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The frequency of pathogenic variation in the
All of Us cohort reveals ancestry-driven disparities
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Disparities in data underlying clinical genomic interpretation is an acknowledged problem, but

there is a paucity of data demonstrating it. The All of Us Research Program is collecting data

including whole-genome sequences, health records, and surveys for at least a million parti-

cipants with diverse ancestry and access to healthcare, representing one of the largest

biomedical research repositories of its kind. Here, we examine pathogenic and likely patho-

genic variants that were identified in the All of Us cohort. The European ancestry subgroup

showed the highest overall rate of pathogenic variation, with 2.26% of participants having a

pathogenic variant. Other ancestry groups had lower rates of pathogenic variation, including

1.62% for the African ancestry group and 1.32% in the Latino/Admixed American ancestry

group. Pathogenic variants were most frequently observed in genes related to Breast/Ovarian

Cancer or Hypercholesterolemia. Variant frequencies in many genes were consistent with the

data from the public gnomAD database, with some notable exceptions resolved using gno-

mAD subsets. Differences in pathogenic variant frequency observed between ancestral

groups generally indicate biases of ascertainment of knowledge about those variants, but

some deviations may be indicative of differences in disease prevalence. This work will allow

targeted precision medicine efforts at revealed disparities.
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Implementing genomic medicine will require interpreting geno-
mic variation in real-world clinical populations. At present, lack
of diversity in large genomics cohorts is a widely recognized

problem1–4. Most sequencing studies have focused on European
ancestry populations5 and it is predicted that much of the patho-
genic variation present in the general population is specific to an
ancestral population6,7. Overcoming this gap in diagnostic yield will
necessitate collecting diverse genomic data paired with electronic
health record data8,9.

To advance precision medicine, the All of Us Research Program
from the National Institutes of Health (NIH) is generating a unique
dataset which includes genetic, electronic health record and survey
data from a diverse participant cohort10. All of Us is targeting a
cohort size of more than one million, with a focus on individuals
who have been traditionally underserved by biomedical research10.
Whole genome sequence data is generated at one of three All of Us
Genome Centers located at the Baylor College of Medicine, the
Broad Institute and the Northwest Genomics Center at the Uni-
versity of Washington. Data are transferred via the All of Us Data
and Research Center at Vanderbilt University to Clinical Valida-
tion Laboratories at the Baylor College of Medicine, Northwest
Genomics Center and Color Genomics, where sequence data are
interpreted for health-related reporting. Data are also deposited at
the Data Resource Center for further processing and sharing with
qualified researchers via the All of Us Researcher Workbench, a
cloud-computing platform. The data generation and results
workflow are conducted under an investigational device exemption
through the FDA11.

A strength of the All of Us Research Program is the diversity of
the participants, relative to those in previously studied large
cohorts. The All of Us Researcher Workbench, a cloud computing
platform, contains whole-genome sequencing data from 98,590
participants (https://doi.org/10.1038/s41586-023-06957-x) in a
data release called alpha3. Based on genetically predicted ancestry
(see Methods), this dataset included 49,668 (50.4%) participants
with predominantly European ancestry, 22,897 (23.2%) partici-
pants with predominantly African ancestry, 15,893 (16.1%) Latino/
Admixed American ancestry participants, 2,113 (2.1%) East Asian
ancestry participants, 940 (1.0%) South Asian ancestry participants,
193 (0.2%)Middle Eastern participants and 6,886 (7%) participants
which do not group unambiguously and were designated as Other.
In contrast, the UK Biobank project contains 94% European
ancestry individuals, the Million Veterans project contains 77%
and eMERGE contains 73%.5

However, it is currently unknown whether the frequency of
pathogenic variants in genes conferring appreciable health risks
in the All of Us cohort will differ from those in previously
ascertained healthy populations due to the unprecedented
diversity of participants enrolled in the program. Identification of
such differences will be a powerful reinforcement of the impor-
tance of the program’s strategy for recruitment and engagement
of participants from underrepresented groups.

To examine the frequency of pathogenic genomic variation in
participants we examined data from a set of 73 genes that harbor
actionable secondary findings12. These genes are associated with
diseases, including hereditary breast cancer, hemochromatosis,
dislipidemias and cardiomyopathies and represent some of the
most well-studied targets for genomic medicine12. We annotated
each participant with their calculated genetic ancestry and searched
for known pathogenic variants with established criteria for
pathogenicity, aided by databases of curated variants from previous
clinical genomic projects13,14, as well as an early de-identified
review of All of Us data. The preliminary results from analysis of
data from more than 98,000 All of Us participants showed varia-
bility in the rates of pathogenic variants between ancestry groups,
prompting further analysis of the source of the differences.

Results
Rates of pathogenic variation in the all of Us dataset. To
understand the rates of previously-known pathogenic variants
broken down by predicted ancestry groups in the All of Us data, we
used the ‘VIP’ database to annotate P/LP variants15 present in whole
genome sequencing data in All of Us participants across 73 genes
with actionable secondary findings12. This database contains var-
iants curated by the HGSC-CL variant interpretation group during
projects such as eMERGE III13 and HeartCare14 as well as an initial
assessment of de-identified variants from the All of Us cohort itself.
Figure 1a shows that the European ancestry group has the highest
rate of previously known pathogenic variants (2.13%), followed by
the “Other” group at 1.82% and the African ancestry group at 1.52%.
Using a Chi-square test for independence, the rates of pathogenic
variants are significantly different between the African ancestry,
European and Admixed American/Latino groups (p < 0.00001,
n= 1757 total observed P/LP variants, Supplementary Table 1),
which have sufficient data to perform this test. These differences are
significant even when leaving out the gene HFE, which has a large
known difference in pathogenic rates between ancestry groups.
These significant differences in the rates of pathogenic variation
could be explained either by a bias in the ascertainment of patho-
genic variation in the variant database or by differences in the
underlying disease prevalence between ancestry groups.

To gain a more comprehensive understanding of pathogenic and
likely pathogenic variants in participants, we incorporated rare
(GnomAD popmax allele frequency below 0.001), predicted loss-
of-function (pLoF) variants into the prior analysis of known
pathogenic variants (Supplementary Table 2). We focused on 38
specific genes where loss-of-function is a recognized cause of
disease, and we also looked for any overlap with known pathogenic
variation (refer to Fig. 1a, orange and gray bars). Our findings
revealed 1114 variants, comprising 562 frameshifts, 112 splice
acceptor variants, 100 splice donor variants, and 340 stop gain
variants (see Supplementary Table 3 for details). Many of these
pLoF variants overlap the pathogenic/likely pathogenic variants in
the VIP database (Fig. 1a, b, orange bars). For example, in the
group with European ancestry, the overlap was 0.46%. Including
pLoF variants in our analysis increases the overall rates of positive
variants, ranging from 2.26% in the European ancestry group to
1.32% in the Latino / Admixed American group, with smaller
ancestry groups having wider confidence intervals.

When looking purely at rates of rare pLoF variants, the
European ancestry group had a lower rate of findings than both
the South Asian ancestry group (0.85%) and the East Asian
ancestry group (0.62%), though this may be due to using GnomAD,
which contains samples from predominantly European ancestry, as
a filter. The variation of pLoF variants between different ancestry
groups was less than that of the pathogenic/likely pathogenic
variants (pLoF standard deviation of variant rates was 0.003, versus
a standard deviation of 0.004 for P/LP variant rates). Given that
interpreting novel LoF variants can be simplified and automated,
these findings suggest that the detection of pathogenic variants in
studies with a large number of participants with European ancestry
may be contributing to some of the differences observed between
groups.

To evaluate whether known variants with ancestral divergence
are replicated in the All of Us cohort, we examined the frequency of
the rs334 mutation in HBB, known to be associated with sickle cell
disease, and the APOL1 G1 and G2 alleles (Table 1). The results
confirm the expected ancestral divergences, with non-reference
alleles appearing 17,969 times within the 22,897 participants of
African ancestry, and 68 times among the 49,668 participants of
European ancestry.

In order to understand which genes have divergent rates of
pathogenic variants between ancestry groups, we normalized
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pathogenic rates of all genes against the European ancestry group’s
pathogenic rate and checked for outliers in population proportions
using a Bonferoni-corrected z-test. Several genes show significant
differences from the European ancestry group’s rates (Table 2).
Interestingly, the genesHFE and PALB2 differences are known16,17

but the differences in the gene PKP2 have not been reported
previously to our knowledge. APOB shows differences that may
indicate altered sources of genetic disease prevalence in some
ancestry groups. In the African ancestry subgroup, the PALB2 and
PKP2 findings were replicated using ClinVar as a source of
pathogenic variants instead of the VIP database (Supplementary
Table 4). These gene-level differences present targets for future
investigations of health disparities.

Comparison with GnomAD. In order to understand how these
findings compare to other large cohorts, we compared these rates
of pathogenic findings to gnomAD. To do so, we first identified
pathogenic variation using the VIP database and ClinVar

separately. We then annotated these variants with the allele
frequencies from the All of Us cohort and gnomAD, and summed
up the variants in genes to provide gene-level summaries. Under
the hypothesis that gnomAD may contain affected individuals,
we also made selected comparisons to either the gnomAD non-
cancer subset for cancer genes or the non-TopMed subset for
genes related to cardiovascular disease. The results (Fig. 2) show
the relative difference between All of Us and gnomAD positive
rate, broken down by gene. Overall, we observe high-level con-
cordance between these data sources (Pearson correlation 0.99
between All of Us and gnomAD positive rates). However, when
comparing gene-level pathogenic rates in ancestry groups other
than the European ancestry group, some differences are appar-
ent. For example, in the African ancestry group, the incidence of
P/LP BRCA2 variants differs between All of Us cohort and
gnomAD (0.093% vs 0.161%, Fig. 3a). However, gnomAD is
available in different subsets18, and when the non-cancer subset
is used, the pathogenic rate is very similar to that in the All of Us

Fig. 1 Pathogenic variants by ancestry. Using a database of known pathogenic mutations and annotations for rare, pLoF variants, we searched the beta
release of the All of Us cohort for pathogenic variants, on the Researcher Workbench. Figure 1a shows the rates of pathogenic variation, broken down by
predicted genetic ancestry groups. Error bars show 95% the confidence intervals for the total set of pathogenic variants (including both VIP P/LP variants
and rare pLoF). Figure 1b shows the breakdown of pathogenic variants by disease area. The blue line and bar depict the rate of Pathogenic and Likely
pathogenic variants, the gray bar the rate of novel, predicted loss of function variants and the orange bar depicts predicted loss of function variants that
were known pathogenic variants at the time of analysis. The yellow line shows the total variants in each ancestry group.

Table 1 Non-reference sample counts in known ancestrally divergent genes.

African Latino / Admixed
American

East Asian European Middle
Eastern

Other South Asian

APOL1 (G1 & G2
alleles)

17,969/22,897
(78.48%)

1041/15,893
(6.55%)

1/2113
(0.05%)

60/49,668
(0.12%)

1/193 (0.52%) 1166/6886
(16.93%)

2/940
(0.21%)

HBB (rs334) 2059/22,897
(8.99%)

229/15,893
(1.44%)

0/2113
(0.00%)

6/49,668
(0.01%)

0/193
(0.00%)

202/6886
(2.93%)

2/940
(0.21%)

To confirm the presence of known alleles with ancestral divergence, we examined the APOL1 G1 and G2 alleles, as well as the rs334 SNP in the HBB gene. The counts in the table above include all
instances of the rs73885319, rs60910145 SNPS (APOL1 G1 allele) as well as the G2 deletion (rs71785313) and the rs334 allele in the HBB gene, associated with Sickle-cell disease. Participants may carry
more than one allele. These variants are present at a higher rate in participants with African ancestry, as expected.
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cohort (0.093% vs 0.095%). A similar story is found with the
LDLR gene in the Admixed American/Latino ancestry group:
using a broad comparison between gnomAD and All of Us, the
rates of pathogenicity are divergent (Fig. 3b). However, when
using the gnomAD non-TopMed subset, the rates of patho-
genicity are highly similar, possibly due to dyslipidemia studies
in TopMed19. Other examples are not as clear. For example, we
note divergent pathogenicity rates in the RYR1 gene between the
gnomAD and All of Us African ancestry groups, but could not
account for them using a gnomAD subset. Overall, these results
show that the rate of pathogenic variant findings in the All of Us
are similar to those seen in gnomAD, and the rates become even
closer when we account for disease populations within the
gnomAD resource.

Comparing with eMERGE III. In further analysis, we examined
the rate of pathogenic variants as seen in the eMERGE III project.
This program involved eleven clinical sites providing samples to
two clinical laboratories for analysis and reporting. The network
utilized a custom gene panel of 109 genes, incorporating the
American College of Medical Genetics 59 secondary findings list
along with clinical site-specific genes. Notably for this compar-
ison, a substantial fraction of the samples from this program were
not chosen based on specific diseases. The observations in the All
of Us cohort align with expectations drawn from pathogenic
variant frequency in the Association of Molecular Pathologists/
American College of Medical Genetics secondary findings genes
(See Supplementary Table 5, correlation coefficient for the rate of
findings is 0.78). Overall, the eMERGE III cohort exhibited a
higher incidence of pathogenic findings. This can possibly be
attributed to the different genes present in the gene panel and the
fact that the set of genes that were returned varied among clinical
sites. Moreover, the eMERGE data underwent complete review,
unlike the All of Us data, where we are citing known pathogenic
variants. There is a remarkably close match for hemochromatosis,
which had the same reporting criteria for the homozygous
pathogenic allele C282Y. The substantial discrepancy in clotting
disorders is likely due to the decision to report the F5 Leiden
variant in eMERGE III.

Assessing the potential for participant selection effects. As an
additional approach to understand whether All of Us participants
with known genetic diseases are self-selecting for participation in
the program, which could impact the counts of pathogenic variants
impacting Mendelian disease. We selected four rare and four more
common variants associated with disease and examined their allele
frequencies relative to that in GnomAD (Table 3). To best match
the All of Us ancestry groups, the GnomAD Eur group was taken as
a combination of Finnish, non-Finnish and Ashkenazi populations.
For these variants, we observe a close match between their
GnomAD and All of Us allele frequencies. Only the common HFE
rs1800562 alleles, in which a 6% difference was found, was sig-
nificantly different (Bonferoni corrected critical value of 0.00625,
n= 82,106 biologically independent participant samples). Based on

this analysis, we do not find an appreciable amount of ascertain-
ment bias in this population.

Enriching for specific genetic factors. When broken down by
disease area, the results show that the predominant health-related
findings will be in breast cancer, familial hypercholesterolemia,
dilated cardiomyopathy and hereditary hemochromatosis
(Fig. 1b). To further understand how these findings relate to the
participant’s available health information, we made use of addi-
tional data resources provided in the AoU Researcher Work-
bench. The All of Us Research Workbench provides participant
health information in the forms of electronic health record con-
dition codes as well as survey questions answered by the parti-
cipants. To begin to understand how this phenotypic information
available in the workbench matches with genetic findings, we
looked at breast cancer as an example. Samples were selected if
participants had either “Malignant neoplasm of female breast” or
“Malignant tumor of breast” condition codes (SNOMED Codes
254837009 and 372064008) or if the participant answered “breast
cancer” to the question “Has a doctor or health care provider ever
told you that you have or had any following cancers?” 8603
participants fell into this cohort, with 1653 of those having whole-
genome sequencing data thus far. This represents an enrichment
for P/LP variants in breast cancer patients (32/1653, 1.94% vs
414/98,590, 0.42%, p < 0.00001), demonstrating the ability to use
All of Us participant level data to select cohorts enriched for
specific genetic factors.

Discussion
The diverse cohort collected as part of the All of Us will be a rich
resource for advancing precision medicine. Here, we have
examined the pathogenic variant rate in the beta release of the All
of Us Researcher Workbench data, finding significant variability
between groups of participants with differing ancestry. This
variability is likely the result of multiple factors, but ascertain-
ment of pathogenic variants in databases is likely to contribute
substantially. Future work will show whether variant interpreta-
tion of the All of Us diverse cohort will have an impact on this
ascertainment bias of pathogenic variants, but future targeted
efforts that aim to perform clinical interpretation of non-
European participants could also be necessary.

Ancestry-linked differences in variant pathogenicity found in
different genes highlight the importance of the All of Us’s diverse
cohort. Different ancestry backgrounds likely carry different
burdens of risk depending on the frequency of pathogenic
haplotypes. Implementing precision medicine will require
understanding these varied risk profiles and gathering detailed
information on the haplotype structure of the population.
Clinical testing is guided to some extent today by ancestry, for
example, BRCA2 in the Ashkenazi Jewish population20 and
HLA-B testing for SJS/TEN in some Asian populations9,21,22.
As we better understand genetic risk burdens in population
groupings we can more precisely target genetic testing and aid
interpretation.

Table 2 Genes having rates of pathogenicity that differ from the European pathogenic rate.

Gene Ancestry group Ancestry group path. variants European group path. variants p value

APOB African 4/22,897 (0.02%) 57/49,668 (0.11%) 0.0001
PKP2 African 33/22,897 (0.14%) 20/49,668 (0.04%) 0.00001
PALB2 African 33/22,897 (0.14%) 30/49,668 (0.06%) 0.0014

Pathogenic rates in each gene were compared to the European rate, with significant deviations in population proportions detected with a Bonferroni-adjusted z-test. All of Us allele frequencies are based
on biologically independent samples.
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Fig. 2 Relative positive rates for All of Us vs gnomAD. This figure shows relative frequencies of previously-curated pathogenic or likely pathogenic
variants between the All of Us cohort and gnomAD, broken down by gene and ancestry group. Overall, there is a high level of concordance between variant
frequencies of pathogenic variants; most genes show very small differences relative to gnomAD. Ancestries are shown as Dark blue for African, Orange for
Latino / Admixed American, Gray for East Asian, Yellow for European and light blue for Other.
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Another benefit of this data has been to allow the program to
project forward to the “return of health-related results” phase of
the program. Based on the variants examined in this work, we
estimate that 17% of variant interpretations will require manual
assessment of literature, which has strong implications for the
time required to complete the review of that variant. This in turn
has allowed us to better project the resources required to return
health-related results.

We primarily used an internal database of pathogenic genomic
variants in this work (the ‘VIP’ database) with ClinVar23 used as a
confirmatory resource. Although ClinVar is an essential and
widely-used resource, its heterogeneity poses a challenge. For
example, the well-known HFE NM_000410.4:c.845 G > A variant,
which we previously reported clinically for the eMERGE III13

project when in the homozygous state, is associated with hemo-
chromatosis. However, at the time of publication, this variant is
listed as “conflicting” in ClinVar and so was excluded under our
simple ClinVar filtering scheme (see Methods). Many other
variants likely fall into a similar scenario. It would be possible to
fine-tune filters for ClinVar variants and reanalyze this data,
which may provide a more complete picture of known pathogenic
variation, but there are large effects on sensitivity and specificity
that arise due to this tuning that would need to be understood.
This level of curation was beyond the scope of the current study.

Ancestry estimation approaches that assign a single continental
ancestry to an individual’s entire genome face many issues,
including failing to accurately portray the make-up of admixed
individuals and potentially grouping individuals that may not
share recent ancestry. In future work we expect to adopt more
nuanced approaches to ancestry prediction. One such approach
may be to use ‘local ancestry’, in which ancestry information is
tracked at the variant level, with each variant assigned pro-
portionally to one of many known ancestry groups.

It is paramount that the field address ascertainment biases in
knowledge of pathogenic variants. Case-control data are a pow-
erful tool towards achieving this, and the field would benefit
greatly from creating more diverse cohorts of patients with
accompanying variant interpretations and deep phenotyping, and
from sharing that data widely. As new variants of unknown
significance are identified, functional studies are also beneficial in
their interpretation. The advent of high-throughput functional
screening techniques is accelerating24 this data collection and
could be targeted at variants from underrepresented populations.

An alternative, although unlikely, explanation for the elevated
rate of pathogenic variants seen in this study in the European

ancestry population, is that the selected genes carry a burden of
pathogenic variants that is in fact specific to individuals of Eur-
opean ancestry. The American College of Medical Genetics took
an evidence-based approach12 to selecting genes, prioritizing
genes which, at the time, had sufficient evidence showing that
patient morbidity and mortality could be reduced through genetic
testing while limiting the burden on patients and clinical
laboratories. Given known disparities in genetics knowledge, this
process may have preferentially identified genes whose impacts
on individuals with European ancestry is well studied. Remedying
this will require future case-control studies that include diverse
populations, which expert panels can then review as they decide
on future secondary finding lists.

As a baseline for our expectations of the frequency of patho-
genic variants we have compared to gnomAD25. At a high-level,
we found strong concordance between these cohorts, although
there are some outliers when individual gene-level frequencies are
examined. Some differences are likely due to the cohorts applying
slightly different ancestry definitions. For example, the precise
definition of the “Other” group is likely to be different, and the
gnomAD counts do not include the Middle Eastern and South
Asian ancestry groups. Using local ancestry (i.e., assigning
ancestry not at the sample-level but at the haplotype level) would
help resolve this issue.

The current study faces a number of limitations. First, our
variant knowledge relies on variant interpretations that were
primarily carried out for other genomic reporting projects and
during the lead-up to the return of health-related results for the
program. As we complete the health-related return of results and
the accompanying variant reviews, we will also curate new var-
iants, which is likely to benefit the underserved populations. We
are also limited by the cohort creation process adhered to by the
All of Us research program. This process recruits participants
through partnerships with universities, research centers, and
community health centers, direct volunteers, and through com-
munity engagement. This process will undoubtedly shape the
cohort; for example, we know that participants with a family
history of disease are more likely to sign up for genetics studies26.
At this time, it is not clear what effect this selection process would
have on the rates of rare, pathogenic variants. As evidenced by
our examination of selected known pathogenic variants and of the
high-level comparisons with GnomAD, there does not appear to
be a large selection bias. Further study is needed in order to
understand whether there are localized or more subtle selection
effects at work in this cohort.
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Fig. 3 Comparisons to gnomAD subsets. Though there is high level concordance between the rates of pathogenic variants in All of Us and gnomAD, in
some cases there are differences specific to a gene and ancestry group. For example, in participants with African ancestry, the rate of pathogenic variants in
BRCA2 diverges from gnomAD (a). However, when the non-cancer subgroup of gnomAD is used, the rates are much more similar. A similar situation is
seen in the Admixed American / Latino ancestry group with LDLR (b). Using the non-TopMed portion of gnomAD brings the rates much closer.
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A further limitation is in the high-throughput nature of the
pLoF analysis. Mirroring the Association of Molecular Patholo-
gists/American College of Medical Genetics PVS1 guidelines, we
filtered pLoF variants by their allele frequency, keeping only those
that are rare in the GnomAD database. However, this potentially
introduces a bias, as GnomAD is overrepresented with European
ancestry individuals. There may remain pLoF variants that would
be removed from other ancestry groups with more data. Though
it is currently a limitation, as diverse datasets become available,
these high-throughput estimates will improve. Although we have
not been able to detect selection bias in the cohort in this analysis,
the cohort likely does contain both enrichments and depletions of
pathogenic variants in specific disease genes due to self-selection
of the participants. These effects may be local to specific disease
areas or specific subpopulations within the cohort. Researchers
making use of this resource should be aware of this potential bias.
Finally, although the full cohort for the All of Us project is
anticipated to be the most diverse genetic resource available, the
current release still features a large proportion of participants of
European ancestry. Future releases will enable further exploration
beyond what is possible in the current release.

The All of Us Researcher Workbench enabled this first
assessment of pathogenic variants within the All of Us cohort, and
the diversity of that population has allowed us to begin to detect
different frequencies in pathogenic variation between several of
the ancestry groups. More work in this area will further reveal
groups of participants who carry under-studied pathogenic var-
iation and allow us to target precision medicine efforts at those
disparities.

Methods
All of Us demonstration Projects. The All of Us research progra
recruits participants that have been underrepresented in biome-
dical research through a network of affiliated HPOs and direct
volunteers27. Demonstration projects were designed to describe
the cohort, replicate previous findings for validation, and avoid
novel discovery in line with the program values to ensure equal
access by researchers to the data28.The work described here was
proposed by Consortium members, reviewed and overseen by the
program’s Science Committee, and confirmed as meeting criteria
for non-human subjects research by the All of Us Institutional
Review Board. The initial release of data and tools used in this
work was published recently28.

All of Us research Hub. This work was performed on data col-
lected by the All of Us Research Program using the All of Us
Researcher Workbench, a cloud-based platform where approved
researchers can access and analyze All of Us data. The All of Us
data currently includes surveys, electronic health records, and
physical measurements. The details of the surveys are available in
the Survey Explorer found in the Research Hub, a website
designed to support researchers3. Each survey includes branching
logic and all questions are optional and may be skipped by the
participant. PM recorded at enrollment include systolic and
diastolic blood pressure, height, weight, heart rate, waist and hip
measurement, wheelchair use, and current pregnancy status. EHR
data was linked for those consented participants. All three data-
types are mapped to the Observational Medicines Outcomes
Partnership (OMOP) common data model v 5.2 maintained by
the Observational Health Data Sciences and Informatics colla-
borative. To protect participant privacy, a series of data trans-
formations were applied. These included data suppression of
codes with a high risk of identification such as military status;
generalization of categories, including age, sex at birth, gender
identity, sexual orientation, and race; and date shifting by aT

ab
le

3
C
om

pa
ri
so
n
of

al
le
le

fr
eq

ue
nc
ie
s
fo
r
sp
ec
ifi
c
va

ri
an

ts
w
it
h
G
no

m
A
D
.

V
ar
ia
nt

G
no

m
A
D

A
F

A
ll
of

U
s
A
F

p
va

lu
e
(T

w
o-
ta
ile

d
z
te
st
)

P
op

ul
at
io
n

BR
C
A
2
c.
59

4
6
de

lT
(p
.S
er
19
8
2A

rg
fs
*2
2)

0
.0
36

4
%

(2
6
/

71
,4
6
8
)

0
.0
34

2%
(3
4
/

9
9
,3
36

)
0
.8
15

Eu
r

BR
C
A
2
c.
28

0
8
_2
8
11
de

lA
A
A
G

(p
.L
ys
9
38

Ile
fs
*7
)

0
.0
0
14
%

(2
/

14
5,
0
8
0
)

0
.0
0
20

%
(2
/9

9
33

6
)

0
.7
0
3

Eu
r

BR
C
A
2
c.
8
53

7_
8
53

8
de

lA
G

(p
.S
er
28

4
6
G
lu
fs
*2
)

0
.0
0
21
%

(3
/1
4
5,
18
2)

0
.0
0
10
%

(1
/9

9
,3
36

)
0
.5
25

Eu
r

LD
LR

c.
6
8
2
G
>
T
(p
.G
lu
22

8
X
)

0
.0
0
24

%
(2
/8

2,
10
8
)

0
.0
0
50

%
(5
/9

9
,3
36

)
0
.3
75

Eu
r

A
PO

L1
G
1
p.
S3

4
2G

-
rs
73

8
8
53

19
(G

R
C
h3

8
:c
hr
22

:3
6
26

58
6
0
:A

>
G
)

22
.2
7%

(9
20

8
/

4
1,
33

8
)

22
.3
6
%

(1
0
,2
39

/
4
5,
79

4
)

0
.7
53

A
fr

A
PO

L1
G
1
p.
I3
8
4
M

-
rs
6
0
9
10
14
5

G
R
C
h3

8
:c
hr
22

:3
6
26

59
8
8
:T
>
C
/G

22
.4
3%

(9
0
4
7/

4
0
,3
38

)
21
.9
4
%

(1
0
,0
4
5/

4
5,
79

4
)

0
.0
8
1

A
fr

H
BB

rs
33

4
4
.3
4
%

(1
79

9
/4

1,
4
32

)
4
.5
0
%

(2
,5
9
/4

5,
79

4
)

0
.2
6
9

A
fr

H
FE

rs
18
0
0
56

2
6
.0
5%

(4
9
6
4
/

8
2,
10
6
)

6
.4
1%

(6
37

1/
9
9
,3
36

)
0
.0
0
1

Eu
r

T
o
ev
al
ua
te

w
he

th
er

se
lf-
se
le
ct
io
n
by

pa
rt
ic
ip
an
ts

w
ith

kn
ow

n
ge
ne

tic
di
se
as
es

im
pa
ct
s
ou

r
st
ud

y,
w
e
ex
am

in
ed

th
e
al
le
le
fr
eq

ue
nc
ie
s
of

ei
gh

t
di
se
as
e-
as
so
ci
at
ed

va
ri
an
ts

(f
ou

r
ra
re
,f
ou

r
co
m
m
on

)
in

co
m
pa
ri
so
n
w
ith

G
no

m
A
D
.E
xc
ep

t
fo
r
a
6
%

di
ff
er
en

ce
in

th
e
co
m
m
on

H
FE

rs
18
0
0
56

2
al
le
le
s,
th
e
fr
eq

ue
nc
ie
s
in

ou
r
st
ud

y
cl
os
el
y
m
at
ch

th
os
e
in

G
no

m
A
D
.G

no
m
A
D

an
d
A
ll
of

U
s
al
le
le

fr
eq

ue
nc
ie
s
ar
e
ba
se
d
on

bi
ol
og

ic
al
ly

in
de

pe
nd

en
t
sa
m
pl
es
.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05708-y ARTICLE

COMMUNICATIONS BIOLOGY | (2024)7:174 | https://doi.org/10.1038/s42003-023-05708-y | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


random (less than one year) number of days, implemented
consistently across each participant record. Documentation on
privacy implementation and creation of the Curated Data
Repository is available in the All of Us Registered Tier Data
Dictionary4. The Researcher Workbench currently offers tools
with a user interface built for selecting groups of participants
(Cohort Builder), creating datasets for analysis (Dataset Builder),
and Workspaces with Jupyter Notebooks to analyze data. The
notebooks enable use of saved datasets and direct query using R
and Python 3 programming languages.

Annotation of known pathogenic variants. We used the ‘VIP’
database to annotate known pathogenic or likely pathogenic (P/LP)
variants. The VIP database is a collection of variants compiled
during clinical reporting activities carried out at the Human
Genome Sequencing Center-Clinical Laboratory (Supplementary
Data 1). These variants were manually assessed by a team of variant
curation experts led by board-certified clinical geneticists for
previous Human Genome Sequencing Center-Clinical Laboratory
projects, such as the NIH’s eMERGE III program13 and
HeartCare14, a local cardiovascular risk assessment project. All the
variants were interpreted based on the guidelines provided by the
Association for Molecular Pathology/American College of Medical
Genetics and Genomics29, as well as the most recent ClinGen
recommendations. The VIP database includes 59,405 genomic
variants. These variants are classified into different categories such
as pathogenic, likely pathogenic, variants of uncertain significance,
benign, likely benign, and risk alleles. They are distributed across
8,653 genes (See the supplemental file vip_gene_count.xslx for
details). One of the key advantages of the VIP database is the
consistency in variant curation, as all the variants have been
curated by the Clinical Variant Interpretation team at HGSC-CL
using a uniform set of criteria. This contrasts with resources like
ClinVar, which may include contradictory assessments of variant
pathogenicity.

Samples/dataset. Aggregate data for this study was generated
from All of Us participant data (N= 98,590) using the All of Us
Researcher Workbench cloud computing platform. We accessed
variant data (single nucleotide variants and indels) from whole-
genome sequencing in the alpha3 data release provided by the
All of Us Data Resource Center. Details regarding All of Us
Data Resource Center’s genomic pipelines can be found here
(https://doi.org/10.1038/s41586-023-06957-x). All of Us variant
data were generated using the GRCh38 human reference build
and made available on the pre-production version of the All
of Us Researcher Workbench using the Hail framework30.
All relevant ethical regulations were followed. All participants
in this study provided written informed consent. This work was
approved by the Institutional Review Board (IRB) of the All of
Us Research Program.

For our analyses, we subsetted the whole genome variants Hail
matrix table to coding regions for the 73 genes listed in the
American College of Medical Genetics Supplementary Findings
v3.0 list12. In these 73 genes, we also included regions 2000 bp
upstream and 1000 bp downstream of the coding regions to ensure
we do not exclude any pathogenic variants outside of the coding
regions. Variants were filtered on genotype quality (GQ > 20) and
variant pathogenicity (using ‘Path’ or ‘LPath’ values in the
Vip_variant_interpretation field from the VIP database). These
variants were then grouped by predicted genetic ancestry and genes
to build a contingency table, with heterozygous variant counts
across most genes. For the autosomal recessive genes MUTYH,
ATP7B and KCNQ1, only homozygous variants were counted. In
HFE, only theNM_000410.4:c.845 G >A variant in the homozygous

state was considered. We annotated All of Us participants with
predicted genetic ancestry provided by the All of Us DRC.

For predicting genetic ancestry, the All of Us Data Resource
Center extracted variants from the exon regions of all autosomal,
basic, protein-coding transcripts in GENCODE v42, for a training
dataset consisting of samples from the Human Genome Diversity
Project and 1000 Genomes. These were then used to build
principle components (PCs) using Hail. These PCs were then
used as the features for a random forest classifier. Samples were
assigned an ancestry group if the classification probability
exceeded 90%. The ancestry super-populations correspond to
the ancestry definitions used within gnomAD25, the Human
Genome Diversity Project31,32, and 1000 Genomes6. These
include African/African American (afr), American Admixed/
Latino (amr), East Asian (eas), European (eur), Middle Eastern
(mid), South Asian (sas), and Other (oth; not unambiguously
clustering with super-population in the principal component
analysis)31. Concordance between self-reported race/ethnicity
and these ancestry predictions is 0.898. For full information see
https://support.researchallofus.org/hc/en-us/article_attachments/
14969477805460/All_Of_Us_Q2_2022_Release_Genomic_
Quality_Report__1_.pdf.

To detect predicted loss of function (pLoF) variants, we
additionally annotated aggregate variant data using Variant Effect
Predictor with the LOFTEE plugin25. pLoF variants were filtered,
retaining only those with ‘high confidence’. The following variant
effects were treated as loss of function: “frameshift_variant”,
“stop_gained”, “stop_lost”, “splice_acceptor_variant, “splice_do-
nor_variant”, and “start_lost” when they were seen in the
“vep.most_severe_consequence” field. Other Variant Effect Pre-
dictor “HIGH” impact effects such as “transcript_ablation”33

were not present in the dataset.

Statistics and reproducibility. The comparison of pathogenic
variant counts between predicted genetic ancestry groups, in
the All of Us dataset, was done with a Chi-Square test for
independence. To meet the Chi-square requirement that all
entries have at least a count of 5, the less-represented ancestries
(East Asian, Middle Eastern, South Asian and Other) and
genes were aggregated into a single column and row in the
contingency table, respectively (Supplementary Table 1). To
detect genes with outlying rates of P/LP variants, we compared
proportions to the European ancestry rate under the null
hypothesis that the proportions are equal. We used a Z-test
statistic:

Z ¼ p̂1 � p̂2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þð 1n1 þ

1
n2
Þ

q ð1Þ

Where p̂ is the overall proportion:

p̂ ¼ Y1 þ Y2

n1 þ n2
ð2Þ

Y1 and Y2 are the group (i.e., participants with primarily
European ancestry vs participants with primarily African
ancestry) variant counts, n1 and n2 are the group totals and p̂1
and p̂2 are the group proportions. To translate the Z-score to a p
value we assumed a two-tailed normal distribution.

ClinVar comparisons used variant_summary.txt from Jan, 22,
2022, downloaded from the ClinVar downloads site34. We
preprocessed this file by (1) filtering out GRCh37 data from the
downloaded file and using GRCh38 entries only and (2) filtering
the variants 2 stars and above where the ClinicalSignificance field
is “Likely pathogenic” or “Likely pathogenic, risk factor” or
“Pathogenic” or “Pathogenic/Likely pathogenic” or “Pathogenic/
Likely pathogenic, risk factor” or “Pathogenic, risk factor” and the
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ReviewStatus field is “criteria provided, multiple submitters, no
conflicts”, and the LastEvaluated date is on or after Jan 1, 2016.
We included three and four star pathogenic variants (“reviewed
by expert panel” and “practice guideline” respectively) regardless
of the last evaluated time.

GnomAD data used gnomAD v2.1.1 liftover data set from the
download site35. For ClinVar, we chose entries from 2016 or later
and having two or more stars. We joined the gnomAD and
ClinVar dataset by using a variant’s chromosome-position-ref-alt
combination as a primary key. We then calculated the pathogenic
and likely pathogenic (P/LP) ratio in each gene by adding up the
alternate allele count in each gene as the numerator and used the
maximum of total alleles in each gene as the denominator. We
calculated P/LP ratio/frequency in each gene in the dataset,
building a contingency table that mirrored the format derived
from that from the All of Us variant data.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All sequencing data used in this study are available on the All of Us Researcher
Workbench in the v6 release. Researchers can register to access this resource at: https://
www.researchallofus.org/. The VIP database of curated variants is available on gitlab:
https://gitlab.com/bcm-hgsc/neptune. Source data underlying Figs. 1–3 are provided in
Supplementary Data 2.

Code availability
All code used to carry out this project reside in the All of Us Researcher Workbench in
the ‘Demo - Assessment of pathogenic variants across the All of Us Research Program’:
https://www.researchallofus.org/.
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