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Abstract

Denatured, unfolded, and intrinsically disordered proteins (collectively referred to here as 

unfolded proteins) can be described using analytical polymer models. These models capture 

various polymeric properties and can be fit to simulation results or experimental data. 

However, the model parameters commonly require users’ decisions, making them useful for 

data interpretation but less clearly applicable as stand-alone reference models. Here we use 

all-atom simulations of polypeptides in conjunction with polymer scaling theory to parameterize 

an analytical model of unfolded polypeptides that behave as ideal chains (ν = 0.50). The model, 

which we call the analytical Flory Random Coil (AFRC), requires only the amino acid sequence 

as input and provides direct access to probability distributions of global and local conformational 

order parameters. The model defines a specific reference state to which experimental and 

computational results can be compared and normalized. As a proof-of-concept, we use the AFRC 

to identify sequence-specific intramolecular interactions in simulations of disordered proteins. 

We also use the AFRC to contextualize a curated set of 145 different radii of gyration obtained 

from previously published small-angle X-ray scattering experiments of disordered proteins. The 

AFRC is implemented as a stand-alone software package and is also available via a Google colab 

notebook. In summary, the AFRC provides a simple-to-use reference polymer model that can 

guide intuition and aid in interpreting experimental or simulation results.

INTRODUCTION

Proteins are finite-sized heteropolymers, and the application of polymer physics has 

provided a useful toolkit for understanding protein structure and function1–9. In particular, 

there has been significant interest in unfolded proteins under both native and non-

native conditions2,10–17. Depending on the experimental techniques employed, a variety 

of polymeric properties can be measured, including the radius of gyration (Rg), the 

hydrodynamic radius (Rh), the end-to-end distance (Re), and the apparent scaling exponent 

(νapp). These and many other parameters can be calculated directly from all-atom 
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simulations, and the synergy of simulation and experiment has provided a powerful 

approach for constructing large ensembles of unfolded proteins for greater insight into the 

unfolded state15,18–28.

Polymers can be described in terms of scaling laws, expressions that describe how chain 

dimensions vary as a function of chain length29–31. Polymer scaling laws typically have 

the format D = R0Nν. Here, D reports on chain dimensions, R0 is a prefactor in units of 

spatial distance, and N is the number of monomers, which in the case of proteins is typically 

written in terms of the number of amino acids. ν (or, more accurately, νapp when applied 

to finite-sized heteropolymers like proteins) is the (apparent) Flory scaling exponent. In 

principle, νapp lies between 0.33 (as is obtained for a perfect spherical globule) and 0.59 (as 

obtained for a self-avoiding chain). However, for finite-sized polymers, values beyond 0.59 

can be obtainable for self-repulsive chains 32–34. The applicability of polymer scaling laws 

to describe real proteins assumes they are sufficiently long to display bona fide polymeric 

behavior and that they are sufficiently self-similar over a certain length scale, analogous to 

fractals. While this assumption often holds true, it is worth noting that sequence-encoded 

patterns in specific chemistries and/or secondary structure can lead to deviations from 

homopolymer-like behavior 18,35–37.

To what extent do polymer scaling laws apply to real proteins? For denatured polypeptides, 

Kohn et al. reported the ensemble-average radius of gyration using the scaling expressions 

Rg = 1.927N0.59811. This result provides strong experimental evidence to support a model 

whereby denaturants unfolded proteins by uniformly weakening intramolecular protein-

protein interactions1. A value for νapp of 0.598 also agrees with the previously reported 

value of 0.57 by Wilkins et al. and earlier work by Damaschun1,10,12. In short, under 

strongly denaturing conditions, proteins appear to behave as polymers in a good solvent 
1,32,38–41.

For proteins under native or native-like conditions, the apparent scaling exponents obtained 

for unfolded polypeptides are more variable. Marsh and Forman-Kay reported an average 

scaling expression of Rh = 2.49N0.509, for a set of intrinsically disordered proteins, while 

Bernadó and Svergun found a similar average relationship in Rg = 2.54N0.52 42,43. More 

recently, various means to estimate νapp for individual proteins have enabled values of νapp 

between 0.42 and 0.60 to be measured for a wide range of unfolded proteins of different 

lengths and compositions15,18,23,25,39,40,44–46. An emerging consensus suggests that νapp 

depends on the underlying amino acid sequence2,17,47. If sequence-encoded chemical biases 

enable intramolecular interactions, then νapp may be lower than 0.5. Notably, despite clear 

conceptual limitations, the physics of homopolymers remains a convenient tool through 

which unfolded proteins can be assessed15,18,36,37,48.

Given the variety in scaling exponents for unfolded proteins under native conditions, 

we felt that a sequence-specific reference model would be helpful for the field. Such a 

model could provide a touchstone for experimentally measurable polymeric parameters, 

including intermolecular distances, the radius of gyration, the end-to-end distance, and the 

hydrodynamic radius. Similarly, such a model would provide a simple reference state with 

which simulations could be directly compared and used to identify sequence-specific effects. 
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Finally, a standard reference model could offer an easy way to compare unfolded proteins of 

different lengths to assess if they behave similarly despite different absolute dimensions.

Here, we perform sequence-specific numerical simulations for polypeptides as an ideal 

chain, so-called Flory Random Coil (FRC) simulations2,31. Under these conditions, chain-

chain, chain-solvent, and solvent-solvent interactions are all equivalent, no long-range 

excluded volume contributions are included, and as such, the polypeptide behaves as 

a Gaussian chain with νapp = 0.5. Because our FRC implementation minimizes finite-

chain artifacts, we can parameterize an analytical, sequence-specific model using standard 

approaches from scaling theory, a model we call the Analytical Flory Random Coil (AFRC). 

This model enables the calculation of distance distributions for the end-to-end distance and 

the radius of gyration, as well as a variety of additional parameters that become convenient 

for the analysis of all-atom simulations and experiments.

The AFRC is not a predictor of unfolded protein dimensions. Those dimensions depend on 

the complex interplay of chain:chain and chain:solvent interactions, which are themselves 

determined by sequence-encoded chemistry49–53. Instead, the AFRC provides a simple 

reference state that can aid in interpreting experimental and computational results without 

needing information other than the protein sequence. The AFRC is implemented in a 

stand-alone Python package and is also provided as a simple Google Colab notebook. We 

demonstrate the utility of this model by comparing experimental data and computational 

results.

The remainder of this paper is outlined as follows. First, we discuss the implementation 

details of the model, including a comparison against existing polymer models. Next, we 

analyzed previously published all-atom simulations to demonstrate how the AFRC can 

identify signatures of sequence-specific intramolecular interactions in disordered ensembles. 

Finally, we use the AFRC model to re-interpret previously reported small-angle X-ray 

scattering data of intrinsically disordered proteins.

METHODS

Flory Random Coil (FRC) Monte Carlo simulations were run using a customized version of 

CAMPARI (V1). Simulations were run in a simulation droplet with a radius of 500 Å for 

25 × 106 steps with 50 × 103 steps discarded as equilibration. Conformers were saved every 

5 × 103 steps, generating 5 × 103 independent conformations. For each Monte Carlo move, 

a residue is randomly selected, and the phi and psi angles for that residue are changed to 

a new pair sampled from a precomputed set of residue-specific allowed dihedrals (Fig. S1). 

Sampling is independent of the state of any other residues, such that the system evolves via 

a set of n random walks through dihedral space, where n is the number of residues. In this 

way, moves are in effect rejection-free but micro-reversibility is maintained, meaning these 

ensembles are sufficiently well-sampled and enable calibration for FRC fitting parameters 

(Table S1).

Homopolymeric FRC simulations were run for length of 51, 101, 151, 251 and 351 residues 

for all twenty amino acids (i.e. 100 independent sequences in total). Heteropolymeric 
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simulations were run for lengths 10, 20, 30, 40, 50, 100, 120, 140, 180, 200, 250, 300, 

350, 400, 450, 500 (i.e. 320 independent sequences in total). For each length series, twenty 

separate simulations were run where, for each sequence, one of the twenty amino acids is 

enriched (30% of the sequence) while the remaining residues are randomly selected. All 

FRC simulations were analyzed using SOURSOP28.

Excluded volume (EV) simulations were run using CAMPARI (V2). In EV simulations, 

the underlying energy function for the ABSINTH forcefield is altered such that solvation, 

attractive Lennard-Jones, and polar (charge) interactions are set to zero, as has been 

described previously54. EV simulations were used solely to compare finite-size effects for 

ensembles constructed for real chains. Excluded volume (EV) Monte Carlo simulations were 

run for homopolymers of 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 residue poly-

alanine chains as a reference model to quantify finite-size effects. Simulations were run in a 

simulation droplet with a radius of 500 Å for 21 × 106 steps, with 1 × 106 steps discarded as 

equilibration. It is worth noting that given chains are generated in a random non-overlapping 

starting configuration and the only criterion for move acceptance or rejection is steric 

overlap, strictly speaking, no equilibration is needed as the chain begins the simulation 

“equilibrated” in the context of the underlying Hamiltonian. Conformers were saved every 

2 × 104 steps, generating 1 × 103 independent conformations, a sufficiently large ensemble 

for our purposes of calculating internal scaling profiles (Fig. 1E). However, as a point of 

pedagogy, we note that ensembles of 1 × 103 conformers for large (200+) residue IDRs 

would (in general) be insufficient for calculating many other types of simulation-derived 

properties (e.g. local dihedral distributions) due to the mismatch between the number of 

potential microstates and observed number of conformers.

For quantifying dangle end effects of internal vs. external inter-residue distances (Fig. 

S1D), we ran extensive additional simulations of an A151 homopolymer (to match FRC 

simulations). For these simulations, ten independent replicas were run for 8.05 × 107 steps, 

with the first 5 × 105 discarded as equilibration. Conformers were saved every 2 × 104 

steps. These simulations generated an ensemble of 4 × 104 conformations, enabling a robust 

assessment of finite-size effects.

Finite-size/sampling effects for FRC simulations are assessed in several ways, by 

comparing internal scaling profiles as a function of length and by calculating the Flory 

characteristic ratio (see supplementary information). Parameter fitting to extract residue-

specific parameters follows a simple scan of possible parameters for each amino acid 

independently, with the optimal parameter sitting at the bottom of a convex function with 

respect to root mean square error (i.e., there is a single best-fitting parameter in all cases).

1.2 All-atom simulations

All-atom simulations were analyzed as described previously, and all the all-atom trajectories 

can be obtained as described previously28. Specifically, all-atom simulations included both 

Monte Carlo and molecular dynamics simulations. Monte Carlo simulations include those 

of Ash155, p5356, p2757, the notch intracellular domain58, the hnRNPA1 low complexity 

domain25. Molecular dynamics simulations include alpha-synuclein, DrkN, ACTR and 
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NTail 59. All simulation trajectories were taken from previously published studies, such 

that the simulation details can be obtained from those papers.

1.3 SAXS data

Experimental SAXS data includes 145 separate radius of gyration values. All values 

and associated references are included in table S4. In addition, all data are tabulated at 

the main GitHub directory for this paper (https://github.com/holehouse-lab/supportingdata/

tree/master/2023/alston_ginell_2023) and available as an Excel spreadsheet and Pandas-

compatible CSV file.

1.4 Amino acid sequence analysis

Sequence analysis to calculate the fraction of charged residues and proline residues was 

done using localCIDER60 and sparrow (https://github.com/idptools/sparrow).

1.5 AFRC implementation

The AFRC is implemented as a stand-alone Python package. All code is open-sourced 

and available at https://github.com/idptools/afrc. All documentation is available at https://

afrc.readthedocs.io/. The package itself can be downloaded from https://pypi.org/project/afrc 

and installed using the command pip install afrc. A Google colab notebook that 

implements the AFRC along with the other three analytical models described in this work 

are linked from https://github.com/idptools/afrc.

The afrc package uses numpy and scipy, and in addition to the AFRC implements the Worm-

like chain (WLC), the self-avoiding random walk (SAW), and the ν-dependent self-avoiding 

random walk (SAW-ν) 23,61.

1.6 Figures and analysis in this paper

Jupyter notebooks to recreate all figures in this paper are available at https://github.com/

holehouse-lab/supportingdata/tree/master/2023/alston_ginell_2023.

RESULTS

Implementation of a numerical model for sequence-specific ideal chain simulations

We used a Monte Carlo-based approach to construct sequence-specific atomistic ensembles 

of polypeptides as ideal chains. All-atom simulations with all non-bonded and solvation 

interactions scaled to zero were performed using a modified version of the CAMPARI 

Monte Carlo simulation engine using bond lengths and atomic radii defined by the 

ABSINTH-OPLS forcefield2,62,63. We modified CAMPARI to reproduce Flory’s rotational 

isomeric state approximation31,64. In this method, an initial conformation of the polypeptide 

is randomly generated. Upon each Monte Carlo step, a residue is randomly selected, the 

backbone dihedrals are rearranged to one of a subset of allowed residue-specific psi/phi 

values (i.e., specific isomeric states), and the chain is rearranged accordingly (Fig. 1A, B). 

Allowed phi/psi values are selected from a database of residue-specific allowed values as 

determined by all-atom simulations of peptide units, with the associated Ramachandran 

maps shown in Fig. S1. Importantly, the Monte Carlo moves in these simulations approach 
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are rejection-free. That is, only allowed phi/psi angles are proposed, and no consideration 

of steric overlap in the resulting conformation is given. The ensemble generated by these 

simulations is referred to as the Flory Random Coil (FRC, Fig. 1C) and has been used 

as a convenient reference frame for comparing simulations of disordered and unfolded 

polypeptides for over a decade (as reviewed by Mao et al.2)15,54,65–68.

FRC simulations enable the construction of ensembles where each amino acid exists in 

a locally allowed configuration, yet no through-space interactions occur. This has two 

important implications for the construction of an ideal chain model. Firstly, each monomer 

has no preference for chain:chain vs. chain:solvent interactions (each monomer is “agnostic” 

to its surroundings). As a result, both internal and global dimensions show scaling behavior 

with an apparent scaling exponent (νapp) of 0.5 (Fig. 1D), analogous to that of a polymer in 

a theta solvent. Secondly, terminal residues sample conformational space in the same way as 

residues internal to the chain (Fig. S2). This means that end-effects that emerge finite-chain 

effects are not experienced in terms of end effects (Fig. 1E). This is in contrast to finite-sized 

self-avoiding chains, in which internal scaling profiles reveal a noticeable and predictable 

“dangling end” finite-chain effect (Fig 1E, Fig. S2). In summary, FRC simulations enable 

us to generate ensembles at all-atom resolution that are nearly fully approximations of ideal 

chains, reproducing the behavior of a hypothetical “ideal” polypeptide.

Constructing an analytical description of the Flory Random Coil

Our FRC ensembles enable the calculation of a range of polymeric properties, 

including inter-residue distances, inter-residue contact probabilities, the hydrodynamic 

radius, or the radius of gyration. Comparing these properties with experiments or 

simulations is often convenient, offering a standard reference frame for normalization and 

biophysical context2,15,17,36,37. However, performing and analyzing all-atom simulations 

with CAMPARI necessitates a level of computational sophistication that may make these 

calculations inaccessible to many scientists. To address this, we next sought to develop a set 

of closed-form analytical expressions to reproduce these properties and implement them as 

an easy-to-use package available both locally and – importantly – via a simple web interface 

(Google colab notebook).

FRC simulations generate ensembles that – by definition – reproduce the statistics expected 

for an ideal chain. As mentioned, polymer scaling behavior generally takes the form;

D = R0Nv

(1)

For an ideal chain, νapp should not depend on the amino acid sequence (as all chains should 

scale with νapp = 0.5). However, the prefactor R0 can and will show sequence dependence. 

As such, computing polymeric properties from sequences necessitates a means to calculate 

sequence-specific prefactor values. Prefactor values were parameterized using homopolymer 

simulations of each amino acid (see supplementary information). The inter-residue distance 

prefactor A0 was parameterized by fitting internal scaling profiles using equation (2);
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r(i, j)
2 = A0 i − j v

(2)

In equation 2, |i-j| is the number of residues between residues at position i and j, the 

left-hand-side reports on the root-mean-square (RMS) distance between residues i and j in 

the chain, ν is the scaling exponent (in our case this is equal to 0.5), and A0 is a prefactor 

for which we can directly solve for. The double angle brackets around the RMS distance 

reflect the fact we are averaging over all pairs of residues that are |i-j| apart and doing so 

for all chain configurations. Plotting |i-j| vs. the RMSD generates the internal scaling profile 

shown in Fig. 1E. By fitting homopolymers of the 20 amino acids, a set of residue-specific 

A0 prefactors was determined, as listed in Supplementary Table 1.

For our homopolymers, we can calculate the root-mean-squared end-to-end distances using 

equation (3);

re
2 = A0Nv

(3)

From this, we can then use the standard function for P(r) of a Gaussian chain to calculate the 

end-to-end distance distribution;

P (r) = 4πr2 3
2π re

2

3/2
e− 3r2

2 re
2

(4)

After determining residue-specific A0, a comparison of analytical and numerical simulation 

distributions show excellent agreement when homopolymer end-to-end distance distributions 

are compared between FRC simulations and the AFRC-derived values (Fig. 1f).

We next took a similar route to define the radius of gyration (Rg) distribution. While no 

closed-form solution for the distribution of the radius of gyration exists, Lhuillier previously 

defined a closed-form approximation for this distribution for a fractal chain69;

PRg(x) ∼ N−vdf(x) x
Nv

(5)

Where;

f(x) ∼ exp − Nv
x

αd
− x

Nv
δ

(6)
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And the variables α and δ are defined as:

α = 1
(vd − 1)

(7)

δ = 1
(1 − v)

(8)

Here, x represents the distance in some arbitrary units (written as such to avoid confusion 

with r, which represents the distance in Angstroms [Å]), N and ν again represent the total 

number of residues and the scaling exponent (0.5.), while d is the dimensionality (d=3). This 

allows us to calculate α and δ exactly, given ν is fixed at 0.5. Consequently, we can recast 

equation 5 into units of Å using a sequence-specific normalization factor (X0);

r = X0x

(9)

To calculate X0, we fit numerically-generated P(Rg) distributions from homopolymer 

simulations with a series of analytically generated distributions to identify the best-fitting 

amino acid-specific X0 values. This fitting is done to match the ensemble-average Rg 

the two distributions, which conveniently follow a convex relationship with a single best-

fitting value. These prefactors are listed in Supplementary Table 1. As with the end-to-end 

distances, a comparison of numerically-generated P(Rg) with analytically-generated P(Rg) 

values are in extremely good agreement (Fig. 1g). Comparing ensemble average end-to-end 

distance and radii of gyration for homopolymers of all 20 amino acids in lengths from 50 

to 350 amino acids revealed a Pearson correlation coefficient of 0.999 and a root mean 

square error (RMSE) of 0.8 Å and 0.3 Å for the end-to-end distance and radius of gyration, 

respectively (Fig. S2).

With analytical expressions for computing the end-to-end distance and radius of gyration 

probability distributions in hand, we can calculate additional polymeric properties. Given the 

fractal nature of the Flory Random Coil and the absence of end effects, we can calculate 

all possible inter-residue distances and, correspondingly, contact frequencies between pairs 

of residues (Fig. 2a, b). Similarly, using either the Kirkwood-Riseman equation or a 

recently derived empirical relationship, we can compute an approximation for the ensemble-

average hydrodynamic radius70–72. In summary, the AFRC offers an analytic approach for 

calculating sequence-specific ensemble properties for unfolded homopolymers.

Generalization to heteropolymers

Our parameterization has thus far focused exclusively on homopolymer sequences. 

However, Flory’s rotational isomeric state approach requires complete independence of 

each amino residue31,64. Consequently, we expected the prefactor associated with a given 
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heteropolymer to reflect a weighted average of prefactors taken from homopolymers, where 

the sequence composition determines the weights.

To test this expectation, we compared numerical simulations with AFRC predictions for 

a set of different polypeptide sequences finding excellent agreement in both end-to-end 

distances and radii of gyration (Fig. 3a, b and Fig. S3). Similarly, given the absence of end-

effects, our analytical end-to-end distance expression works equally well for intramolecular 

distances in addition to the end-to-end distance. To assess this, we compared internal 

scaling profiles between FRC simulations and AFRC predictions (Fig. 3c). These profiles 

compare the ensemble average distance between each possible inter-residue distance and 

offer a convenient means to assess both short and long-range intramolecular distances. 

We performed FRC simulations for 320 different polypeptide sequences ranging in length 

from 10 to 500 amino acids with a systematic variation in amino acid composition. Across 

all internal scaling profile comparisons between FRC and AFRC simulations, the overall 

average RMSE was 0.5 Å, with almost all (92%) of individual comparisons revealing an 

RMSE under 1 Å (Fig. 3D). Similarly, the Pearson’s correlation coefficient between internal 

scaling profiles for FRC vs. AFRC for all ten-residue chains was 0.9993, which was the 

worst correlation across all lengths (Fig. S4). In summary, the AFRC faithfully reproduces 

homo- and hetero-polymeric dimensions for polypeptides under the FRC assumptions.

Comparison with existing polymer models

For completeness, we compared the end-to-end distance distributions obtained from several 

other polymer models used throughout the literature for describing unfolded and disordered 

polypeptides. Previously-used polymer models offer a means to analytically fit experimental 

or computational results and benefit from taking one (or more) parameters that define the 

model’s behavior. While the AFRC does not enable fitting to experimental or simulated data, 

it only requires an amino acid sequence as input. With this in mind, the AFRC serves a 

fundamentally different purpose than commonly used models.

We wondered if dimensions obtained from the AFRC would be comparable with dimensions 

obtained from other polymer models when using parameters used previously in the 

literature. We compared distributions obtained from the worm-like chain (WLC), the self-

avoiding walk (SAW) model, and a recently-developed ν-dependent self-avoiding walk 

(SAW-ν)23,61. For the WLC model, we used a persistence length of 3.0 Å and an amino acid 

size of 3.8 Å (such that the contour length, lc, is defined as N×3.861). For the SAW model, 

we used a scaling prefactor of 5.5 Å (i.e., assuming 〈Re〉 = 5.5N0.598)23,32,61. Finally, for 

SAW-ν, we computed distributions using a prefactor of 5.5 Å and using several different ν 
values6,23. These values were chosen because previous studies have used them to describe 

intrinsically disordered proteins.

Fig. 4A shows comparisons of the AFRC distance distribution obtained for a 100-mer 

polyalanine (A100) vs. the WLC and SAW (top) and vs. ν-dependent distributions (bottom). 

The AFRC is slightly more expanded than the WLC model using the parameters provided, 

although the persistence length can, of course, be varied to explore more compact (lower 

lp) or more extended (higher lp) distributions (Fig. S6A). The AFRC is substantially more 

compact than the SAW model. The comparison with the SAW model is important, as with 
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a prefactor of 5.5 Å the SAW model describes a polypeptide as a self-avoiding random 

coil (ν=0.588), whereas the AFRC describes a polypeptide as an ideal chain (ν = 0.5), 

such that we should expect the SAW to be more expanded than the AFRC. Finally, in 

comparing the AFRC with the SAW-ν model, we find that the AFRC distribution falls 

almost completely top of the ν = 0.50 distribution. This indicates that both models arrive at 

nearly identical distance distributions despite being developed independently. This result is 

both confirmatory and convenient, as it means the AFRC and SAW-ν models can be used to 

analyze the same data without concern for model incompatibility.

We emphasize that this comparison with the existing polymer model is not presented to 

imply the AFRC is better than existing models but to highlight their compatibility. One can 

tune input parameters for all three models to arrive at qualitatively matching end-to-end 

distributions (Fig. S6B). The major difference between these three models and the AFRC is 

simply that the AFRC requires only amino acid sequence as input, making it a convenient 

reference point. For completeness, all four models are implemented in our Google colab 

notebook.

We also compared ensemble-average radii of gyration obtained from the various models 

with those obtained from the AFRC. While the WLC, SAW, and SAW-ν models do not 

provide approximate closed-form solutions for the radius of gyration distribution, they do 

enable an estimate of the ensemble-average radius of gyration to be calculated23,61. Using 

the same model parameters as was used in Fig. 4A, the AFRC falls between the SAW and 

the WLC. Moreover, the AFRC radii of gyration scale almost 1:1 with the SAW-ν derived 

radii as a function of chain length when ν = 0.50. As such, we conclude that the AFRC 

is consistent with existing polymer models yet benefits from being both parameter-free 

(for the user) and offering full distributions for the radius of gyration and intramolecular 

distance distributions per-residue contact fractions, convenient properties for normalization 

in simulations and experiment.

Comparison with all-atom simulations

Our work thus far has focussed on developing and testing the robustness of the AFRC. 

Having done this, we next sought to ask how similar (or dissimilar) distributions obtained 

from the AFRC are compared to all-atom simulations. We used simulations generated via 

all-atom molecular dynamics with the Amber99-disp forcefield and all-atom Monte Carlo 

simulations with the ABSINTH-OPLS forcefield25,55–59,63. Specifically, we examined nine 

different fully disordered proteins: The unfolded Drosophila Drk N-terminal SH2 domain 

(DrkN, 59 residues)59,73,74, the ACTR domain of p160 (ACTR, 71 residues)39,40,59,75, 

a C-terminal disordered subregion of the yeast transcription factor Ash1 (Ash1, 83 

residues)55, the N-terminal disordered regions of p53 (p53, 91 residues)56,76, the C-terminal 

IDR of p27 (p26, 107 residues)57, the intrinsically disordered intracellular domain of 

the notch receptor (Notch, 132 residues)58, the C-terminal disordered domain of the 

measles virus nucleoprotein (Ntail, 132 residues)59,77, the C-terminal low-complexity 

domain of hnRNPA1 (A1-LCD, 137 residues)25, and full-length alpha-synuclein (asyn, 140 

residues)59,78,79.
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We compared distributions for the end-to-end distance and radius of gyration for our 

all-atom simulations with analogous distributions generated by the AFRC (Fig. 5). These 

comparisons revealed that while the general shape of the distributions recovered from 

simulations was not dissimilar from the AFRC-derived end-to-end distance and radius of 

gyration distributions, the width and mean were often different. This is hardly surprising, 

given that the global dimensions of an unfolded protein depend on the underlying amino 

acid sequence. The ratio of the mean end-to-end distance divided by the AFRC-derived 

mean end-to-end distance (or the corresponding ratio for the radius of gyration) was found to 

range between 0.7 and 1.4. In some cases, the end-to-end distance ratio or radius of gyration 

ratio varied within the same protein. For example, for the 132-residue intracellular-domain 

IDR from Notch (Notch), the end-to-end distance ratio was 0.8 (i.e., smaller than predicted 

by the AFRC), while the radius of gyration ratio was 1.0. Similarly, in alpha-synuclein 

(Asyn), the corresponding ratios were 0.7 and 0.9, again reporting a smaller end-to-end 

distance than radius of gyration. As suggested previously, discrepancies in end-to-end 

distance vs. radius of gyration vs. expectations from homopolymer models are diagnostic 

of sequence-encoded conformational biases18,35,36,49,50,80,81.

We also used the AFRC to calculate scaling maps. Scaling maps are non-redundant matrices 

of inter-residue distances obtained from simulations and normalized by the expected 

inter-residue distances obtained by the AFRC (Fig. 6)49,55,81. We compared these scaling 

maps (top left triangle of each panel) against absolute distances (bottom right triangle). 

This comparison highlights the advantage that using a reference polymer model offers. 

Long-range sequence-specific conformational biases are much more readily visualized as 

deviations from an expected polymer model. Moreover, the same dynamic range of values 

can be used for chains of different lengths, normalizing the units from Å to a unitless ratio.

Returning to the notch simulations, both types of intramolecular distance analysis clearly 

illustrate a strong long-range interaction between the N-terminal residues 1–30 and the 

remainder of the sequence. The long-range interaction between chain ends influences the 

end-to-end distance much more substantially than it does the radius of gyration (Fig. 6). 

Similarly, in alpha-synuclein, we observed long-range interactions between the negatively 

charged C-terminus and the positively-charged residues 20–50, leading to a reduction in the 

end-to-end distance. In short, the AFRC provides a convenient approach to enable direct 

interrogation of sequence-to-ensemble relationships in all-atom simulations.

Finally, we calculated per-residue contact scores for each residue in our nine proteins (Fig. 

7). These contact scores sum the length-normalized fraction of the simulation in which 

each residue is in contact with any other residue in the sequence25. While this collapses 

information on residue-specificity into a single number, it integrates information from the 

typically-sparse contact maps for IDR ensembles to identify residues that may have an 

outside contribution towards short (<6 Å) range molecular interactions. We and others have 

previously used this approach to identify “stickers” - regions or residues in IDRs that have 

an outsized contribution to intra- and inter-molecular interactions25,68,82,83.

In some proteins, specific residues or subregions were identified as contact hotspots. This 

includes the aliphatic residues in ACTR, and hydrophobic residues in the p53 transactivation 
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domains, in line with recent work identifying aliphatic residues as driving intramolecular 

interactions68,84. Most visually noticeable, aromatic residues in the A1-LCD appear as 

spikes that uniformly punctuate the sequence, highlighting their previously-identified role as 

evenly-spaced stickers25. Intriguingly, in alpha-synuclein, several regions in the aggregation-

prone non-amyloid core (NAC) region (residues 61–95) appear as contact score spikes, 

potentially highlighting the ability of intramolecular interactions to guide regions or residues 

that may mediate inter-molecular interaction.

Comparison with SAXS-derived radii of gyration

Having compared AFRC-derived parameters with all-atom simulations, we next sought to 

determine if AFRC-derived polymeric properties compared reasonably with experimentally-

measured values. As a reminder, the AFRC is not a predictor of IDR behavior; instead, 

it offers a null model against which IDR dimensions can be compared. To perform a 

comparison with experimentally derived data, we curated a dataset of 145 examples of 

radii of gyration measured by small-angle X-ray scattering (SAXS) of disordered proteins. 

We choose to use SAXS data because SAXS-derived radii of gyration offer a label-free, 

model-free means to determine the overall dimensions of a disordered protein. That said, 

SAXS-derived measurements are not without their caveats (see discussion), and where 

possible, we re-analyzed primary scattering data to ensure all radii of gyration reported here 

are faithful and accurate.

To assess our SAXS-derived radii of gyration, we calculated expected dimensions for 

denatured proteins, folded globular domains, or AFRC chains by fitting scaling laws with 

the form Rg = R0Nν against different polymer models. We used a denatured-state polymer 

model (ν = 0.59, R0 = 1.98, as defined by Kohn et al.) and a folded globular domain model 

(ν = 0.33, R0 = 2.86, as obtained from PDBSELECT25 originally plotted by Holehouse 

& Pappu)11,48,85. We also calculated the AFRC-derived radii of gyration for all 145 chains 

and fitted a polymer scaling model to the resulting data where the only free parameter was 

R0 (ν = 0.50, R0 = 2.50). This analysis showed that the majority of the 145 proteins have 

a radius of gyration above that of the AFRC-derived radius of gyration (see discussion), 

with some even exceeding the expected radius of gyration of a denatured protein (Fig. 8A). 

Based on these data, we determined an empirical upper and lower bound for the biologically 

accessible radii of gyration given a chain length (see discussion). This threshold suggests 

that, for a sequence of a given length, there is a wide range of possible IDR dimensions 

accessible (Fig. 8B, Fig. S5).

Finally, we wondered how well the AFRC-derived radii of gyration would correlate with 

experimentally-measured values. Based on the upper and lower bounds shown in Fig. 8B, 

we excluded four radii of gyration that appear to be spuriously large, leaving 141 data 

points. For these 141 points, we calculated the Pearson correlation coefficient (r) and 

the RMSE between the experimentally-measured radii of gyration and the AFRC-derived 

radii of gyration. This analysis yielded a correlation coefficient of 0.91 and an RMSE 

of 6.4 Å (Fig. 8C). To our surprise, these metrics outperform several established coarse-

grained models for assessing intrinsically disordered proteins, as reported recently86. We 

again emphasize that the AFRC is not a predictor of IDR dimensions. However, we 
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tentatively suggest that this result demonstrates that a reasonably good correlation between 

amino acid sequence and global dimensions can be obtained solely by recognizing that 

disordered proteins are flexible polymers. With this in mind, we conclude that the AFRC 

provides a convenient and easily-accessible control for experimentalists measuring the 

global dimensions of disordered proteins.

Reference implementation and distribution

Computational and theoretical tools are only as useful as they are usable. To facilitate 

the adoption of the AFRC as a convenient reference ensemble, we provide the AFRC 

as a stand-alone Python package distributed through PyPI (pip install afrc). We 

also implemented the additional polymer modes described in Fig. 4 with a consistent 

programmatic interface, making it relatively straightforward to apply these models to 

analyze and interpret computational and experimental data. Finally, to further facilitate 

access, we provide an easy-to-use Google colab notebook for calculating expected 

parameters for easy comparison with experiments and simulations. All information 

surrounding access to the AFRC model is provided at https://github.com/idptools/afrc.

DISCUSSION & CONCLUSION

In this work, we have developed and presented the Analytical Flory Random Coil (AFRC) 

as a simple-to-use reference model for comparing against simulations and experiments 

of unfolded and disordered proteins. We demonstrated that the AFRC behaves as a truly 

ideal chain and faithfully reproduces homo- and hetero-polymeric inter-residue and radius 

of gyration distributions obtained from explicit numerical simulations. We also compared 

the AFRC against several previously-established analytical polymer models, showing that 

ensemble-average or distribution data obtained from the AFRC are interoperable with 

existing models. Finally, we illustrated how the AFRC could be used as a null model for 

comparing data obtained from simulations and from experiments.

The AFRC differs from established polymer models in two key ways. While existing models 

define functional forms for polymeric properties, they do not prescribe specific length scales 

or parameters for those models. This is not a weakness - it simply reflects how analytical 

models work. However, the need to provide ‘appropriate’ parameters to ensure these models 

recapitulate behaviors expected for polypeptides places the burden on selecting and/or 

justifying those parameters on the user. The AFRC combines several existing analytical 

models (the Gaussian chain and the Lhuillier approximation for the radius of gyration 

distribution) with specific parameters obtained from numerical simulations to provide a 

“parameter-free” polymer model defined by its reference implementation (as opposed to the 

mathematical form of the underlying distributions). We place parameter free in quotation 

marks because the freedom from parameters is at the user level - the model itself is explicitly 

parameterized to reproduce polypeptides dimensions. However, from the user’s perspective, 

no information is needed other than the amino acid sequence.

Although the AFRC was explicitly parameterized to recapitulate numerical FRC 

simulations, sequence-specific effects do not generally have a major impact on the resulting 

dimensions. For example, Fig. S6 illustrates the radius of gyration or end-to-end distance 
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obtained for varying lengths of poly-alanine and poly-glycine. This behavior is not a 

weakness of the model - it is the model. This relatively modest sequence dependence reflects 

the fact that for an ideal chain, both the second and third virial coefficients are set to zero 

(i.e., the integral of Mayer f-function should equal 0)87. As such, the AFRC does not enable 

explicitly excluded volume contributions to the chain’s dimensions from sidechain volume, 

although this is captured implicitly based on the allowed isomeric states (compare glycine 

to alanine in Fig. S1). In summary, the AFRC does not offer any new physics, but it does 

encapsulate previously derived physical models along with numerically-derived sequence-

specific parameters to make it easy to construct null models explicitly for comparison with 

polypeptides.

In comparing AFRC-derived polymeric properties with those obtained from all-atom 

simulations, we recapitulate sequence-to-ensemble features identified previously 25,28,58,59. 

When comparing the normalized radii of gyration (Rg
Sim/ Rg

AFRC), we noticed the lower 

and upper bounds obtained here appear to be approximately 0.8 and 1.4, respectively. To 

assess if this trend held true for experimentally derived radii of gyration, we calculated the 

normalized radii of gyration for the 141 values reported in Fig. 8C, recapitulating a similar 

range (0.8 to 1.46). Based on these values, we defined an empirical boundary condition 

for the anticipated range in which we would expect to see a disordered chain’s radius of 

gyration as between 0.8Rg
AFRC and 1.45Rg

AFRC (Fig. 8B). We emphasize this is not a 

hard threshold. However, it offers a convenient rule-of-thumb, such that measured radii of 

gyration can be compared against this value to assess if a potentially spurious radius of 

gyration has been obtained (either from simulations or experiments). Such a spurious value 

does not necessarily imply a problem, but may warrant further investigation to explain its 

physical origins.

Our comparison with experimental data focussed on radii of gyration obtained from SAXS 

experiments. We chose this route given the wealth of data available and the label-free 

and model-free nature in which SAXS data are collected and analyzed. Given the AFRC 

offers the expected dimensions for a polypeptide behaving qualitatively as if it is in a theta 

solvent, it may be tempting to conclude from these data that the vast majority of disordered 

proteins are found in a good solvent environment (Fig. 9A). The solvent environment 

reflects the mean-field interaction between a protein and its environment. In the good 

solvent regime, protein:solvent interactions are favored, while in the poor solvent regime 

protein:protein interactions are favored 2,6,44,48. However, it is worth bearing in mind that 

SAXS experiments generally require relatively high concentrations of protein to obtain 

reasonable signal-to-noise43. Recent advances in size exclusion chromatography (SEC) 

coupled SAXS have enabled the collection of scattering data for otherwise aggregation-

prone proteins with great success88. However, there is still a major acquisition bias in the 

technical need of these experiments to work with high concentrations of soluble proteins 

when integrated over all existing measured data. By definition, such highly soluble proteins 

experience a good solvent environment. Given this acquisition bias, we remain agnostic as to 

whether these results can be used to extrapolate to the solution behavior of all IDRs.

Prior work has implicated the presence of charged and proline residues as mediating IDR 

chain expansion 33,34,42,46,49,55,65,89–92. We took advantage of the fact that the AFRC 
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enables a length normalization of experimental radii of gyration and assessed the normalized 

radius of gyration vs. the fraction of charged and proline residue (Fig. 9B). Our data 

support this conclusion as a first approximation, but also clearly demonstrate that while 

this trend is true on average, there is variance in this relationship. Notably, for IDRs with 

a fraction of charged and proline residues between 0.2 and 0.4, the full range of possible 

IDR dimensions are accessible. The transition from (on average) more compact to (on 

average) more expanded chains occurs around a fraction of proline and charged residues 

of around 0.25 – 0.30, in qualitative agreement with prior work exploring the fraction of 

charge residues required to drive chain expansion 33,34,42. However, we emphasize that there 

is massive variability observed on a per-sequence basis. In summary, while the presence 

of charged and proline residues clearly influences IDR dimensions, complex patterns of 

intramolecular interactions can further tune this behavior 2,17,28.

In summary, the AFRC offers a convenient, analytical approach to obtain a well-defined 

reference state for comparing and contrasting simulations and experiments of unfolded and 

disordered proteins. It can be easily integrated into complex analysis pipelines, or used for 

one-off analysis via a Google Colab notebook without requiring any computational expertise 

at all.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The AFRC is a pre-parameterized polymer model based on residue-specific 
polypeptide behavior.
A. Schematic of the amino acid dihedral angles. B. Ramachandran map for alanine used 

to select acceptable backbone conformations for the FRC simulations. All twenty amino 

acids are shown in Fig. S1. C. Graphical rendering of an FRC ensemble for a 100-residue 

homopolymer. The red chain is a highlighted single conformation, and the shaded other 

chains shown to highlight the heterogeneous nature of the underlying ensemble. D. Flory 

Random Coil (FRC) simulations performed using a modified version of the ABSINTH 

implicit model and CAMPARI simulation engine yield ensembles that scale as ideal chains 

(i.e., Re and Rg scale with the number of monomers to the power of 0.5). E. Internal scaling 

profiles for FRC simulations and Excluded Volume (EV) simulations for poly-alanine chains 
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of varying lengths (filled circles demark the end of profiles for different polymer lengths). 

Internal scaling profiles map the average distance between all pairs of residues |i-j| apart 

in sequence space, where i and j define two residues. This double average reports on 

the fact we average over both all pairs of residues that are |i-j| apart and do so over 

all possible configurations. EV simulations show a characteristic tapering (“dangling end” 

effect) for large values of |i-j|. All FRC simulation profiles superimpose on top of one 

another, reflecting the absence of finite chain effects. F. Histograms of end-to-end distances 

(blue) taken from FRC simulations vs. corresponding probability density profiles generated 

by the Analytical FRC (AFRC) model (black line) show excellent agreement. G. Histograms 

of radii of gyration (red) taken from FRC simulations vs. corresponding probability density 

profiles generated by the AFRC model (black line) also show excellent agreement.
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Figure 2. The AFRC enables the calculation of intra-residue distance distributions and expected 
distance-dependent contact fractions.
A. We compared all-possible mean inter-residue distances obtained from FRC simulations 

with predictions from the AFRC. The maximum deviation across the entire chain is around 

2.5 Å, with 92% of all distances having a deviation of less than 1 Å. B. Using the inter-

residue distance, we can calculate the average fraction of an ensemble in which two residues 

are in contact (i.e., within some threshold distance). Here, we assess how that fractional 

contact varies with the contact threshold (different lines) and distance between the two 

residues. The AFRC does a somewhat poor job of estimating contact fractions for pairs of 

residues separated by 1,2 or 3 amino acids due to the discrete nature of the FRC simulations 

vis the continuous nature of the Gaussian chain distribution. However, the agreement is 
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excellent above a sequence separation of three or more amino acids, suggesting that the 

AFRC offers a reasonable route to normalize expected contact frequencies.
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Fig. 3. The AFRC generalizes to arbitrary heteropolymeric sequences with the same precision 
and accuracy as it does for homopolymeric sequences.
A. Representative examples of randomly selected heteropolymers of lengths 100, 250, and 

450, comparing the AFRC-derived end-to-end distance distribution (black curve) with the 

empirically-determined end-to-end distance histogram from FRC simulations (blue bars). 

B. The same three polymers, as shown in A, now compare the AFRC-derived radius 

of gyration distance distribution (black curve) with the empirically-determined radius of 

gyration histogram from FRC simulations (blue bars). C Comparison of AFRC vs. FRC 

simulation-derived internal scaling profiles for a 150-amino acid random heteropolymer. The 

deviation between FRC and AFRC for these profiles offers a measure of agreement across 

all length scales. D Comparison of root-mean-square error (RMSE) obtained from internal 
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scaling profile comparisons (i.e., as shown in C) for 320 different heteropolymers straddling 

10 to 500 amino acids in length. In all cases, the agreement with theory and simulations is 

excellent.
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Fig. 4. The AFRC is complementary to existing polymer models.
(A) Comparison of end-to-end distance distributions for several other analytical models, 

including the Wormlike Chain (WLC), the self-avoiding walk (SAW), and the ν-dependent 

SAW model (SAW-ν). The AFRC behaves like a ν-dependent SAW with a scaling exponent 

of 0.5. (B) Comparisons of ensemble-average radii of gyration as a function of chain length 

for the same sets of polymer models. The AFRC behaves as expected and again is consistent 

with a ν-dependent SAW with a scaling exponent of 0.5.
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Fig. 5. AFRC-derived distance distributions enable simulations to be qualitatively compared 
against a null model.
A. Comparison of the end-to-end distance distributions from the AFRC (black line) and 

SAW-ν (blue dashed line, with ν=0.5 and prefactor = 5.5) with the simulation-derived 

end-to-end distribution (blue bars) for all-atom simulations of nine different disordered 

proteins. B. Comparison of the AFRC-derived radius of gyration distributions (black line) 

with the simulation-derived radius of gyration distribution (red bars) for all-atom simulations 

of nine different disordered proteins.
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Fig. 6. The AFRC enables a consistent normalization of intra-chain distances to identify specific 
sub-regions that are closer or further apart than expected.
Inter-residue scaling maps (top left) and distance maps (bottom right) reveal the nuance of 

intramolecular interactions. Scaling maps (top left) report the average distance between each 

pair of residues (i,j) divided by the distance expected for an AFRC-derived distance map, 

providing a unitless parameter that varies between 0.7 and 1.3 in these simulations. Distance 

maps (bottom right) report the absolute distance between each pair of residues in angstroms. 

While distance maps provide a measure of absolute distance in real space, scaling maps 

provide a cleaner, normalized route to identify deviations from expected polymer behavior, 

offering a convenient means to identify sequence-specific effects. For example, in Notch 

and alpha-synuclein, scaling maps clearly identify end-to-end distances as close than 
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expected. Scaling maps also offer a much sharper resolution for residue-specific effects - for 

example, in p53, residues embedded in the hydrophobic transactivation domains are clearly 

identified as engaging in transient intramolecular interactions, leading to sharp deviations 

from expected AFRC distances.
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Fig. 7. The AFRC enables an expected contract fraction to be calculated, such that normalized 
contact frequencies can be easily calculated for simulations.
Across the nine different simulated disordered proteins, we computed the contact fraction 

(i.e., the fraction of simulations each residue is in contact with any other residue) and 

divided this value by the expected contact fraction from the AFRC model. This analysis 

revealed subregions within IDRs that contribute extensively to intramolecular interactions, 

mirroring finer-grain conclusions obtained in Fig. 6.
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Fig 8. Comparison of AFRC-derived radii of gyration with experimentally-measured values.
A. We compared 145 experimentally-measured radii of gyration against three empirical 

polymer scaling models that capture the three classes of polymer scaling (ν = 0.33 [globular 

domains], ν = 0.5 [AFRC], and ν = 0.59 [denatured state]). Individual points are colored 

by their normalized radius of gyration (SAXS-derived radius of gyration divided by AFRC-

derived radius of gyration). B. The same data as in panel A with the empirically defined 

upper and lower bound. As with panel A, individual points are colored by their normalized 

radius of gyration. C. Comparison of SAXS-derived radii of gyration and AFRC-derived 

radii of gyration, as with panels A and B, individual points are colored by their normalized 

radius of gyration.
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Fig 9. AFRC-normalized radii of gyration from experimentally-measured proteins.
A. Histogram showing the normalized radii of gyration for 141 different experimentally-

measured sequences. B. Comparison of normalized radii of gyration for 141 different 

experimentally-measured sequences against the fraction of charge and proline residues 

in those sequences. Individual points are colored by their normalized radius of gyration. 

Grey bars reflect the average radius of gyrations obtained by binning sequences with 

the corresponding fraction of charge and proline residues. The colored sigmoidal curve 

is included to guide the eye across the transition region, suggesting that – on average – 

the midpoint of this transition is at a fraction of charged and proline residues of ~0.25. 
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The Pearson correlation coefficient (r) for the fraction of charged and proline residues vs. 

normalized radius of gyration is 0.58).
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