab (anti-HER2 targeted antibodies).

Main text
Function of NRG
Under normal conditions, NRG1 has several important 
functions based on the specific isoform of the protein, 
with each NRG1 isoform contributing to the frictionless 
function of a complex neuronal network (Table 1). NRG1 
types 1 and 3 are designed to maintain normal neuronal 
growth, especially during development [27]. These func-
tions include processes such as the development of glial 
cells, synaptic plasticity, and synaptic transmissions 

Fig. 1  (See legend on previous page.)
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[28]. An extension of this neuronal network includes 
the enteric nervous system that lines the gastrointestinal 
wall, and within the enteric nervous system are NRG1-
positive neurons [29]. NRG1 is also expressed in the 
heart, liver, kidneys, spinal cord, ovaries, and skin, and 
multiple fusions have been found in cancer [25, 26]; it has 
also been linked to cardiac development and disease [3]. 
Taken together, NRG1–ERBB/HER signaling is critically 
important for neuronal progenitor proliferation, survival, 
maturation, and synapse formation, but is also multifunc-
tional, and particularly important in cancer.

NRG2 expression remains quite localized within the 
brain and thymus regions where it promotes astrocyte 
survival and dendrite outgrowth [13, 14]. However, a 
CD74-NRG2 alpha fusion has been described in lung 
cancer [12]. Although further research is needed for 
NRG3, it seems to mirror the functionality of NRG1 by 
aiding neuronal development, differentiation, and plas-
ticity [16, 17]. NRG3 also has a key function promot-
ing normal breast development and may be involved in 
breast cancer [30, 31]. Lastly, NRG4 undertakes meta-
bolic functionalities by maintaining normal lipid levels 
in the liver as an adipocytokine [19, 32]. NRG4 levels 
are also modified in inflammatory bowel disease models 
[33, 34].

NRG1 and bidirectional signaling
NRG1 is a ligand for ERBB3/HER3 and ERBB4/HER4 
and, hence, also influences EGFR/ERBB1/HER1 and 
ERBB2/HER2 receptor signaling via heterodimerization 
with ERBB3/HER3 and ERBB4/HER4 (Fig.  1A). Impor-
tantly, NRG1 signaling is bidirectional and quite com-
plex (Fig. 1C–E). In traditional forward signaling, NRG1 
stimulates the PI3K–Akt–S6K and the Raf–MEK–ERK 
pathways (Fig.  1C); in non-canonical forward signaling, 
ERBB4/HER4 undergoes cleavage resulting in release of 
an intracellular domain that can journey to the nucleus 
and control gene expression (Fig.  1D) [35, 36]. In the 
other direction — backward signaling — ERBB4/HER4 
or its diffusible extracellular domain can act as a ligand 
for pro-NRG1 (Fig.  1E). To further complicate matters, 
the intracellular domain of pro-NRG1 also regulates 
transcription (Fig. 1E) [36].

NRG‑ERBB/HER pathway in ALS and other neurologic 
diseases: clinical and therapeutic implications
Mutations (loss of function) and other alterations of the 
ERBB4/HER4 receptor (also known as ALS19) have been 
linked to several neurological and psychiatric disorders, 
including ALS and schizophrenia (Table  1) [1, 4, 8–20, 
37, 38]. Increasing recent evidence suggests that fron-
totemporal dementia and ALS also share some clinical, 

pathological, and molecular features as part of a common 
neurodegenerative spectrum disorder [9, 39].

Researchers have posited that loss-of-function mutated 
ERBB4/HER4 (ALS19) receptors do not properly auto-
phosphorylate even in the presence of the NRG1 ligand 
[9]. Additionally, alteration of the NRG1-ERBB4/HER4/
ALS19 pathway detrimentally affects motor neurons 
within the spinal cord in ALS [11]. While studies con-
ducted by Takahashi et  al. have attributed this patho-
genesis model to familial ALS, which can carry germline 
mutations in ERBB4/HER4/ ALS19 [37], the research 
group further applied this chain of events to sporadic 
ALS, which accounts for over 90% of ALS patients [11]. 
They found attenuated expression of ERBB4/HER4/
ALS19 receptors, as assessed by immunohistochemis-
try, in the spinal cord of patients with sporadic ALS [11]. 
Decreased activity levels of ERBB4/HER4/ALS19 seem to 
be present in frontotemporal dementia as well, wherein 
Sun et al. showed minimal signaling when ERBB4/HER4/
ALS19 was mutated [9].

There is also growing evidence that aberrant NRG1 
expression itself may be implicated in the pathogen-
esis of ALS [40]. The transgenic superoxide dismutase 1 
(mSOD1) ALS mouse model, which partially recapitu-
lates the phenotype of human ALS, has shown increased 
type I (secreted) NRG1 expression that could contribute 
to disease progression as it was associated with glial cell 
activation (though type III (membrane-bound) NRG1 
expression was reduced in parallel with motor neuron 
loss) [40]. Similarly, plasma NRG1 levels (which correlate 
with cerebrospinal fluid levels) were found to be higher in 
patients with Alzheimer’s dementia as compared to neu-
rologic controls (p < 0.001), further implicating the role 
of NRG1 in the pathogenesis of neurodegenerative dis-
eases [41].

NRG1 may also participate in the pathogenesis of 
schizophrenia [8]; a marked increase in NRG1 signal-
ing can be seen in the prefrontal cortex in schizophrenia 
and, moreover, NRG1 stimulation suppresses N-methyl-
D-aspartate (NMDA) receptors (a family of L-glutamate 
receptors that play an important role in learning and 
memory) in the human prefrontal cortex in schizophre-
nia and in schizophrenic brain models [42].

The reason for NRG1 upregulation in ALS is unclear; 
we postulate that upregulation of the NRG1 ligand 
may occur as a feedback loop in response to attenu-
ated ERBB4/HER4/ALS19 signaling due to loss-of-
function mutation or dampened expression for other 
reasons and may in turn upregulate other ERBB recep-
tors [9, 11]. Importantly, disease progression may be 
slowed in the mSOD1 mouse model of ALS by blocking 
neuregulin-induced microglial activation [43]. Of inter-
est in this regard, in mSOD1 mice and in ALS patients, 
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spinal cord microglial cells express the activated form of 
ERBB2 receptor and there are enhanced levels of NRG1 
in microglial cells [40]. Conversely, the interactions may 
be more nuanced. For instance, other studies have shown 
decreased levels of NRG1 type III (membrane-bound 
form) and increased levels of NRG1 type I (secreted 
form) in the cerebrospinal fluid of patients with ALS, 
and the effects are mirrored in mSOD1 knockout mice 
[40, 44]. Further, reintroducing the NRG1 type III gene 
via a viral-vector restores neuromuscular function and 
improves survival in these knockout mice [45, 46].

Mutations of both NRG2 and NRG3 can also induce 
neuropathology. Though further studies are required, 
NRG2 mutations seem to be related to mood dysfunction 
due to bipolar disorders and/or depression [47]. NRG3 
mutations, especially those that result in overexpression, 
are thought to cause symptoms synonymous to those 
seen in attention deficit hyperactive disorder (ADHD), 
as well as broader cognition disorders [16]. Mutations 
in either NRG2 or NRG3 may also correlate with schizo-
phrenia; however, the latter is contingent on the maturity 
of the medial prefrontal cortex [15, 17]. Lastly, although 
mutations of NRG4 may occur, they present as metabolic 
disorders rather than neurologic disorders [18, 19].

There are no currently FDA-approved therapies and 
no clinical trials that we could find for patients with neu-
rologic or psychiatric disorders that address NRG1 or 
ERBB4/HER4/ALS19 alterations/perturbations. How-
ever, masitinib, a multikinase inhibitor (with activity 
against Kit, Lyn, PDGFR/Abl/Fms/Src, and FGFR3, some 
of which may signal downstream of the ERBB/HER sys-
tem [48]) has shown activity in an mSOD1-mutant rodent 
model of ALS [49] and has demonstrated potential effi-
cacy in a phase 2/3 clinical trial in ALS (NCT02588677) 
[50], a trial in primary progressive multiple sclerosis or 
nonactive secondary progressive multiple sclerosis [51], 
and Alzheimer’s disease [52, 53]. Importantly, a rand-
omized, placebo-controlled phase 2/3 study of masitinib 
demonstrated that orally administered masitinib slowed 
rate of functional decline, with acceptable safety, in ALS 
patients and prolonged survival by over two years as 
compared with placebo, provided that treatment starts 
prior to severe impairment of functionality [50].

NRG1 in malignancy
NRG1 fusions can be found in diverse cancer types 
(Table 2), albeit at a low rate — ~0.15–0.5% across can-
cers (Table  2). Jonna et  al. [54] reported that, among 
21,858 patients with a variety of tumor types, although 
ultra-rare, NRG1 fusions were detected in malignancies 
including sarcoma, non-small cell lung cancer, gallblad-
der, pancreatic, renal, ovarian, breast, bladder, and colo-
rectal cancers, with several fusion partners observed 

(Table  2) [23, 29, 54–60]. These genomic fusions are a 
result of chromosomal inversions, insertions and dele-
tions, or translocations [28, 61]. The hybrid gene is 
then able to bind to specific receptor types and initi-
ate downstream cascades that often lead to deregulated 
activity. Various combinations of the NRG protein and 
receptor type lead to unique cellular pathway signaling. 
When gene fusions are involved, this can account for the 
aggressiveness of the cancer type as well as resistance to 
targeted therapeutics. An example is the gene fusion of 
CD74-NRG1 in invasive mucinous adenocarcinoma of 
the lung; this specific fusion allows for a stronger affinity 
for receptor binding relative to other isoforms [61]. Path-
ways downstream of this fusion all contribute to deregu-
lated activity within the cell.

NRG1 and cancer therapeutics
NRG1 fusion-bearing cancers may be therapeutically 
important. Fusions of several different gene types (e.g., 
BCR-ABL, NTRK, and RET fusions) are known drivers of 
cancer, and several successful therapies have been devel-
oped to target them [62–69]. Moreover, a recent study 
suggested that not targeting a fusion, if present, is asso-
ciated with poorer clinical outcome even when genomic 
co-alterations are targeted [62].

NRG1 fusions are found in a variety of forms and 
cancers (Table  2) [23, 29, 54–61, 70–73]. For example, 
NRG1 fusions with CD74 are predominantly seen in non-
small cell lung cancers (NSCLCs) [54, 55, 58, 59, 73], the 
NOTCH2-NRG1 fusion in gallbladders cancers [54], and 
the CDH1-NRG1 fusion in pancreatic ductal adenocarci-
noma [26, 54, 55, 71, 72] (Table  2). NRG1 fusions have 
also been characterized in renal cell carcinoma, ovarian, 
breast, and some sarcomas [23, 54, 56, 61, 70]. Impor-
tantly, roughly 90% of patients with pancreatic ductal 
adenocarcinomas have a KRAS mutation but, for those 
patients without a KRAS mutation, an NRG1 fusion can 
sometimes be found [26, 71, 72]. This is clinically signifi-
cant since, although rare, NRG1 fusions can be targeted 
with HER-tyrosine kinase inhibitors such as afatinib 
(pan-HER inhibitor), trastuzumab (anti-HER2 antibody) 
or pertuzumab (antibody to the extracellular domain II 
of HER2 that attenuates ligand-dependent HER2–HER3 
dimerization) (Fig. 1C) [26, 72]. Jones et al. reported two 
patients with NRG1 fusion, one of which had lung ade-
nocarcinoma and the other had cholangiocarcinoma, 
treated with afatinib who had durable responses [24]. 
Other investigators have suggested that irreversible pan-
ERBB/HER inhibitors such as neratinib or lapatinib may 
also block impact of NRG1 [22, 74, 75]. Notably, another 
study [23] argued that anti-HER3 targeted therapy might 
be effective for NRG1 fusion tumors since NRG1 binds 
ERBB3/HER3–ERBB2/HER2 heterodimers and activates 
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Table 2  Examples of NRG1 fusions, their frequency, and partners, in various cancers (see also Fig. 2)

Cancer type Frequency of NRG1 fusions in 
designated cancer

Fusion partner(s) with NRG1 References

All cancers 0.15–0.5% Multiple—see below  [54]

Non-small cell lung cancer 0.3–0.8% CD74
SDC4
SLC3A2
TNC
MDK
ATP1B1
DIP2B
RBPMS
MRPL13
ROCK1
DPYSL2
PARP8

 [54–56]

Gallbladder 0.5% NOTCH2
ATP1B1

 [54]

Pancreatic ductal adenocarcinoma 0.5–1.2% ATP1B1
CDH1
VTCN1

 [54–56]

Renal cell carcinoma 0.5% RBPMS  [54, 55]

Ovarian 0.4% SETD4
TSHZ2
ZMYM2

 [54, 55]

Breast 0.2–0.5% ADAM9
COX10-AS1

 [54–56]

Sarcoma 0.2% WHSC1L1  [54, 55]

Bladder 0.1% GDF15  [54, 55]

Colorectal 0.1% POMK  [54, 55]

NRG1 fusion partners and their relative frequency across cancers
Fusion partner with NRG1 Frequency of fusion partner References
CD74 29–31%  [29, 54, 57, 58]

ATP1B1 10%  [23, 54, 59]

SDC4 7–11%  [54, 57]

RBPMS 2–5%  [54, 57, 59]

ADAM9 2%  [54, 59, 60]

CDH1 2%  [54, 60]

COX10-AS1 2%  [54, 60]

GDF15 2%  [54]

NOTCH2 2%  [54, 60]

POMK 2%  [54, 60]

SETD4 2%  [54, 60]

SLC3A2 2%  [29, 54, 59]

TSHZ2 2%  [54, 60]

VTCN1 2%  [54, 60]

WHSC1L1 2%  [54, 60]

ZMYM2 2%  [54, 60]

ROCK1 1–2%  [54, 59, 60]

MDK 1–2%  [54, 60]

MRPL13 1–2%  [54, 59, 60]

TNC 1–2%  [54, 59, 60]

DIP2B 1–2%  [54, 60]

PARP8 1–2%  [54, 59, 60]

DPYSL2 1–2%  [54, 59, 60]
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downstream signaling; they provided evidence of a dura-
ble response in an NRG1-rearranged  invasive mucinous 
adenocarcinoma of the lung treated with the anti-ERBB3 
monoclonal antibody (GSK2849330) [23]. Although  in 
vitro data supported the use of either ERBB3 or ERBB2 
inhibition, they saw more profound antitumor activity 
and downstream signaling inhibition with anti-ERBB3/
HER3 versus anti-ERBB2HER2 therapy in an  NRG1-
rearranged patient-derived xenograft model [23]. Thus, 
cancers that harbor NRG1 fusions may be treated with 
specific ERBB2/HER2 or ERBB3/HER3 or pan ERBB/
HER pathway inhibitors.

Other drugs targeting the consequences of NRG1 
fusions are currently under development. The HER2-
HER3 bispecific antibody zenocutuzumab has received 
FDA fast track designation; it docks on ERBB2/HER2, 
then binds to, and blocks the NRG1 fusion-ERBB3/HER3 
interaction and ERBB3/HER3 heterodimerization with 
ERBB2/HER2. The response rate was 34% and median 
duration of response of 9.1 months across multiple NRG1 
fusion bearing solid tumors (e.g., NSCLC, pancreas can-
cer, breast cancer, cholangiocarcinoma) [76]. The anti-
HER3 antibody seribantumab is also under development 
and was tested in a small multicenter phase 2 study, with 
most patients having NRG1 fusion NSCLC; the response 
rate was 30% [77].

Taken together, several drugs that target ERBB2/HER2 
and/or ERBB3/HER3, including small molecule inhibi-
tors and antibodies, have shown evidence of pan-cancer 
activity in NRG1 fusion bearing malignancies. Responses 
have been observed in multiple tumor types including, 
but not limited to lung, pancreatic, cholangiocarcinoma, 
and ovarian cancer and with a variety of fusion partners 
for NRG1 (Table 3) [61, 77–82].

Case study: Patient with pancreatic cancer 
and VTCN1‑NRG1 fusion (KRAS wild type) treated 
with trastuzumab and pertuzumab
A 47-year-old woman with metastatic pancreatic cancer, 
who had progressed on multiple prior therapies includ-
ing, but not limited to folinic acid, fluorouracil, irinote-
can, and oxaliplatin, gemcitabine plus nab-paclitaxel, 
and a pembrolizumab-based treatment, had next-gen-
eration sequencing, which showed microsatellite-stable 
(MSS), tumor mutation burden (TMB) of 7 mutations/
megabase, CREBBP exon 16 p.E1058fs, PBRM1 exon 12 
p.Y417fs, and a VTCN1-NRG1 fusion (Caris Life Sci-
ences and Ashion/Exact Sciences). She was started on 
trastuzumab (ERBB2/HER2 targeting antibody), pertu-
zumab (antibody that inhibits ligand-dependent ERBB2/
HER2–ERBB3/HER3 dimerization), and gemcitabine. 
Trastuzumab and pertuzumab have shown synergy in 
breast cancer [82]. Her scans showed marked reduction 

in tumor size (Fig. 2) at 6 months. She tolerated the ther-
apy well.

Conclusions
NRG1 and ERBB4 (ALS19) at the intersection 
between neurodegenerative disease and cancer
Neuregulins are a family of EGF-like signaling molecules 
that are implicated in the development and repair of 
diverse body elements including those of the nervous sys-
tem, skeletal muscle, heart, breast, and other organs [1–
3]. The neuregulin family includes NRG1 (types I–VI), 
NRG2, NRG3, and NRG4. The NRG1 gene can translate 
to six different NRG1 protein types and over 30 differ-
ent isoforms that act as extracellular EGF-like ligands 
for ERB3/HER3 and ERRB4/HER41. The numerous iso-
forms enable NRG1 to impact protean biologic functions, 
such as growth and differentiation of glial, neuronal, and 
Schwann cells, as well as skeletal muscle and mammary 
cells, and the myocardium [4].

Recently, molecular alterations in ERBB4/HER4/ALS19 
receptors (loss of function) have been linked to several 
neurological diseases such as ALS and schizophrenia [8, 
9, 11, 22, 37]. ALS is a devastating neurodegenerative dis-
order affecting primarily the motor system; there is loss 
of corticospinal neurons in the motor cortex, as well as 
in motor neurons in the anterior horn of the spinal cord, 
giving rise to progressive muscle weakness and wasting, 
with survival limited to 2 to 5 years [83].

Since some patients with ALS appear to have damp-
ened ERBB4/ALS19 function in tissues of the central 
nervous system [8, 9, 22], either due to germline muta-
tions or via other mechanisms [11, 37], it seems unex-
pected that even potent pan-ERBB/HER kinase inhibitors 
such as neratinib and dacomitinib that are used in the 
clinic to treat cancer do not have significant neurologic 
side effects, even though these pan-ERBB2/HER inhibi-
tors attenuate ERBB4/HER4/ALS19 function, and can 
be continued for months or years for cancer treatment 
[84, 85]. This observation suggests that it is plausible that 
ERBB4/HER4/ALS19 dampened activity in of itself may 
not be enough to cause neurodegeneration. Of inter-
est in this respect, there is accumulating evidence that 
aberrant NRG1 expression (in addition to the loss-of-
function ERBB4/HER4/ALS19 mutations) may be impli-
cated in the pathogenesis of ALS [40]; murine models 
have shown increased type I (secreted) NRG1 expression 
that could contribute to disease progression via glial cell 
over-stimulation in ALS. The reason for NRG1 upregu-
lation is unclear; we postulate that upregulation of the 
NRG1 ligand may occur as a feedback loop in response to 
reduced ERBB4/HER4/ALS19 signaling caused by loss-
of-function ERBB4/HER4/ALS19 mutations or damp-
ened ERBB4/HER4/ALS19 expression that occurs for 
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other reasons in ALS [9, 11, 37]. Perhaps the heightened 
NRG1 expression in the presence of ERBB4/HER4 loss 
overstimulates ERBB1/HER1, ERBB2/HER2 or ERBB3/
HER3 in neuronal tissue, leading to damage. Indeed, in 
mSOD1 ALS model mice and in ALS patients, spinal cord 
microglial cells express the activated form of ERBB2/
HER2 receptor and there were enhanced levels of NRG1 
in microglial cells [40]. When patients with cancer are 
given pan-ERBB/HER inhibitors, ERBB4/HER4/ALS19 
function is attenuated, but any feedback upregulation of 
NRG1 should it occur cannot overstimulate ERBB1/2/3 
because the pan-ERBB/HER inhibitor diminishes the 
function of these other ERBBs. It is therefore conceivable 
that pan-ERBB/HER inhibition should be investigated for 
ALS, preclinically or clinically in a subset of patients who 
may have altered ERBB or NRG1 function. Notably, a 
randomized, placebo-controlled phase III study of masi-
tinib (which targets multiple kinases, including some that 
may be downstream of the ERBB/HER receptors) dem-
onstrated slowed rate of functional decline, with accept-
able safety, in ALS patients, and prolonged survival by 
over two years as compared with placebo, provided that 
treatment started prior to severe impairment of function-
ality [50]. However, it should be kept in mind that neuro-
degenerative diseases are complex and heterogenous and 
other mechanisms such as messenger RNA translation 

defects might be operative in patients [86]. Indeed, there 
is an increasing appreciation that ALS is a heterogenous 
disorder; further biomarker analysis of ALS populations 
may yield subsets of patients whose disease may be sus-
ceptible to pan-ERBB/HER inhibition.

In the cancer realm, NRG1 genomic abnormalities 
(especially fusions that result in enhanced function) have 
been found in advanced cancers, a discovery which could 
be therapeutically important (Fig.  1C, Tables  2 and 3) 
[23–25]. Multiple small molecule and antibody inhibitors 
that impact the ERBB3/ERBB4 axis upregulated in the 
face of NRG1 fusions are under investigation. Although 
NRG1 fusions are rare in cancer, occurring in 0.15-0.5% 
of malignancies, they can be found in multiple types of 
cancer and, in addition, NRG1 may have numerous fusion 
partners (Table  2). Emerging preliminary data suggests 
that NRG1 fusion-bearing malignancies are susceptible 
to targeting by pan-ERBB/HER small molecule inhibitors 
(including afatinib) and by antibodies that impact ERBB3/
ERRB4 and/or dimerization partners such as ERBB2/
HER2 (e.g., zenocutuzumab and seribantumab and, as 
in our illustrative VCTN1-NRG1 fusion/KRAS wild-type 
pancreatic cancer patient, with trastuzumab and pertu-
zumab) (Table 3, Fig. 2). Responses appear to occur in a 
tumor-agnostic fashion and have been described in NRG1 
fusion-bearing lung, cholangiocarcinoma, ovarian, and 

Fig. 2  Imaging before panel A receiving anti-HER2 directed therapy and 6 months after panel B receiving trastuzumab, pertuzumab, 
and gemcitabine. Patient is a 47-year-old woman with NRG1 fusion (VTCN1/NRG1), KRAS wild-type pancreatic cancer (whose disease had previously 
progressed on gemcitabine-based therapy). Panel A represents a scout film from PET imaging that shows innumerable hepatic lesions (red 
arrows), splenic metastases (blue arrows), normal tracer in the kidneys, brain, and urinary bladder before receiving anti-HER2 therapy. Panel B 
shows decreased in the number of liver lesions (red arrow), diminished splenic metastases, and redemonstrates normal tracer in the kidneys, brain, 
and urinary bladder, 6 months after receiving trastuzumab, pertuzumab, and gemcitabine
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pancreatic cancers, suggesting that malignancies harbor-
ing NRG1 fusions merit further investigation for another 
tissue-agnostic approval [67, 87].

In summary, disruption of the NRG1/ERBB4 (ALS19) 
axis offers therapeutic possibilities for both cancer and 
neurologic diseases such as ALS. In the cancer realm, 
suppression of this axis is being tested and shows prom-
ising results in patients whose tumors harbor NRG1 
fusions and similar alterations leading to aberrant 
activation/expression. In ALS, the interactions may be 
more complex, but current data suggest the possibil-
ity that dampened ERBB4 (ALS19) function could lead 
the upregulation of NRG1 and secondary overstimula-
tion of other ERBB (HER) receptors; hence, clinical tri-
als of pan-ERBB/HER inhibitors, currently in use and 
approved for cancer, merit investigation in ALS.
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