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Abstract
Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly heteroge-
neous and lethal hepatobiliary tumor with few therapeutic strategies. The
metabolic reprogramming of tumor cells plays an essential role in the develop-
ment of tumors, while the metabolic molecular classification of iCCA is largely
unknown. Here, we performed an integrated multiomics analysis and metabolic
classification to depict differences in metabolic characteristics of iCCA patients,
hoping to provide a novel perspective to understand and treat iCCA.
Methods: We performed integrated multiomics analysis in 116 iCCA samples,
including whole-exome sequencing, bulk RNA-sequencing and proteome anal-
ysis. Based on the non-negative matrix factorization method and the protein
abundance of metabolic genes in human genome-scale metabolic models, the
metabolic subtype of iCCAwas determined. Survival and prognostic gene analy-
ses were used to compare overall survival (OS) differences between metabolic
subtypes. Cell proliferation analysis, 5-ethynyl-2’-deoxyuridine (EdU) assay,
colony formation assay, RNA-sequencing and Western blotting were performed
to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in
iCCA cells.
Results: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of
iCCA were identified. These metabolic subtypes presented with distinct prog-
noses, metabolic features, immune microenvironments, and genetic alterations.
The S2 subtype with the worst survival showed the activation of some special
metabolic processes, immune-suppressedmicroenvironment andKirsten rat sar-
coma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A)
mutations. Among the S2 subtype-specific upregulated proteins, DGKA was
further identified as a potential drug target for iCCA, which promoted cell
proliferation by enhancing phosphatidic acid (PA) metabolism and activating
mitogen-activated protein kinase (MAPK) signaling.
Conclusion:Viamultiomics analyses, we identified threemetabolic subtypes of
iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We
further identified DGKA as a potential target for the S2 subtype.

KEYWORDS
diacylglycerol kinase α, intrahepatic cholangiocarcinoma, MAPK signaling, metabolic classifi-
cation, multiomics analysis, phosphatidic acid metabolism

1 BACKGROUND

Intrahepatic cholangiocarcinoma (iCCA), a highly lethal
cancer, is the second most prevalent primary liver malig-
nancy, comprising approximately 20%of all hepatic tumors
[1]. The incidence of iCCA has increased by more than
140% over the past decades [2] and was estimated to rise
by up to 10 folds worldwide in the following decades
[3]. Due to silent clinical symptoms at an early stage,

most patients are diagnosed at advanced stages. With lim-
ited treatment strategies, the 5-year survival rate of iCCA
patients remains at approximately 9% [4]. However, the
mechanism underlying the pathogenesis of iCCA remains
unclear.
Recent studies using high-throughput sequencing

technology have revealed the genetic landscape of
iCCA, indicating that tumor protein p53 (TP53), KRAS,
fibroblast growth factor receptor 2 (FGFR2), isocitrate
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dehydrogenase 1 (IDH1)/IDH2, and BRCA1-associated
protein 1 (BAP1) mutations (fusion) are the primary
driver gene variations [5]. Based on these findings, precise
treatments targeting FGFR2 and IDH1/IDH2 have been
developed and have shown preliminary clinical efficacy
[6, 7]. Therefore, multiomics technology may help build
more profound insight into the mechanisms underlying
iCCA and provide a novel therapeutic strategy. Through
integrated multiomics analysis, the results of molecular
studies have led to the development of diverse classifi-
cations of iCCA. Dong et al. [5] identified four distinct
proteomic subgroups with different biological and clinical
features, including inflammatory (S1), mesenchymal
(S2), metabolic (S3) and differentiated (S4) features.
Among these subgroups, patients with S4 showed the
best overall survival (OS). Deng et al. [8] classified
cholangiocarcinoma, including iCCA and extrahepatic
cholangiocarcinoma, into the following three proteomic
subtypes: S-I (metabolism), S-II (proliferation), and S-III
(stromal), and patients with S-I showed the best OS. Lin
et al. [9] described the immunogenomic traits of iCCA,
and Song et al. [10] depicted the molecularly distinct
features of two histological subtypes of iCCA. In addi-
tion, Cho et al. [11] identified three clinically supported
iCCA subtypes (stem-like, poorly immunogenic, and
metabolism) and found that NCT-501 (an IDH1 family
member inhibitor) exhibited synergism with nanoparticle
albumin-bound paclitaxel for the stem-like subtype in
an iCCA organoid model. These classifications provide
us with molecular phenotypes to understand prognostic
differences among iCCA patients. However, these studies
provide little information on metabolic dysregulation and
heterogeneity in iCCA patients.
Metabolic reprogramming is recognized as a hallmark

of malignancy [12]. On the one hand, metabolic repro-
gramming promotes tumorigenesis by promoting the rapid
proliferation, survival, invasion, metastasis, and thera-
peutic resistance of cancer cells. On the other hand,
with the development of tumors, cancer cells acquire
moremutations and changes, further enhancingmetabolic
reprogramming, which in turn accelerates tumor growth
and development [13, 14]. In addition, accumulating evi-
dence demonstrates that metabolic reprogramming also
has a crucial role in regulating the proliferation, differen-
tiation, and function of immune cells, which eventually
leads to tumor immune escape [15] and is related to patient
prognosis [16]. Nevertheless, little is known about the
metabolic differences among iCCA patients with different
prognoses. Thus, we performed an integrated multiomics
analysis of 116 iCCA and paired adjacent normal tissues
and performed metabolic classifications to depict differ-
ences in iCCA patient survival, hoping to provide a novel
perspective to understand and treat iCCA.

2 MATERIALS ANDMETHODS

2.1 Clinical summary

We collected iCCA samples and the paired adjacent nor-
mal tissues from 116 patients who received liver resection
without any anticancer treatments prior to surgery and
were pathologically diagnosed with iCCA at Zhongshan
Hospital (Shanghai, China), and the follow-up ended in
December 2022. We obtained tissue samples and promptly
stored them in liquid nitrogen, within 30 min of resec-
tion. All collected samples were intratumoral specimens
and confirmed by pathologists from Zhongshan Hospital.
Additionally, there were two interruptions in perfusion,
each lasting for 15 min during the surgical procedure.
The sample collection procedure was consistent across
all cases. Patients enrolled in this study all signed the
informed consent form to allow the use of their data and
samples.
The medical ethics committee of Zhongshan Hospital

reviewed and approved the use of all the human tissues
involved in this research (B2021-611). The baseline clinico-
pathological characteristics of the 116 patients with iCCA
are shown in Supplementary Tables S1-S2.

2.2 Sequencing

Each sample was weighed to approximately 0.2 g, crushed
and mixed in liquid nitrogen, and the samples were taken
separately for the following analyses:

1. Genomic analysis (for 116 iCCA samples and the
paired adjacent normal tissues), wherein whole-exome
sequencing (WES) was performed using the NovaSeq
6000 platform (Illumina, San Diego, CA, USA) with a
single sample size of more than 10 G and a sequencing
depth >100×.

2. Transcriptomic analysis (for 116 iCCA samples),
wherein RNA was extracted for sample quality control,
and quality control-compliant samples were subjected
to bulk RNA-sequencing using the NovaSeq 6000
platform (Illumina), yielding 10 G raw data per sample.

3. Proteomic analysis (for 116 iCCA samples), wherein
approximately 0.1 g issue was lysed in urea solution
(8 mol/L urea in 0.1 mol/L Tris-HCl, pH 8.5, contain-
ing 1× protease and phosphatase inhibitor), and the
whole proteins were extracted by 1 min of sonication
(3 s on and 3 s off, amplitude 25%). The peptide seg-
ments were isolated by filter-aided sample preparation
enzymes and fractionated by C18 reversed-phase liq-
uid chromatography (each sample was divided into 3
fractions). Five hundred nanograms of peptides from
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each fractionwere subjected tomass spectrometry (MS)
identification using an Orbitrap Fusion Lumos Tribrid
mass spectrum spectrometer (Thermo Fisher Scientific,
Carlsbad, CA, USA) coupled online to a nanoflow LC
system (EASY-nLC 1200, Thermo Fisher Scientific).
The polypeptide samples were dissolved in 10 μL of sol-
vent A (0.1% formic acid in high-performance liquid
chromatography grade water). Then, 5 μL of dissolved
polypeptide samples were loaded onto the precolumn
at a flow rate of 3 μL/min on the EASY-nano-LC chro-
matography system, and separated on the column at a
flow rate of 600 nL/min. The gradient was as follows: 0-
10min, 5%–11% solvent B; 10-110min,11%–25% solvent B;
110-140 min, 25%–40% solvent B; 140-141 min, 40%–95%
solvent B; and 141-150 min, 95% solvent B.

2.3 Quality control and quantification
of sequencing data

Genomic and transcriptomic data were sequenced for
fragment quality using FastQC software (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) to filter
out low-quality reads using the FASTX-Toolkit (v 0.0.13,
http://hannonlab.cshl.edu/fastx_toolkit/). WES data were
analyzed as follows: the Burrows-Wheeler Alignment Tool
[17] (v0.7.17, https://bio-bwa.sourceforge.net/) was used
to map all sequenced read segments to the hg38 ref-
erence genome, with the main algorithm implemented
using either spaced-seed indexing or Burrows-Wheeler
transform (BWT) techniques. Data pre-processing, includ-
ing the removal of repetitive sequences, was performed
according to the Best Practices Workflows recommended
by the Genome Analysis Toolkit (GATK) [18]. We used
GATK (v4.1.5.0, https://gatk.broadinstitute.org/hc/en-us)
to identify single nucleotide variants (SNVs) in tumor
tissues and adjacent normal tissues, using the GATK-
recommended af-only gnomad.hg38.vcf with somatic-
hg38_1000g_pon.hg38.vcf as a reference. Variant call for-
mat (Vcf) was further performed to screen for normal
population germline variants and to annotate them with
annotate variation (ANNOVAR) (v2019-10-24, http://www.
openbioinformatics.org/annovar). Finally, 18,593 SNVs
were obtained by screening variant allele frequency (VAF)
> 5% and supporting mutations of reads > 10 in tumor tis-
sues, VAF < 1% and variant reads < 5 in adjacent normal
tissues. Tumor cellularity and tumor ploidywere estimated
by sequenza-utils and sequenza, as well as copy num-
ber detection (allele specificity and total copy number)
and quantification using the adjacent normal tissues as
references.
We chose Salmon [19] (v1.5.2, https://combine-lab.

github.io/salmon/) and the reference genome described

above for transcriptomic quantitative analysis. The Salmon
tool quantifies reads by matching directly to the transcript
(cDNA) sequences through a fast and lightweight quasi-
mapping program, with the following two main steps to
run: build index and sample quantification. Subsequent
gene expression analysis was performed using the R pack-
age tximport (v1.22.0, https://bioconductor.org/packages/
release/bioc/html/tximport.html) [20].
Raw proteomic data were searched using MaxQuant

[21] (v1.6.1.0, https://www.maxquant.org/) against
UniProt database reference files (Version: 202002; 20,367
sequences, https://www.uniprot.org/). The relevant
parameters were set as follows: carbamidomethyl (C)
was set as a fixed modification while oxidations (M) and
acetyl (protein N-term) were set as variable modifications.
MS/MS tolerance (Ion trap mass spectrometry, ITMS)
was set to 0.5 Da. Searches allowed for up to 2 missed
lysine/arginine cleavages by trypsin (full specificity). The
false discovery rate (FDR) for peptides and proteins was
set to less than 0.01. Pollution and reverse library results
were excluded.
Further proteomic analysis was performed using

intensity-based absolute quantification (iBAQ) values,
normalized by quantile and treated with log2. We selected
proteins expressed in at least 25% of samples while
removing liver-specific genes [22, 23] and imputing
missing values using MissForest (v1.5, https://cran.r-
project.org/web/packages/missForest/index.html) [24].

2.4 General proteomic and metabolic
subtyping

Proteins used for general proteomic molecular subtyp-
ing were selected based on their coefficient of variation
(CV) among samples. The abundance matrix of the top
1,500 proteins with the highest CV values was used as
input features after performing min-max normalization
across the samples, and the non-negative matrix factor-
ization (NMF) algorithm (https://cran.r-project.org/web/
packages/NMF/index.html)was used for subtyping.When
k = 3, cophenetic values reached their maximum and
began to decline, while silhouette values ranged between
0.64 and 1.00 (Supplementary Figure S1A); thus, we
selected three clusters as candidate proteomic clusters.
At the same time, we also used the protein abundance

matrix of the top 1,500 proteins with the highest CV, which
was identified in at least 50% of the samples and nor-
malized by rowwise min-max scaling, as the input for
NMF. When k = 4, cophenetic values reached their maxi-
mum and began to decline, while silhouette values ranged
between 0.60 and 1.00 (Supplementary Figure S1B); then,
we also chose four clusters as candidate general proteomic
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clusters. Thus, for the proteomics clusters, with the differ-
ent thresholds of missing values, we obtained two sets of
clusters for iCCA: one had three clusters, and the other had
four clusters.
For metabolic subtypes, we mainly tried two strate-

gies. For the protein abundance-based strategy, three
metabolic protein abundance matrices were selected
as input. We input the metabolic proteins in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[25], the top 1,500 variant metabolic proteins in the
Human-GEMs [26], and the 412 variant proteins over-
lapping between the top 1,500 variant proteins used
in the Human-GEMs and top 1,500 proteins used in
the three proteomic clusters. For the gene set varia-
tion analysis (GSVA) (v1.38.2, https://bioconductor.org/
packages/release/bioc/html/GSVA.html) [27] pathway
enrichment score-based strategy, 69 metabolic path-
ways in the c2.cp.kegg.v7.4.symbols.gmt gene set in
MsigDB (https://www.gsea-msigdb.org/gsea/msigdb)
were selected as the metabolic gene set. We compared
all these input silhouette values with silhouette values
ranging from 0.77 to 1.00 (Supplementary Figure S1C)
when using the top 1,500 variant metabolic proteins in
the human genome-wide model as NMF input. Three
metabolic subtypes were defined from this input.

2.5 OS, disease-free survival (DFS), and
prognostic gene analysis

To compare survival differences in proteomics clusters and
metabolic subtypes, Kaplan-Meier curves and log-rank
tests were used. The endpoint of the study was OS. OS
was defined as the interval between the date of diagnosis
and the date of patient death or the last follow-up. DFS
was defined as the interval between the date of surgery
and the date of disease recurrence or death for any rea-
son or the last follow-up (whichever occurs first). We
calculated the hazard ratio (HR) for each gene and cor-
rected the log-rank P value with the Benjamini-Hochberg
(BH) algorithm using geneSA (v0.1.1, https://github.com/
huynguyen250896/geneSA) [28].

2.6 Metabolic pathway variation
analysis of the three metabolic subtypes

To characterize the unique metabolic function of each
metabolic subtype, we performed GSVA and selected
c2.cp.kegg.v7.4.Symbols.gmt in MsigDB as the gene set
together with the gene set composed of metabolic genes
in Human-GEMs. To determine the pathway differ-

ences between subtypes, we used the R package Limma
(v3.46.0, https://bioconductor.org/packages/release/bioc/
html/limma.html) [29] to analyze the upregulated and
downregulated pathways of each subtype [P < 0.001, cor-
rected with BH algorithm; log2fold change (log2FC) > 0,
upregulated; log2FC < 0, downregulated] compared to the
other two subtypes.
We also analyzed the differentially expressed proteins

of each subtype, which we identified using DeqMS (v1.8.0,
https://www.bioconductor.org/packages/release/bioc/
html/DEqMS.html) [30] by comparison with the other
two subtypes. Proteins with log2FC > 0.5 and P < 0.05
were considered upregulated, and those with log2FC > 1
and P < 0.05 were considered highly upregulated in the
subtype.

2.7 Construction of metabolic subtype
predictors and metabolic protein
signatures of the metabolic subtypes

The proteomic data of this study were used as the train-
ing set, and supplemental data from Dong et al. [31] were
used as the validation set. We first classified the validation
set into threemetabolic subtypes using the samemetabolic
stratification method and aligned the subtype label based
on the number of overlapping upregulated proteins with
our cohort data. To determine the correspondence between
subtypes in the validation set and those in the training set,
we compared the number of overlapping differential pro-
teins. In the validation set, we observed that 317 out of the
372 upregulated proteins (log2FC> 1,P< 0.05) identified in
the S1 training set exhibited upregulation in one of the sub-
types (log2FC > 0, P < 0.05). Consequently, we designated
this subtype as the “S1 validation set”. The remaining two
subtypes were assigned in the same way, with the S2 vali-
dation set overlapping 231 of the 295 upregulated proteins
in the S2 training set and the S3 validation set overlapping
547 of the 1,148 upregulated proteins in the S3 training set.
The identification of differentially expressed proteins in
the validation subtypes was performed using limma, with
the same comparison method being used in the training
set.
We then constructed metabolic subtype predictors

and performed molecular screening of the metabolic
signature proteins for each metabolic subtype based on
the permutation-based feature importance test (PermFIT)
method (https://github.com/SkadiEye/deepTL) [32].
Before predictor construction, we performed fea-
ture selection for each subtype, screening for highly
upregulated metabolic genes in each subtype in
our cohort. Here, metabolic genes were genes in
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c2.cp.kegg.v7.4.symbols.gmt and genes in the Human-
GEMs (version 1.8.0). For each subtype, we screened
subtype-specific metabolic signatures using PermFIT-
support vector machines (SVMs), PermFIT-deep neural
networks (DNNs), and PermFIT-random forests (RFs)
and validated the predictive ability of signatures in the
validation set. To improve the predictive ability, we
replaced one signature based on permutation screening
with one prognosis-related metabolic protein for each
subtype. For the S2 and S3 training sets with multiple
highly upregulated proteins with prognostic implications,
the metabolic protein with the highest hazard ratio (HR)
was selected for S2, and the metabolic protein with the
lowest HR was selected for S3. We finally used the set of
metabolic protein signatures with the best accuracy, as
well as the area under the curve (AUC) evaluation in the
validation set for each subtype.

2.8 Rate-limiting enzyme annotation

A union set of 3,745 metabolic genes was extracted from
theHuman-GEMs and theKEGGdatabase. Then, a total of
2,728metabolic genes identified in our cohort remained for
further analysis. Based on the gene name and the keyword
“rate-limiting”, the abstracts and titles of relevant litera-
ture were retrieved and collated from PubMed. Here, we
only considered metabolic proteins upregulated in each
metabolic subtype such that a total of 293 proteins had
retrieval results. After the manual check, we eventually
screened a total of 112 upregulated metabolic rate-limiting
enzymes in the three subtypes (log2FC > 1, P < 0.05). We
classified them according to the KEGG pathway annota-
tions. For glycolysis and the tricarboxylic acid cycle (TCA)
pathway, we only focused on the three commonly consid-
ered essential rate-limiting enzymes and relaxed log2FC to
> 0.5.

2.9 The prognostic gene-related
pathway

Metabolic genes (HR > 1, log-rank P < 0.01) annotated
in the Human-GEMs or KEGG database were considered
high-risk metabolic genes significantly associated with
prognosis; 62 of these genes were identified, and 53 low-
risk metabolic genes (HR < 1, log-rank P < 0.001) were
significantly associated with prognosis. The genes were
submitted as a gene list to Metascape (https://metascape.
org/gp/index.html) [33] for pathway enrichment analy-
sis. The ten KEGG pathways with the lowest q value are
shown.

2.10 Metabolic network construction
and analysis

We used Human-GEMs [26] as a reference metabolic
network model consisting of 142 metabolic subsys-
tems, 3,626 genes, 8,379 metabolites of different cellular
sublocalizations, and 13,084 metabolic reactions. Pro-
teomic and transcriptomic individual metabolic networks
were extracted using the task-driven integrative net-
work inference for tissues algorithm (tINIT) [26, 34].
For transcriptomic data, we followed the tutorial at
the website https://sysbiochalmers.github.io/Human-
GEM-guide/gem_extraction_old_tINIT/. For proteomic
metabolic networks, we used the iBAQ values for proteins
identified in at least 25% of samples and set discrete values
for the protein abundance of each sample according to the
following rule: if there was a missing value, we defined it
as “none”; if its rounded percentile was in 0-24%, 25%-74%,
or 75%-100%, we defined its abundance grade as “low”,
“medium”, or “high”, respectively.
We assessed metabolic reactions across all patient

subsystems using the Kruskal-Wallis H-test to compare
overall differences and the Nemenyi test to compare dif-
ferences between every two subtypes. BH significance
was defined as a corrected P < 0.05. For metabolic task
analysis of metabolic networks, we used the CompareMul-
tiModels function in Raven (v2.6.0, https://github.com/
SysBioChalmers/RAVEN) [35] and included metabolic
tasks to assess whether the task could be passed in an indi-
vidually specific metabolic network. The enriched tasks
in each metabolic subtype were calculated using Fisher’s
exact test [26, 36].
We converted the proteomic metabolic network

from the raven model format to the Cobra (v3.1,
http://opencobra.github.io/) model format [37]. We
used the sample CbModel function and the artificially
centered hit-and-run (ACHR) sampling method to obtain
the sampling metabolic fluxes and then took the average
value for each reaction. We retained reactions with a non-
zero flux value in at least 25% of samples, filled the missing
reaction flux valuewith 0,merged the reactionswhose flux
similarity was above 0.95 (Spearman correlation coeffi-
cients), and merged the reaction sets with the overlapping
reactions. The flux values of the merged reaction sets were
averaged.
We used t-distributed stochastic neighbor embedding

(t-SNE) for a dimensionality reduction analysis of the
reaction flux matrix after z score scaling to explore the
overall metabolic flux differences across subtypes. To ana-
lyze the S2-specific highly upregulated metabolic fluxes,
we selected the reactions based on the following condi-
tions: (i) the metabolic flux of the reaction in S2 was in

https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
https://sysbiochalmers.github.io/Human-GEM-guide/gem_extraction_old_tINIT/
https://sysbiochalmers.github.io/Human-GEM-guide/gem_extraction_old_tINIT/
https://github.com/SysBioChalmers/RAVEN
https://github.com/SysBioChalmers/RAVEN
http://opencobra.github.io/
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the same direction as non-S2 metabolic flux, (ii) the reac-
tion flux of S2 and non-S2 were significantly different by
the rank sum test (P < 0.05 after BH correction), (iii) the
Kruskal-Wallis H-test with overall differences in three sub-
types (P< 0.05 after BH correction), and (iv) the ratio of the
mean metabolic flux of the S2 subtype to the mean of the
non-S2 subtype was greater than 2. We used the following
formula to normalize the differences in metabolic fluxes
between subtypes:

𝑑 =

(
𝑥1 − 𝑥2

)
𝑠

○1 𝑠 =

√
(𝑛1 − 1) 𝑠21 + (𝑛2∕1) 𝑠

2
2

𝑛1 + 𝑛2 − 2
○2.

If the d value was less than 0, it indicated the opposite
direction to that defined by themodel. When screening for
upregulated proteins that also had high flux, we replaced
condition (iv) with a ratio of the mean metabolic flux
of the S2 subtypes to the mean of non-S2 subtypes that
was greater than 1, and the corresponding protein was
expressed at log2FC > 0.5 and P < 0.05.

2.11 Cell annotation and metabolic
heterogeneity analysis of single-cell
RNA-sequencing (scRNA-seq) datasets

We used HRA00863 [10] and GSE151530 [38], two
scRNA-seq datasets of iCCA. The annotated cells in the
HRA000863 dataset were kindly provided by the authors,
and GSE151530 was reannotated using SingleR (v1.4.1,
https://bioconductor.org/packages/release/bioc/html/
SingleR.html) [39]. To obtain an accurate classification
of CD8+ T cells in iCCA, we used previously reported
markers of CD8+ T cell subtypes [40, 41] and the single-
cell cluster-based auto annotation toolkit (scCATCH,
v3.2.1, https://github.com/ZJUFanLab/scCATCH) [42] for
annotation. We classified CD8+ T cells into exhausted
(including precursor exhausted) CD8+ T cells, naive-like
CD8+ T cells, early activated CD8+ T cells, and effector
memory CD8+ T cells.
Based on a previous study of single-cell pathway activity

[43], we performed pathway activity calculations for CD8+
T-cell subtypes using the Pagoda2 (v1.0.10, https://github.
com/kharchenkolab/pagoda2) algorithm [44], with a gene
set that was previously selected from a metabolic subset of
69 metabolic pathways from c2.cp.kegg.v7.4.symbols.gmt
in MsigDB. To compare the differences between subtypes,
we used the Kruskal-Wallis H-test to compare the overall
differences and the Nemenyi test to compare the differ-
ences between every two groups with a significance level
of P < 0.05.

2.12 Tumor microenvironment analysis

We performed microenvironment composition analysis
using transcriptomic transcripts per million (TPM) data
from 116 patients with iCCA and data from Dong’s cohort
[31]. A web version of xCell (https://comphealth.ucsf.edu/
app/xcell) was used in this analysis [45].
In parallel, we used the deconvolutional R pack-

age BayesPrism (v2.0, https://github.com/Danko-Lab/
BayesPrism) [46] and HRA000863 scRNA-seq datasets to
deconvolute the transcriptomic count data of our cohort
and transcriptomic TPM data of Dong’s cohort [31]. Thir-
teen cell fractions were deconvoluted: tumor cells, B cells,
plasma cells, natural killer cells, muco-associated con-
stant T cells, T regulatory cells, CD4+ T cells, CD8+ T
cells, dendritic cells, monocytes, macrophages, endothe-
lial cells, and fibroblasts. Cell fractions for four subtypes of
CD8+ T cells were also deconvoluted: exhausted CD8+ T
cells, naive-like CD8+ T cells, early activated CD8+ T cells,
and effector memory CD8+ T cells. Tumor transcriptome
expression profiles were obtained after deconvolution.
We calculated overall significant differences using the

Kruskal-Wallis H-test, and we assessed the differences
between every two groups using the Nemenyi test with a
significance level of P < 0.05. We normalized the cell frac-
tion with the sum of the four CD8+ cell subtypes when
analyzing the composition differences of the four CD8+
T-cell subtypes in the metabolic subtypes.
The TME-based subtypes [47] were also generated for

the comparison with the results of BayesPrism and xCell.
Briefly, 500 differential genes of five TME-based subtypes
[47] (100 for each) and NTP algorithm [48] were used to
decide the TME-based subtypes for our data.

2.13 Correlation between metabolic
pathway activity, metabolic genes, and cell
composition in the microenvironment

We used 69 metabolic pathways from the
c2.cp.kegg.v7.4.symbols.gmt gene set in MSigDB and
used GSVA pathway enrichment scores as pathway
activity. We calculated three levels of metabolic pathway
activity: the proteomic and transcriptomic levels, and
the transcriptomic expression level of tumor cells after
BayesPrism deconvolution.
We also analyzed correlations at the metabolic gene

level, selecting metabolic immune checkpoints, as well as
metabolic genes with consistent prognosis in our dataset
and in Dong’s cohort data, and again, we calculated three
levels of correlation.

https://bioconductor.org/packages/release/bioc/html/SingleR.html
https://bioconductor.org/packages/release/bioc/html/SingleR.html
https://github.com/ZJUFanLab/scCATCH
https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/pagoda2
https://comphealth.ucsf.edu/app/xcell
https://comphealth.ucsf.edu/app/xcell
https://github.com/Danko-Lab/BayesPrism
https://github.com/Danko-Lab/BayesPrism
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To obtain robust correlation results, we referred to pre-
vious research methods [49] and set the following criteria
for the robust correlation: (1) P < 0.05 for 2,000 permu-
tation tests; (2) P < 0.05 for 2,000 permutation tests after
removing any one sample.
We assessed the consistency of metabolic pathway cor-

relations with the cell composition between our dataset
and Dong’s dataset: 170, 377, and 566 correlations in our
cohort were robust using the proteomics, transcriptomics
and deconvoluted tumor transriptomic data, respectively,
with 74 (43.5%), 219 (58.1%), and 348 (61.5%) also being
robust in Dong’s cohort.
At the levels of metabolic immune checkpoints, for the

proteome, the transcriptome, and the deconvoluted tumor
transcriptome, 51, 98, and 105 correlations were robust in
our cohort, respectively, of which 33 (64.7%), 63 (64.2%),
and 73 (69.5%) were also robust in Dong’s cohort.
At the level of metabolic prognosis-related genes, for the

proteome, the transcriptome, and the deconvoluted tumor
transcriptome, 117, 121 and 165 correlations were robust in
our cohort, respectively, of which 58 (49.6%), 66 (54.5%),
and 108 (65.5%) were also robust in Dong’s cohort.

2.14 Analysis of driver genes and
potential functional mechanisms

We used sysSVM2 (https://github.com/ciccalab/sysSVM2)
[50] to analyze driver mutations at the individual level
in iCCA, selecting 10 candidate driver genes per patient
for driver mutation enrichment analysis of metabolic sub-
types. In S3, the numbers of patients with BAP1mutations
and IDH1mutationswere 16 and 12, respectively, and a total
of 24 patients out of 49 patients. Differentially expressed
proteins were identified in patients of S3 with BAP1muta-
tions (S3_BAP1mut), IDH1 mutations (S3_IDH1mut), and
no BAP1 or IDH1 mutations (S3_other) by comparing the
protein abundance profiles of these patients to those of
patients in non-S3 subtypes (log2FC > 1, P < 0.05 after BH
correction). Metascape was used to assess the functions of
S3_BAP1mut, S3_IDH1mut, and S3_other.

2.15 Analysis of cis-regulatory effects

We identified significantly amplified or deleted genes
using GISTIC2 (2.0.23) with parameters conf set at 0.99,
ta and td set at 0.4, and brlen set at 0.7 [51]. We used
iProfun (v0.2.0, https://github.com/songxiaoyu/iProFun)
[52] to screen potential cis-regulations, with age, sex and
hepatitis B surface antigen as covariates. The copy number
variation (CNV), proteomic and transcriptomic expression
matrix after z score normalization were used as inputs,

the permutation number was set to 1,000, and the FDR
was set to 0.1. We then selected proteins in significant
deletion and amplification regions with cis-regulation of
CNV-mRNA-protein. We performed functional enrich-
ment analysis using Metascape for proteins in the two
regions.

2.16 Cell lines and cell culture

Human iCCA cell lines RBE and HuCCT1 were main-
tained in RPMI-1640 (BasalMedia, Shanghai, China) sup-
plemented with 10% fetal bovine serum (FBS, 10099141C,
Gibco, Waltham, MA, USA), 100 U/mL penicillin and
streptomycin (100×, 15140122, Gibco) at 37◦Cwith 5% CO2.
All cells were used within ten passages after thawing.
The cell lines were authenticated by short tandem repeat
profiling before the experiments started and showed no
mycoplasma contamination.

2.17 Lentiviral transfection

Specific diacylglycerol kinase α (DGKA) lentiviral short
hairpin RNAs (shRNAs) were synthesized by OBiO Tech-
nology (Shanghai, China). The shRNAs were cloned and
inserted into the GL401 (pCLenti-U6 -CMV-Puro-WPRE)
vector, and an empty vector was used as the negative con-
trol. RBE andHuCCT1 cells were transfected following the
manufacturer’s instructions to knock down the expression
of DGKA.

2.18 5-Ethynyl-2’-deoxyuridine (EdU)
assay

After transfection, iCCAcellswere seeded on 12-well plates
at a density of 3 × 105 cells/well. The EdU-594 Kit (C0078S,
Beyotime, Shanghai, China) was used to detect the prolif-
eration of the indicated iCCA cells. Cells were treated with
EdU andHoechst dyes. A fluorescencemicroscope (Olym-
pus, Tokyo, Japan) was utilized to observe and record the
experimental results.

2.19 Cell proliferation analysis

For cell viability assays, iCCA cells were digested and
seeded in 96-well plates (1,000 cells/well) in 5 replicates.
The next day, 30 μmol/L ritanserin (HY-10791, Med-
ChemExpress,Monmouth Junction, NJ, USA), 100 μmol/L
phosphatidic acid (PA, 840857, Merck, Darmstadt, Ger-
many), or both were added to the culture medium of

https://github.com/ciccalab/sysSVM2
https://github.com/songxiaoyu/iProFun
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each treatment group. Then, the cells were cultured in the
respective medium for another 96 h. Cell survival was cal-
culated using cell counting kit-8 (CCK8, CK04, Donjindo,
Kumamoto, Japan) by measuring the absorbance at 450
nm using FlexStation 3 (Molecular Devices, San Jose, CA,
USA).

2.20 Colony formation assay

For colony formation assays, cells were seeded in 6-well
plates (1,000 cells/well) in triplicate and incubated for
approximately 2 weeks. In the ritanserin group, cells were
treated with 30 μmol/L ritanserin, and an equal volume
of dimethyl sulfoxide (DMSO, 41640, Sigma-Aldrich, St
Louis,MO,USA)was added to the control group. Then, the
cells were fixed with 4% paraformaldehyde and dyed with
Giemsa stain. The number of colonies in each well was
counted by ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

2.21 Tissue microarray (TMA)
experiment

A TMA containing 90 iCCA samples was established.
After ruling out 2 samples with missing data, 88 samples
were included in the present study (Supplementary Table
S3). Immunohistochemical (IHC) staining was conducted
with IHC reagents from Fuzhou Maixin Biotech Co.,
Ltd. (Fuzhou, Fujian, China). Briefly, TMA was deparaf-
finized and rehydrated before antigen retrieval, followed
by blocking with 3% hydrogen peroxide and 1× Animal-
Free Blocking Solution. Then, the sections were incubated
with primary antibodies (DGKA, 11547-1-AP, Proteintech
Group, Rosemont, IL, USA) overnight at 4◦C. The next day,
the sections were incubated with the secondary antibody
at 37◦C for 1 h, and 3,3 N-diaminobenzidine tetrahy-
drochloride (DAB) staining was conducted. Finally, they
were counterstained with hematoxylin for 2 min. Using
the PANNORAMIC 1000 slice scanner (3DHISTECH Ltd.,
Budapest, Hungary), the tissue sections were scanned and
imaged. Quant Center 2.1 analysis software (3DHISTECH
Ltd.) was used to calculate the H-score of the target area.
H-score = ∑(PI × I) = (percentage of cells of weak inten-
sity × 1)+ (percentage of cells of moderate intensity × 2)+
(percentage of cells of strong intensity × 3), where PI rep-
resents the positive area ratio and I represents the staining
intensity. The median H-score was defined as the thresh-
old value to distinguish the low andhighDGKAexpression
groups.

2.22 Western blotting

Using radioimmunoprecipitation assay buffer (RIPA) lysis
buffer solution (89900, Thermo Fisher Scientific) con-
taining phosphatase and protease inhibitor cocktail, cell
lines were dissolved to extract protein. Protein sam-
ples were separated by polyacrylamide gel electrophoresis
and transferred to polyvinylidene fluoride (PVDF) mem-
branes (IPVH00010, Sigma-Aldrich). After blocking with
5% bovine serum albumin (BSA) solution, the PVDF
membranewas incubatedwith primary antibodies, includ-
ing DGKA, extracellular regulated protein kinases 1/2
(ERK1/2, T40071, Abmart, Shanghai, China), phospho-
ERK1 (T202/Y204)+ ERK2 (T185/Y187) (T40072, Abmart),
mitogen-activated protein kinase 1/2 (MEK1/2, 11049-1-
AP, Proteintech Group), phospho-MEK1/2 (Ser217/221,
9154, Cell Signaling Technology, Danvers, MA, USA),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH,
51332, Cell Signaling Technology), followed by incubation
with secondary antibodies (7074, 7076, Cell Signaling Tech-
nology) conjugated with horseradish peroxidase (HRP).
Enhanced chemiluminescence (ECL) Western blotting
substrate (WBKLS0500, Sigma-Aldrich) was used to visu-
alize the signal.

2.23 Bulk RNA-seq analysis for cell lines

TRIzol reagent (15596026, Thermo Fisher Scientific) was
used to extract total RNA from DGKA-knockdown iCCA
cells and control cells. After ensuring the purity and
integrity of all RNA samples, the RNA library was then
constructed. Sequencing was performed on the Illumina
PE150.We defined significance for downstream analysis as
fold change> 1 and P< 0.05. Functional enrichment anal-
ysis of KEGG was conducted using ClusterProfiler (v3.4.4,
https://github.com/YuLab-SMU/clusterProfiler). Gene set
enrichment analysis (GSEA) was carried out with GSEA
software (v4.0.3, Broad Institute, Cambridge, MA, USA).

2.24 Statistical methods

The chi-square test and Fisher’s exact test were used
to analyze categorical variables. Kruskal-Wallis’s H-test
and Student’s t-test were utilized to calculate statistical
differences for continuous variables, and Spearman and
Pearson’s correlations were used for continuous variables
versus continuous variables. Survival analysis was per-
formed using the Kaplan-Meier method, the log-rank test,
and Cox proportional hazards regression analysis. All

https://github.com/YuLab-SMU/clusterProfiler
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F IGURE 1 Metabolic subtyping of iCCA. (A) Multiomics sequencing for the enrolled cohort of the iCCA. (B) Metabolic subtypes of
iCCA. The heatmap showed the value of subtype-specific metabolic protein abundance, normalized by row min-max. The abbreviations of
each metabolic subtype and the number of patients for each metabolic subtype were shown above the pheatmap. (C) Kaplan-Meier plot of OS
for the patients in three metabolic subtypes. (D) Pathway and process enrichment analysis using Metascape for each subtype. The top five
pathways or GO Biological Processes ordered by the -lg(P) were selected. (E) Gene Set Variation Analysis of KEGG metabolic pathways or
Human-GEMs subsystems for three metabolic subtypes. The enrichment degree of each pathway is represented by the cube root of the lg(P).
When log2FC < 0, the enrichment degree is represented by the negative cube root of the lg(P). The italicized terms are the subsystems in the
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statistical tests were two-sided, and a P value < 0.05 was
considered statistically significant.

3 RESULTS

3.1 Metabolic subtypes and protein
signatures of iCCA

In our study, we enrolled 116 patients with iCCA and per-
formed WES and quantification of the transcriptome and
proteome (Figure 1A). We attempted several approaches
to identify the metabolic subtypes in our cohort of
iCCA patients. Based on the NMF method and the pro-
tein abundance of metabolic genes in Human-GEMs,
three metabolic subtypes (S1, S2, and S3) were identified
(Figure 1B, Supplementary Table S1). We further explored
the relationship between these three subtypes and poten-
tial clinical influencing factors. Notably, HBV infection
and diabetes were not significantly associated with any
subtype, while obese patients tended to be subtype S1
(Supplementary Table S2).
Out of the three metabolic subtypes, individuals belong-

ing to subtype S1 exhibited the highest survival rate
(medianOS> 60months),whereas those in subtype S2 suf-
fered from the shortest duration of survival (median OS =
20.5 months) (Figure 1C). General proteomic clusters were
also identified for comparison with the metabolic sub-
types (Supplementary Table S1). Interestingly, there was a
strong concordance between them, indicating a good cor-
respondence between individual changes in the metabolic
protein expression profile and the overall protein expres-
sion profile (Supplementary Figure S2A). We compared
the differences in proteins used in general proteomic sub-
typing and metabolic subtyping, both of which resulted in
three subtypes.A total of 412 proteinswere shared.Weused
these 412 proteins alone for metabolic subtyping again. Its
consistency with the Human-GEMs gene-based method
was weaker than that with the KEGG metabolic gene-
based method but stronger than that with the GSVA-based
method (Supplementary Figure S2B). Other metabolic

subtyping results also showed significant differences in OS
(Supplementary Figure S2C).
To further explore the molecule-level functional charac-

teristics of each subtype, we submitted the highly upregu-
lated genes in each subtype to Metascape [33] for pathway
and biological process analysis (Supplementary Table S4).
The top 5 most enriched pathways for each subtype are
shown in Figure 1D. The results revealed that metabolism-
related pathways, such as small molecule biosynthesis and
valine, leucine and isoleucine degradation, were enriched
in S1, whereas S2 showed pathways predominantly related
to metastasis, and S3-enriched pathways were predomi-
nantly related to proliferation. This finding was consistent
with the different prognostic characteristics of each sub-
type.
We also used GSVA to perform a preliminary character-

ization of the metabolic functional differences among the
threemetabolic subtypes S1, S2 and S3. Consistent with the
above results, the subtype S1 exhibited a wider range of
metabolic activities compared to the other two subtypes.
The proteins in many metabolic pathways and subsys-
tems of amino acidmetabolism, carbohydratemetabolism,
energy metabolism, lipid metabolism, and other classes of
amino acid metabolism were enriched in S1 (Figure 1E).
The pathways of glycosaminoglycan biosynthesis-keratan
sulfate, O-glycan biosynthesis, protein modification sub-
system, and inositol phosphate metabolism were enriched
in S2. Glycosaminoglycan biosynthesis-keratan sulfate
[53], O-glycan biosynthesis [54] and inositol phosphate
metabolism [55] were reported to be associated with
tumor metastasis, which led to the worst prognostic
phenotype of S2. The biosynthesis pathways of valine,
leucine, isoleucine, and aminoacyl-tRNA and the pyrimi-
dine metabolism pathway were enriched in S3 (Figure 1E),
consistent with the vigorous proliferation phenotype men-
tioned above (Figure 1D).
For potential applications in the future, we con-

structed a metabolic subtype prediction model using the
Permutation-FITmethod [32] to screen for the most repre-
sentative metabolic signature proteins for each metabolic
subtype. We used our cohort data as the training set and

human-GEMs, while the normal terms are the metabolic pathways in KEGG. (F) ROC curves of the predictors of metabolic subtypes on the
validation set. The black curve represents PermFIT-DNN, the green curve represents PermFIT-RF, and the red curve represents
PermFIT-SVM. (G) The log2FC value of metabolic protein signatures screened by predictors for each metabolic subtype. The gene name in
red color means this gene is high-risk, the gene name in green color means this gene is associated with a good prognosis.
Abbreviations: iCCA, intrahepatic cholangiocarcinoma; T, tumor; N, adjacent liver tissues; C1, C2 and C3, proteomic cluster 1,2,3; S1, S2 and
S3, metabolic subtype 1,2,3 in our training set; Vali_S1, Vali_S2, Vali_S3, the metabolic subtypes in the validation set that are similar to the
metabolic phenotypes of the S1, S2, S3 subtypes in the training set, respectively; OS, overall survival; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GEMs, genome-scale metabolic models; FC, fold change; ACC, accuracy; AUC, area under the curve;
ROC, receiver operating characteristic curve; Perm-FIT, Permutation-FIT; DNN, deep neural networks; RF, random forests; SVM, support
vector machines.
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the proteomic data from the Dong cohort [31] as the vali-
dation set (Supplementary Figure S2D-E). The AUC of all
three subtypes in our validation set reached above 0.85,
indicating the reliability of the model and the representa-
tiveness of the selected signatures for metabolic subtypes.
The accuracy of the predictor reached 0.88 for S1 and 0.77
for S3 (Figure 1F). The metabolic protein signatures in S1
and S2 were involved in a variety of metabolic functions,
and NUDT12, ACSS1, and NMNAT3 signatures in S3 were
all associated with the process of nucleotide biosynthesis
(Figure 1G).

3.2 Significant and wide metabolic
heterogeneity among different metabolic
subtypes

To explore the heterogeneity of metabolic characteristics
in different metabolic subtypes, three aspects, includ-
ing “rate-limiting enzymes”, “prognosis-related metabolic
genes” and “metabolic network model”, were involved
in further analysis. Although the correlations between
proteomic and transcriptomic expression of metabolic
genes were higher than those of non-metabolic genes,
the median Spearman coefficient was only 0.49, indicat-
ing that it is of unique value to use proteomic data to
characterize metabolic subtypes and their heterogeneity
since there was a closer relationship between proteome
and phenotype (Supplementary Figure S3A).
First, we annotated metabolic rate-limiting enzymes

using differential protein expression inmetabolic subtypes
by collecting and reviewing the related literature (Sup-
plementary Table S5). We found that the rate-limiting
enzymes involved in the fatty acid degradation pathway
in S1 were upregulated, while the rate-limiting enzymes
upregulated in S2 and S3 were proteins involved in the
glycolysis/gluconeogenesis pathway. Hexokinase 1(HK1),
HK2, and HK3, the enzymes for converting glucose to
6-phosphate fructose in the first rate-limiting glycolysis
step, were upregulated in S2, while muscle phosphofruc-
tokinase (PFKM) and PFKP, the enzymes for fructose
1,6-diphosphate production in the rate-limiting step of gly-
colysis, were upregulated in S3. Subtype-specific variation
in rate-limiting enzymes suggests the key heterogeneity in
energy utilization for iCCA.
All rate-limiting enzymes in the pyrimidine metabolism

pathway were upregulated in S3, except for ecto-5’-
nucleotidase (NT5E) and ectonucleoside triphosphate
diphosphohydrolase 1(ENTPD1), which were upregulated
in S2 (Figure 2A). CD39 (ENTPD1) binds extracellular
adenosine triphosphate (ATP) and hydrolyses it to adeno-
sine monophosphate (AMP) [56]; another extracellular
nuclease, CD73 (NT5E), hydrolyses AMP to adenosine,

and the abnormally high concentration of extracellular
adenosine promotes tumor proliferation through various
immunosuppressive mechanisms; furthermore, inhibition
of CD73 and CD39 can enhance antitumor immunity [56].
Since the S2 subtype had the worst prognosis, we fur-
ther focused on other specific rate-limiting enzymes of this
subtype. The rate-limiting enzymes highly upregulated
in S2, such as proline dehydrogenase (PRODH), glutam-
inase 2 (GLS2), and hephaestin (HEPH), were involved
in oxidative stress, while arachidonate 5-Lipoxygenase
(ALOX5), phospholipase A2, group IVA (PLA2G4A),
and cytosolic non-specific dipeptidase 1 (CNDP1) were
involved in inflammatory responses. Additionally, CNDP1
and glutamine-fructose-6-phosphate aminotransferase 2
(GFPT2) were involved in the regulation of protein glyco-
sylation (Supplementary Figure S3B).
Second, we analyzed the metabolic genes associated

with different prognostic phenotypes (Figure 2B and
Supplementary Figure S3C). Pathway enrichment results
showed that the metabolic pathways associated with poor
prognosis in iCCA were central carbon metabolism in
cancer, choline metabolism in cancer, various types of
N-glycan biosynthesis, etc. These metabolic genes were
also widely involved in important signaling pathways,
including the hypoxia-inducible factor-1 (HIF-1) signaling
pathway and the Fc epsilon receptor I (FcεRI) signal-
ing pathway. Notably, among the 20 metabolic genes
associated with unfavorable prognosis, 12 genes were
upregulated in S2 (Figure 2B).
Third, to further analyze the metabolic heterogeneity of

iCCA from a global view, we constructed an individual-
level tissue-specific metabolic network based on the tINIT
algorithm. We compared the differences in the number
of reactions in the metabolic subsystems within S1, S2,
and S3. There were 136 subsystems in the individual-
specific proteomics metabolic network of iCCA, and 48
metabolic subsystems had subtype differences (Supple-
mentary Table S6). Subsystems generally had a higher
number ofmetabolic reactions in S1 and a lower number of
metabolic reactions in S2. The heterogeneous subsystems
among subtypes revealed by the reaction numbers, such as
alanine, aspartate, glutamate, and pyrimidinemetabolism,
were consistentwith previousGSVA results, but therewere
also inconsistencies in that the number of N-glycoside
synthesis metabolic reactions in S2 was not significantly
higher than that in other subtypes (Figure 2C).
Themetabolic task is a set of reactions needed to convert

a specific metabolite into a specific product. The differ-
ences inmetabolic tasks between patients at the proteomic
levelwere greater than those based on the transcriptome.A
total of 256metabolic taskswere involved, ofwhich 67were
different across patients at the proteome level, 27 were dif-
ferent at the transcriptome level, and 25 were identified
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F IGURE 2 Metabolic feature of metabolic subtypes in iCCA. (A) The log2FC value of key metabolic rate-limiting enzymes in iCCA. (B)
Metabolic genes associated with the poor prognosis and the corresponding pathways in intrahepatic cholangiocarcinoma. The proteins in red
color were up-regulated in S2. (C) The number of reactions in subsystems for each subtype. The Kruskal-Wallis H-test was used to compare
overall differences. Statistical significance between every two groups was calculated using the Nemenyi test. P values shown at the top of each
panel were calculated by the Kruskal-Wallis H-test. For the Nemenyi test results, a ‘*’ represents P < 0.05, while ‘ns’ means P > 0.05. (D) The
enrichment analysis of metabolic tasks derived from proteomics network and the transcriptomics network for subtypes. Over_representation
and under_representation are represented by -lg(P) and lg(P), respectively. (E) The log2FC value for the key gene expression at the proteomics
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as different metabolic tasks in both the transcriptome and
proteome (Supplementary Table S7). A total of 21metabolic
tasks were found to have metabolic intersubtype differ-
ences at two omics levels, and these tasks were widely
related to themetabolism processes of amino acids, sugars,
energy lipids, coenzymes and vitamins, and nucleic acids
(Figure 2D).
Multiple metabolic tasks in S1 showed significant

enrichment, while most of the tasks were extensively
depleted in S2. The proteomics and transcriptomics
together showed that glycocholate and taurocholic acid de
novo synthesis and secretion were significantly enriched
in S1; conversely, proline de novo synthesis, NAD(+) de
novo synthesis, and NADP(+) de novo synthesis were sig-
nificantly deficient in S1. Arginine and tyrosine de novo
metabolic tasks were absent in S2 (Figure 2D). Proteomic
expression evidence verified that arginine and tyrosine de
novo synthesis were significantly depleted in S2, as well
as proline de novo synthesis in S1 (Figure 2E); in addition,
some genes shared by NAD(+) de novo synthesis reactions
had lower expression in S1 than in other subtypes (Sup-
plementary Figure S3D). Additionally, the proteomic data
showed that the NAD(+) and NADP(+) de novo synthesis
tasks were enriched in S2, while the alanine degradation
task was enriched in S3 and absent in S1 (Figure 2D).
Metabolic tasks enriched or depleted in different subtypes
indicated metabolic reprogramming in the formation of
subtypes of iCCA. Depleted metabolic tasks in S1, as well
as enriched metabolic tasks in S2 or S3, may be associ-
ated with poor prognosis and may be potential metabolic
targets.
Metabolic fluxes are the immediate rates at which chem-

ical reactions occur, and metabolic fluxes reflect the char-
acteristics of individual reactions from a global metabolic
perspective.We simulated the fluxes ofmetabolic reactions
in themetabolic network based on the ACHRmethod. The
simulatedmetabolic flux data were dimensionally reduced
and were found to differ between S1 and S2 (Figure 2F).
S2 generally had smaller metabolic fluxes, such as fatty

acid oxidation, than other subtypes (Figure 2G). We found
that some reactions in prostaglandin metabolism and
synthesis and interleukin metabolism in S2 had higher
fluxes than other subtypes (Supplementary Figure S3E).
Proteins involved in S2 with significantly high fluxes
were also upregulated in S2, such as lecithin-cholesterol
acyltransferase (LCAT) and solute carrier family 3 mem-
ber 2 (SLC3A2) (Supplementary Figure S3E). HK1, HK2,
HK3, glycerol-3-phosphate dehydrogenase 2 (GPD2), alde-
hyde dehydrogenase 1 family member L2 (ALDH1L2), and
ALDH3B1 were also found to be upregulated and were
found to be involved in the high flux reaction (Figure 2H),
butmost of the upregulation of themetabolic proteins in S2
was not reflected in the simulated fluxes (125 upregulated
metabolic proteins in S2). Thus, the sampling fluxes based
on the individual metabolic model indicated that from a
global metabolic perspective, except for a small portion of
upregulated proteins involved in highly active metabolic
reactions, the activity of the entire S2 metabolic reaction
was significantly lower than the other two subtypes.

3.3 Analysis of microenvironmental
composition and metabolic associations in
iCCA

The analysis of the microenvironmental composition of
different subtypes showed obvious heterogeneity in cell
type fractions. Based on the Kruskal-Wallis H-test, we
found that the immune and stromal scores (xCell) of the
three metabolic subtypes in S3 were significantly lower
than those of the other two subtypes (Supplementary Table
S8). BayesPrism results supported the findings based on
the xCell method as follows: BayesPrism analysis showed
that the tumor cell fraction of S3 was significantly higher
than that of the other two subtypes (Nemenyi test, P <

0.05); the results of both methods consistently showed
that monocytes and macrophages made up significantly
smaller proportions in S3 than in the other subtypes

level for Arginine/Tyrosine/Proline de novo synthesis metabolic task. Genes colored in red, green and black represent the genes involved in
the Arginine/Tyrosine/Proline de novo synthesis, respectively. (F) The dimensionality reduction map of the sampled flux for the reactions of
116 personal GEMs using tSNE. (G) The d value of reactions in Fatty acid oxidation in S2. d value is the normalized difference of fluxes
between subtypes. (H) Reactions in S2 with the up-regulated both in metabolic flux and the corresponding genes at the proteomics level.
MAR04336: 10-formyl-THF[c] + H2O[c] + NADP+[c] = > CO2[c] + H+[c] + NADPH[c] + THF[c], MAR00483: sn-glycerol-3-phosphate[c] +
ubiquinone[m] = > DHAP[c] + ubiquinol[m], MAR04486: glucose[c] + ITP[c] = > glucose-6-phosphate[c] + H+[c] + IDP[c], MAR08775:
glycolaldehyde[c] + H2O[c] + NAD+[c] = > glycolate[c] + 2H+[c] + NADH[c]. MAR00483, MAR04486 and MAR08775 belong to folate
metabolism, glycerophospholipid metabolism, purine metabolism, purine metabolism and Tricarboxylic acid cycle and
glyoxylate/dicarboxylate metabolism, respectively.
Abbreviations: iCCA, intrahepatic cholangiocarcinoma; S1, S2 and S3, metabolic subtype 1, 2 and 3; FC, fold change; TCA, tricarboxylic acid;
HR, hazard ratio; Ala, alanine; Asp, aspartic acid; Glu, glutamic acid; Pro, proteomics network; Tran, Transcriptomics network; Arg/Tyr/Pro,
Arginine/Tyrosine/Proline; GEMs, genome-scale metabolic models; tSNE, t distributed stochastic neighbor embedding; THF,
tetrahydrofolate; NADP, nicotinamide adenine dinucleotide phosphate; ns, no significant; *, P < 0.05; sig, significant.
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F IGURE 3 Basic immune characteristics of iCCA. (A) Pathway activities of four CD8+ T cells subtypes in HRA000863 datasets. (B-C)
the comparison of cell fractions of effector memory CD8+ T cells and naive-like CD8+ T cells among three metabolic subtypes. Kruskal-Wallis
H-test was used to compare the overall significant difference and the Nemenyi test was used to compare the significant difference between
every two groups. P values are shown for the Kruskal-Wallis H-test. For the Nemenyi test, ‘*’ and ‘ns’ represent P < 0.05 and P > 0.05,
respectively. (D-E) The Spearman correlation between metabolic checkpoints (D) or prognostic metabolic genes (E) and the cell composition
in the microenvironment. The gene name in red color means this gene is high-risk, the gene name in green color means this gene is
associated with a good prognosis. The crosses indicate that the correlation is not robust in our and Dong’s dataset or the correlations in the
two datasets are inverse.
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(Nemenyi test, P < 0.05); BayesPrism results showed that
the proportions of CD8+ T cells, dendritic cell (DC), and
regulatory T (Treg) cells were significantly higher in S1
than in the other subtypes (Nemenyi test P < 0.05). The
characteristics of TME-based subtypes [47] were consis-
tentwith our findings: the “immune classical” subtypewas
enriched in S1 (P = 0.003) and the non-inflamed TME-
based “Hepatic stem-like” subtype was enriched in S3
(P < 0.001) (Supplementary Table S9).
Due to the importance of CD8+ T cells for iCCA [57,

58], we analyzed the heterogeneity of CD8+ T cell subtypes
among different patients using the public iCCA single-cell
dataset, as well as the BayesPrism algorithm. We first clas-
sified CD8+ T cells from the public single-cell dataset into
the following four subtypes: exhaustedCD8+ T cells, naive-
like CD8+ T cells, early activated CD8+ T cells, and effector
memory CD8+ T cells (Supplementary Figure S4A). Both
scRNA-seq datasets consistently showed metabolic het-
erogeneity in the pathways of glycolysis/gluconeogenesis,
pyrimidinemetabolism, one carbonpool by folate, cysteine
and methionine metabolism, and oxidative phosphoryla-
tion in the CD8+ T-cell subtypes. We found significant
differences in all of these pathways between effector mem-
ory CD8+ T cells and exhausted CD8+ T cells. Except
for the higher level of oxidative phosphorylation in the
effector memory CD8+ T cells, the activity of all other
metabolic pathways in effector memory CD8+ T cells was
lower than that in exhausted CD8+ T cells (Figure 3A and
Supplementary Figure S4B).
Then, we used BayesPrism to deconvolute the cell frac-

tions of CD8+ T cell subtypes in each patient in the cohort,
and the Kruskal-Wallis H-test revealed that the propor-
tion of CD8+ T cells of different subtypes did not differ
significantly in patients of different subtypes, but after nor-
malization within CD8+ T cells, effector memory CD8+ T
cells made up a significantly higher proportion in S1 than
in S2 (Figure 3B) and naive-like CD8+ T cells made up a
significantly higher proportion in S2 than in S1 (Figure 3C),
indicating the potential trend of internal changes in CD8+
T cell status in the microenvironment of iCCA cells with
different metabolic states.
To investigate the association between the microen-

vironment and metabolism in iCCA, we analyzed the
correlation of metabolic pathway activity, represented by
metabolic gene expression level, with the non-tumor cell
fraction. A total of 49 robust correlations were identi-
fied between metabolic pathway activities and non-tumor
cell fractions, with endothelial cells associated with the

activities of the most metabolic pathways at the pro-
teomic level, followed by CD4+ T cells, CD8+ T cells,
and mucosa-associated constant T cells. In contrast, the
arachidonic acid metabolic pathway was associated with
the greatest proportion of non-tumor cells, followed by the
glycosylphosphatidylinositol (GPI)-anchored biosynthetic
pathway (Supplementary Figure S4C).
From the single-gene viewpoint, we first analyzed the

correlation of 12 metabolic immune checkpoints with the
proportion of microenvironmental cells, 6 of which had
robust correlations (Figure 3D and Supplementary Table
S10). Then, more generally, we analyzed correlations of
24 prognostic metabolic proteins with the fraction of cells
in the tumor microenvironment (TME). We identified
42 robust correlations, among which HK2 was associ-
ated with the largest proportion of non-tumor cells in 8
cell types, followed by procollagen-lysine, 2-oxoglutarate
5-dioxygenase 1 (PLOD1). Notably, these two proteins
were highly upregulated in S2. Effector memory CD8+
T cells were negatively associated with aspartate beta-
hydroxylase (ASPH) and HK2 and positively associated
with ALDH9A1, and early activated CD8+ T cells were
negatively associated with PLOD1. In addition, DGKA
was positively correlated with fibroblasts and monocytes
(Figure 3E and Supplementary Table S11). We compared
the overlap of the transcriptome and the tumor tran-
scriptome after deconvolution with the proteome, and we
found that the correlation results of metabolic immune
checkpoint and prognostic genes in different omics were
more consistent with metabolic pathways (Supplementary
Figure S4D-F).

3.4 The potential genetic drivers of
metabolic and immune features in iCCA

After profiling the metabolic and immune features of dif-
ferent iCCA subtypes, we sought to explore the potential
genetic drivers of the metabolic and immune phenotypic
features. To this end, we analyzed the role of driver genes
and CNV cis-regulation for each metabolic subtype.
In our cohort, a total of 18,593 somatic mutations were

identified, among whichARID1A, titin (TTN), BAP1, TP53,
and IDH1 had the highest mutation frequency. The region
with significant copy number amplification was 19p13.2,
and the region with significant deletion was 1p36.11
(Figure 4A and Supplementary Table S12). The median
mutation burden was 0.61/MB, and some mutations were

Abbreviations: iCCA, intrahepatic cholangiocarcinoma; ns, no significant; B, B cells; Plasma, plasma cells; MAIT, Mucosal-associated
invariant T cells; NK, natural killer cells; Treg, T regulatory cells; CD4, CD4+ T cells; CD8, CD8+ T cells; Mono, Monocytes; Mac,
Macrophages; DC, dendritic cells; Endo, Endothelial cells; Fibro, Fibroblasts; ρ, the spearman coefficient.
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F IGURE 4 The formation mechanism of metabolic and immune subtype regulation in iCCA. (A) The top 20 high-frequency SNVs and
the most amplification and deletion CNV events identified in our cohort. (B) Driver mutation subtype enrichment analysis. (C) The number
of up-regulated genes compared between S3_BAP1mut or S3_IDH1mut or S3_Other. (D) CNV in cis-regulatory regions of metabolic genes
within significantly deleted and amplified regions. (E) Pathway and process enrichment analysis for amplified or deleted metabolic genes. (F)
The percentage of amplified or deleted events in each subtype (upper), The log2FC of genes affected by amplified or deleted events. The
number of amplified or deleted events in each subtype was shown (down). ++: significant over-representation, P < 0.05. −: significant
under-representation, P < 0.05. +: not significant over-representation, P > 0.05. −: not significant under-representation, P > 0.05. The
enrichment analysis was using Fisher’s exact test.
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mutually exclusive and cooccurring, e.g., ARID1A muta-
tions co-occurring with mucin 16 (MUC16) and ephrin
type-A receptor 2 (EPHA2) mutations (Supplementary
Figure S5A-B).
Genes with driver mutations in at least 10 individuals

were screened for subtype enrichment analysis. The results
showed that BAP1 and IDH1 mutations were significantly
enriched in S3 (P < 0.001, P = 0.017) and absent in S2 (P
= 0.001, P = 0.007), while the remaining driver mutations
showed no trend of subtype enrichment (Figure 4B). We
divided S3 into S3_BAP1mut, S3_IDH1mut, and S3_Other
and compared them with each other to identify differ-
ential proteins. In terms of the overlapping upregulated
proteins, S3_BAP1mutwasmore unique than S3_IDH1mut
(Figure 4C).
Shared upregulated proteins in S3 exhibited the basic

features of S3 subtypes, including histone modification
and DNA damage repair. In contrast, the shared pro-
teins in S3_BAP1mut and S3_IDH1mut were involved in
biological functions, including bile acid synthesis and stro-
mal adhesion-dependent cell spreading (Supplementary
Figure S5C-D).
Next, we analyzed the role of CNVs for each metabolic

subtype. A total of 2,503 genes were found to be cis-
regulated by iProFun, and 348 genes were mutated at the
chromosome arm level; of these genes, 116 were amplified
genes, 232 were deleted genes, and 107 were metabolism-
related genes, accounting for 30% of the total. Among
metabolism-related genes, 34 were amplified, and 73 were
deleted (Figure 4D).
The amplification events mainly affected protein phos-

phorylation, intracellular lipid catabolism, and adeno-
sine diphosphate ribosylation; the deletion events mainly
affected carbohydrate derivative biosynthesis processes,
protein phosphorylation, cellular modification of amino
acid biosynthetic processes, and nucleobase-containing
small molecule metabolic processes (Figure 4E).
We found a significant enrichment of chromatin dele-

tion and amplification events in S3 and fewer chromatin
deletion and amplification events in S2 (Figure 4F). We
screened for genes that were significantly amplified or
deleted in S3 with corresponding differentially up- and
downregulated proteins. Our analysis revealed that most
of these proteins were involved in inflammatory response-
related processes; these proteins typically exhibited oppo-
site expression trends in S2 (Figure 4F).

3.5 DGKA inhibition prevented iCCA
cell proliferation in vitro

Multiomics analysis revealed that patients with the S2
metabolic subtype had the shortest survival, and DGKA,
the protein encoded by DGKA, was the signature pro-
tein in the S2 subtype. Through IHC analysis, we found
that patients with high DGKA expression had shorter OS
(median OS = 33.7 months) and DFS (median DFS = 19.6
months) (Figure 5A-C).Multivariate survival analysis indi-
cated that DGKA was an independent prognostic factor
for the OS and DFS of patients with iCCA (Supplemen-
tary Figure S6A). To determine the role of DGKA in iCCA
progression, we knocked down the expression of DGKA
in the iCCA cell lines RBE and HuCCT1 by two different
shRNAs (shDGKA #1 and shDGKA #2) (Figure 5D and
Supplementary Figure S6B). CCK8 assays showed reduced
proliferation of iCCA cells with DGKA knockdown, and
colony formation assays and EdU staining revealed similar
findings (Figure 5E-G). Meanwhile, we utilized ritanserin,
a selective DGKA inhibitor, to inhibit the expression of
DGKA in iCCA cells. Likewise, colony formation assays
and EdU staining indicated that inhibition of DGKA
reduced the proliferation of iCCA cells (Supplementary
Figure S6C-D). Therefore, these results showed thatDGKA
inhibition prevented iCCA cell proliferation in vitro.

3.6 DGKA regulated iCCA cell
proliferation via the PA-MEK/ERK
pathway

Previous studies reported that DGKA could phosphory-
late diacylglycerol (DG) to generate PA [59, 60]. PA, a
lipid secondary messenger, plays a role in several criti-
cal biological events by regulating downstream signaling
pathways [61, 62]. Therefore, we speculated that DGKA
regulates iCCA proliferation via the metabolism of PA
and the regulation of signaling pathways. Due to the
lack of significant differences in the effects of differ-
ent shRNAs on iCCA cell proliferation, we proceeded
with further research using shDGKA #1. Next, we added
exogenous PA to the medium of DGKA-knockdown cells,
and an increase in the proliferation of iCCA cells was
observed by CCK8 assays (Figure 6A). Furthermore, cell
viability assays indicated that exogenous PA rescued the

Abbreviations: iCCA, intrahepatic cholangiocarcinoma; SNV, single nucleotide variant; CNV, copy number variation; Amp, Amplification;
Del, Deletion; S1, S2 and S3, metabolic subtype 1, 2 and 3; S3_BAP1mut, patients in S3 with BAP1mutations; S3_IDH1mut, patients in S3 with
IDH1mutations; S3_Other, patients in other subtypes with neither BAP1mutation nor IDH1mutation; GO, gene ontology; FC, fold change.
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F IGURE 5 DGKA inhibition prevented iCCA cell proliferation in vitro. (A) The expression of DGKA in iCCA and adjacent normal liver
tissues (n = 88). (B) Representative IHC images of DGKA staining. (C) Survival Kaplan-Meier curves of iCCA patients of OS (left) or DFS
(right) with low DGKA expression (blue, n = 44) or high DGKA expression (yellow, n = 44), Log-Rank test was used to calculate P values. (D)
Protein expression levels of DGKA in iCCA cells. (E-G) Knockdown of DGKA repressed the proliferation of iCCA cell lines (RBE, HuCCT1)
through CCK8 assays (E), colony formation assays (F) and EdU assays (G). P values in E-G were calculated by two-tailed Student’s t-tests, **,
P < 0.01, ***, P < 0.001, and N.S. means P > 0.05. Error bars in A and E-G indicate the mean± s.d. The experiments in E-G were repeated
three times with similar results.
Abbreviations: DGKA, diacylglycerol kinase α; iCCA, intrahepatic cholangiocarcinoma; IHC, immunocytochemistry; OS, overall survival
DFS, disease-free survival; CCK8, cell counting kit-8; OD, optical density; EdU, 5-Ethynyl-2’-deoxyuridine; N.S., not significant; s.d., standard
deviation.
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F IGURE 6 DGKA regulated iCCA cell proliferation via the PA-MEK/ERK pathway. (A) Exogenous PA was added to the medium of
DGKA knockdown cells, and an increase in the proliferation of iCCA cells was observed by CCK8 assays, indicating that exogenous PA
enhanced the proliferation of DGKA knockdown iCCA cells. (B) Exogenous PA was added to the medium of ritanserin-treated cells, and an
increase in the proliferation of iCCA cells was observed by CCK8 assays, indicating that exogenous PA rescued the cell viability of
ritanserin-treated iCCA cells (RBE, HuCCT1). (C) KEEG enrichment analysis showed the top 20 enriched signaling pathways based on all the
differential expressed genes, n = 3 for each cell line. (D) Knockdown of DGKA inhibited the phosphorylation of MEK1/2 and ERK1/2. (E)
Exogenous PA increased the phosphorylation of MEK1/2 and ERK1/2 in DGKA knockdown iCCA cells. P values in A-B were calculated by
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viability of ritanserin-treated iCCA cells (Figure 6B). To
further explore the mechanism of DGKA in iCCA, RNA-
seq was performed in DGKA-knockdown cells. A total of
4,870 differentially expressed genes (DEGs) were found
(Supplementary Figure S7A).
Consistent with the results of functional assays, GSEA

showed that negative regulation of cell proliferation was
enriched in the DGKA-knockdown group (Supplementary
Figure S7B-D). Furthermore, KEGG enrichment analysis
revealed that the MAPK signaling pathway was signifi-
cantly enriched based on all DEGs (Figure 6C). Thus, we
assessed the expression of p-MEK1/2, MEK1/2, p-ERK1/2,
and ERK1/2 in DGKA-knockdown iCCA cells. The results
showed that DGKA knockdown reduced the expression
of MEK1/2 and ERK1/2 phosphorylation in iCCA cells
(Figure 6D). In contrast, exogenous PA rescued phospho-
rylation of MEK1/2 and ERK1/2 in DGKA-knockdown
iCCA cells (Figure 6E). These results suggested that DGKA
regulated iCCA cell proliferation via the PA-MEK/ERK
pathway.

4 DISCUSSION

In this study, we identified three metabolic subtypes
(S1-S3) with subtype-specific biomarkers of iCCA by inte-
grating WES, bulk RNA-seq and proteomics analyses. The
S2 subtype with the worst survival showed the activation
of some special metabolic processes, immune-suppressed
microenvironment and KRAS/ARID1Amutations. Among
the S2 subtype-specific upregulated proteins, DGKA was
further identified as a potential drug target for iCCA.
Understanding the metabolic profiles is important in

heterogeneous diseases. Gong et al. [63] classified triple-
negative breast cancer (TNBC) into three heterogeneous
metabolic pathway-based subtypes (MPSs) with distinct
metabolic features and found that inhibition of LDH could
enhance tumor response to anti-programmed cell death
protein 1 (PD-1) immunotherapy in the MPS2 subgroup.
In our study, we identified three metabolic subtypes (S1,
S2, and S3) with distinct clinical outcomes and metabolic
features. In addition, a strong concordance was found
betweenmetabolic subtypes and proteomicmolecular sub-
types (using not onlymetabolic proteins), which suggested
that studying metabolic differences provided a novel per-
spective to understand the heterogeneity of iCCA. Patients

in S2 had downregulated expression of key rate-limiting
enzymes in fatty acid degradation and upregulation of
key rate-limiting enzymes involved in glycolysis, which is
consistent with common patterns of metabolic adaptation
among various cancer types [64], while patients in S1 sub-
types showed almost opposite expression. This metabolic
heterogeneity might help explain the survival difference.
Over the past few years, immunotherapy has shown

robust therapeutic activity in treating cancers clinically,
including iCCA [65]. Through BayesPrism, we decon-
voluted the proportion of naive-like CD8+ T cells and
effector memory CD8+ T cells in each patient. We found
that patients in the S2 subtype had a higher propor-
tion of naive-like CD8+ T cells and a lower proportion
of effector memory CD8+ T cells. Furthermore, higher
expression of CD39 and CD73 was found in the S2 sub-
type. CD39, together with CD73, can ultimately convert
ATP to adenosine, which binds the adenosine receptors of
immune cells and plays an immunosuppressive role [56].
We speculated that the immunosuppressivemicroenviron-
ment in S2 subtype might be due to the high expression
levels of CD39 and CD73, which could be potential tar-
gets. Martin-Serrano et al. [47] described a comprehensive
TME-based stratification of iCCA, which was composed of
five subtypes, encompassing “ImmuneClassical”, “Inflam-
matory Stroma”, “Hepatic Stem-like”, “Tumor Classical”
and “Desert-like”.Then, they used 500 DEGs of five TME-
based subtypes (100 for each) of iCCAs from the training
set and the NTP algorithm [48] to decide the TME-based
subtypes for other datasets of iCCAs. We also used this
approach to carry out a TME-based subtyping for the iCCA
patients in this study (Supplementary Table S9). The char-
acteristics of these TME-based subtypes were consistent
with our findings. For example, S3 had fewer proportions
of immune cells and stroma-related cells (Supplementary
Tables S8-S9).
To identify the molecular drivers of distinct metabolic

subtypes in iCCA,we found that S2 tended to have a higher
mutation frequency ofKRAS andARID1A. Consistent with
a previous report [5], KRAS mutations were mutually
exclusive with IDH1 and BAP1 alterations. In addition, it
was reported that KRAS/ARID1A mutations could drive
cholangiocarcinoma synergistically from a biliary origin
via failed engagement of the transforming growth fac-
tor beta-SMAD family member 4 (TGF-β-Smad4) tumor
suppressor pathway [66]. Furthermore, KRAS mutation

two-tailed Student’s t-tests, ***, P < 0.001. Error bars in A-B indicate the mean± s.d. The experiments in A-B and D-E were repeated three
times with similar results.
Abbreviations: DGKA, diacylglycerol kinase α; iCCA, intrahepatic cholangiocarcinoma; PA, phosphatidic acid; OD, optical density; CCK8,
cell counting kit-8; ERK, extracellular regulated protein kinases; MEK, mitogen-activated protein kinase; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; s.d., standard deviation.
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could upregulate the expression and/or activity of key gly-
colytic enzymes to promote glycolysis [67, 68] and utilize
fatty acid synthesis to regenerate NAD(P)+ and synthe-
size lipids or fatty acid oxidation [69], which is consistent
with what we found in the S2 subtype. Additionally, S2
had more stable genomes than S3, which allowed some
of the inflammation-related proteins in S2 to have fewer
copy number deletion events andmay therefore lead to the
formation of an immunosuppressive microenvironment,
resulting in poorer survival.
We identified DGKA in the S2 subtype and found that

it might be a putative biomarker for predicting the clini-
cal outcomes of iCCA patients. A tumor-promoting role of
DGKA in iCCA, consistent with previous studies in other
cancer types [70, 71], was observed. Functionally, DGKA
could phosphorylate diacylglycerol to generate PA, which
may activate downstream signaling pathways in cancer
cells and regulate the malignant phenotype of cancer cells.
Consistent with these findings, we found that downregu-
lation of DGKA suppressed iCCA cell proliferation, and
exogenous PA rescued the level of proliferation,which acti-
vated the MEK-ERK pathway. Therefore, inhibiting the
expression of DGKA might suppress the proliferation of
iCCAcells. Thus,DGKAmaybe a target in the treatment of
iCCA. In addition, we found a positive correlation between
DGKA expression and fibroblast fractions, and a previ-
ous report indicated that DGKA was involved in fibroblast
activation after irradiation [72]. The relationship between
DGKAand fibroblasts in iCCAneeds further investigation.
Our research had some limitations. First, bioinformatic

analysis of genetic drivers could not determine the causal
effects, and driver events that metabolically specify the
three subtypes require further functional investigation.
Second, in vivo experiments should be carried out to deter-
mine the potential value of DGKA as a therapeutic target.

5 CONCLUSIONS

In summary, our study provided a metabolic classifi-
cation of iCCA and deciphered the metabolic features
for different prognostic subtypes through the integration
of multiomics analysis. More importantly, we proposed
and validated that DGKA might be a potential target for
the worst subtype. These new findings have significant
implications for understanding the formation mechanism
of iCCA heterogeneity and improving precise treatment
strategies.
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