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The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum
oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a
critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based
methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same
sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C.
parvum UV disinfection data to C. hominis oocysts.

Cryptosporidium parvum is an intracellular protozoan para-
site that infects the epithelial cells lining the digestive tract and
is very common in many animal species (4). The resistant
oocyst stage of the organism’s life cycle is excreted in the feces
of infected animals and can contaminate sources of drinking
water. Although the disease is usually self-limiting in otherwise
healthy humans, persistent infection can contribute to mortal-
ity in individuals with weakened immune systems.

There have been many outbreaks of cryptosporidiosis asso-
ciated with either drinking water or recreational use of water
(4). The largest waterborne outbreak occurred in 1993 in Mil-
waukee with estimates of the affected population ranging from
15,000 to 400,000 individuals (6, 10) and up to 100 deaths
attributed to the contamination. The primary chlorine-based
disinfectants used throughout the water industry have little
effect on C. parvum oocysts at concentrations typically applied
in drinking water treatment plants (15). Consequently, alter-
native disinfectants, such as UV light, have been investigated.
Numerous studies have demonstrated the efficacy of UV light
for disinfecting oocysts of at least six C. parvum isolates (2, 3,
11, 14, 16, 24). However, all of the UV disinfection studies
conducted to date have used C. parvum type 2 oocysts. Cryp-
tosporidium hominis (previously referred to as type 1 C. par-
vum) does not infect most standard animal models (21), so
propagation of oocysts is difficult, limiting the number of anal-
yses that can be accomplished with these oocysts, particularly
infection and inactivation studies. Importantly, though, C.
hominis predominates in most surveys of human cryptospori-
diosis, accounting for 70% of infections (5, 7, 9, 19, 22). Also,
C. hominis oocysts are recovered from patients more fre-
quently than C. parvum in foodborne and waterborne out-

breaks (22). Therefore, it is important to determine whether C.
hominis oocysts display the same sensitivity to UV disinfection
as C. parvum.

Sources and propagation of oocysts. Oocysts of the bovine
Iowa isolate of C. parvum were obtained from Sterling Para-
sitology Laboratories (University of Arizona, Tucson, Ariz.).
They were propagated by artificial infection in Holstein calves
and purified by density gradient centrifugation as described
previously (13). The cervine MD isolate of C. parvum (origi-
nally obtained from S. Wright, Moredun Research Institute,
Scotland) was propagated in gamma interferon knockout (17)
or immunosuppressed mice. Two C. hominis isolates from hu-
man infections (TU502 and TU71) were propagated in gnoto-
biotic piglets (1, 21, 23).

Measuring infectivity and inactivation. Oocyst infectivity
was assessed using three cell culture-based approaches. (i)
Confluent HCT-8 cell monolayers were inoculated and incu-
bated for 72 h, and infection was detected by using RT-PCR,
using C. parvum-specific primers targeting a 70-kDa heat shock
protein gene (13). At least four oocyst doses were inoculated:
25 to 200 for controls and 250 to 5,000 for UV-exposed oocysts.
Each dose of oocysts was inoculated onto 12 cell monolayers,
and infectivity was expressed as the proportion of monolayers
that developed infection. Dose response was assessed by re-
gression of oocyst challenge dose against a logistic transforma-
tion of proportional infectivity (8, 13). (ii) HCT-8 cells were
inoculated, and infection was detected by in situ hybridization
(12). (iii) MDBK cells were inoculated, and following 48 h of
incubation, the intensity of infection was assessed using an
indirect immunofluorescence assay (18). Inoculation doses
were 1 � 104 and 1 � 105 for control and UV-exposed oocysts.
The extent of infection was quantified using a UV fluorescence
microscope and video imaging.

Although C. hominis oocysts do not infect standard animal
models, it has been demonstrated that they do infect cell cul-
tures (13). However, comparisons of C. parvum and C. hominis
infectivity in cell culture have not been performed. In the
present study, the 50% infective dose of pig-propagated
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TU502 in HCT-8 cell culture was 75, close to the previously
reported value of 77 for the Iowa isolate (13). Infectivity in
HCT-8 cells was also quantified by in situ hybridization that
allowed visualization of infectious foci within the cell mono-
layers (12). When expressed as the number of infectious foci
per inoculum oocyst, average infectivity with a dose of 250
oocysts was 11% for TU502 (n � 2) and 8.8% for Iowa (n � 2),
compared to a previously reported value of 8% for the Iowa
isolate (12). The average number of parasite developmental
stages per infectious focus was 29 and 28 for TU502 and Iowa,
respectively, compared to an earlier value of 26 for the Iowa
isolate (12). Therefore, based on two detection methods, the
TU502 C. hominis isolate had the same level of infectivity in
HCT-8 cell culture as the C. parvum Iowa isolate.

UV disinfection. Oocysts were exposed to polychromatic UV
radiation from a medium-pressure (MP) UV system using pre-
viously described equipment and procedures (11, 14). Oocyst
suspensions were placed at a fixed distance from a constant-
intensity UV lamp for various periods of time to achieve dif-
ferent UV doses. The UV dose was measured using a cali-
brated radiometer (11) and expressed as mJ/cm2. Oocysts were
also exposed to monochromatic UV radiation at 253.7 nm
from a low-pressure (LP) UV source as described previously
(16). For the HCT-8/reverse transcription (RT)-PCR infectiv-
ity assay, inactivation was measured by comparing the 50%
infective dose of control and UV-exposed oocysts. With the
MDBK/immunofluorescence method, inactivation was mea-
sured as a reduction in parasite fluorescence relative to that of
control oocysts. UV inactivation data were obtained for two C.
hominis isolates (TU502 and TU71) by using LP UV and the
MDBK/immunofluorescence method, and for a single isolate
(TU502) by using MP UV with the HCT-8/RT-PCR method
(Fig. 1). Inactivation levels for the C. hominis isolates with UV
doses up to 6 mJ/cm2 were within the 90% prediction limits of

previously generated UV inactivation data for the Iowa isolate
(14). In Fig. 1, a relative infectivity of 0.1 is equivalent to 90%
(1 log10) inactivation. With a UV dose of 3 mJ/cm2, inactiva-
tion of C. hominis oocysts averaged across both cell culture
methods was 90% (1 log10). This is in close agreement with an
inactivation level of 93.7% (1.2 log10) for the Iowa isolate at 3
mJ/cm2 (14). Data for a second C. parvum isolate (MD) ob-
tained with both cell culture methods were also within the 90%
prediction limits for the Iowa isolate (Fig. 1). Inactivation
levels greater than 90% (1 log10) were not detected with the
MDBK/immunofluorescence assay, even with LP UV doses up
to 20 mJ/cm2 (data not shown), but this was most likely due to
limitation of the infection detection method rather than a UV
tailing effect.

The results of this study clearly demonstrated that C. homi-
nis oocysts display similar levels of infectivity in cell culture and
have the same sensitivity to UV light as C. parvum. Thus, the
water industry can be relatively confident about extrapolating
the wealth of C. parvum UV disinfection data to the more
predominant but less well-studied species of C. hominis.

This study was supported in part by funding from the Water Envi-
ronment Research Foundation (grant number 99-HHE-3) and the
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