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1J4, Canada
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SUMMARY

Effective neural stimulation requires adequate parametrization. Gaussian-pro-
cess (GP)-based Bayesian optimization (BO) offers a framework to discover
optimal stimulation parameters in real time. Here, we first provide a general pro-
tocol to deploy this framework in neurostimulation interventions and follow by
exemplifying its use in detail. Specifically, we describe the steps to implant rats
with multi-channel electrode arrays in the hindlimb motor cortex. We then detail
how to utilize the GP-BO algorithm to maximize evoked target movements,
measured as electromyographic responses.
For complete details on the use and execution of this protocol, please refer to
Bonizzato and colleagues (2023).1
BEFORE YOU BEGIN

Background of the protocol

As demonstrated in the primary publication1 and elsewhere,2–6 Gaussian-process (GP)-based

Bayesian optimization (BO) algorithms are a powerful framework to automatically optimize the effi-

cacy of neurostimulation. It has been shown to outperform other strategies to simultaneously find

the optimal values of multiple stimulation parameters (i.e., the optimal combination of parameter

values) to maximize a chosen feature of the evoked response (e.g., the movement amplitude or

the electromyographic [EMG] burst amplitude). The stimulation parameters can be of various

nature, such as the electrode or electrical contact used to deliver the stimulation (i.e., stimulation

location), the current amplitude, the pulse frequency, the pulse width or the timing of stimulation

delivery during behavior.

In essence, stimulation optimization consists of the identification and selection of the stimulation

parameter(s) value(s) with the greatest effect (efficacy) on the chosen feature of the evoked

response. As the parameters-response relationship is treated as a black box, data points from

the relationship are required to realize the optimization. Consequently, the complexity of the opti-

mization process is determined by the number of parameters simultaneously explored and the

number of potential values considered for each of these parameters (i.e., combinations of param-

eters values). Clinically, machine learning approaches hold great promise for applications that

need solving of high-dimensional optimization problems, difficult or impossible to manually solve.
STAR Protocols 5, 102885, March 15, 2024 ª 2024 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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However, to evaluate the performance of the algorithm and demonstrate its potential in a given

application, simple scenarios in which only one parameter with few possible values is optimized,

are desirable. In these cases, the parameter values can be systematically explored and the ground

truth of the parameters-response relationship established. As an example, in the primary publica-

tion,1 after implanting rats with 32 electrodes multi-channel electrode arrays (MEAs) in the hin-

dlimb motor cortex, we used the GP-BO algorithm to optimize the stimulation location (i.e.,

finding the best electrode) to maximize the EMG response amplitude recorded in a hindlimb mus-

cle. In this scenario, we can easily stimulate each electrode and characterize the response to estab-

lish a ground-truth and quantify the performance of the GP-BO in comparison to other benchmark

approaches. A similar research problem will be used below.

In the primary publication,1 we demonstrated that, in comparison to other benchmark approaches,

the GP-BO converges to an adequate combination of parameter values using only a limited amount

of data. This makes the framework particularly relevant to solve stimulation optimization problems

when the total number of combinations of parameters values under consideration is large in compar-

ison to the available number of stimulation queries. Moreover, the framework can be deployed on-

line, in real-time, and is highly flexible. It can be applied to diverse optimization problems, without

the need for extensive data collection beforehand. Accordingly, this approach can be very useful

when electrodes are arbitrarily implanted (e.g., after a new MEA implant), or when the stimula-

tion-response relationship evolves with time (e.g., as the disease progress such as in Parkinson’s

or the brain reorganizes such as after stroke).
Rationale of the protocol

As the GP-BO algorithm is a highly flexible algorithmic framework, it can be adapted for optimization

in various neurostimulation paradigms with only minor changes to the methodology. To assist the

reader in applying the framework to their specific paradigm, an overview of the general procedural

steps is provided, followed by a comprehensive protocol detailing the specific procedures em-

ployed at each of these outlined steps. In particular, the protocol illustrates the optimization of pa-

rameters for intracortical microstimulation (ICMS) delivered using a MEA implanted in the hindlimb

motor cortex in rats. The GP-BO algorithm optimizes the choice of electrode (i.e., stimulation loca-

tion) to evoke a maximal amplitude of EMG response in a selected muscle.

To conduct our comprehensive protocol, you need to prepare the following equipment.

1. Materials for rat implantation procedure (MEA and EMG wires).

2. A surgery suite for the implantation procedure.

3. Tucker-Davis Technologies (TDT) electrophysiology apparatus (BioAmp processor, EMG ampli-

fier and stimulus isolator) and a compatible Windows computer.

4. A dedicated space for electrophysiologic experimentation.
Institutional permissions

All rat experiments follow the guidelines of the Canadian Council on Animal Care and are approved by

the Comité de déontologie de l’expérimentation sur les animaux (CDEA, animal ethics committee) at

Université de Montréal. Rats are housed in solid-bottom cages with bedding, nesting material, tubes

and chewing toys. They are kept in groups of 3 before implantation and then individually thereafter to

prevent housing partners from damaging the electrode array connectors during social grooming. They

have ad libitum access to food and water and are subject to a 12:12-h light-dark cycle.
Outline of the general steps

Theoretical background of the GP-BO algorithm

Timing: depends on the experimenter | Hours to days
2 STAR Protocols 5, 102885, March 15, 2024
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In this step, familiarize yourself with the theoretical background of the GP-BO algorithm.

1. GP-BO algorithm procedure. In an iterative search procedure, the GP-BO algorithm models the

relationship between combinations of stimulation parameter values (the input space) and their

evoked responses (the scalar output space) using a GP.

a. This model assumes that the responses follow a joint Gaussian distribution, where each com-

bination is considered as a dimension of the multivariate Gaussian.

b. A kernel function is used to define the covariance matrix of the multivariate Gaussian.
i. This kernel function specifies how the responses to neighboring stimulation parameters

values in the parameter space covary in the model.

ii. For example, when a response has been obtained in an electrode, the kernel function

determines to which extent the responses to neighboring electrodes in the MEA are pre-

dicted as similar in the model.

iii. A popular kernel choice is Matérn’s,7,8 which was also used in the main publication.1

c. Another important component of GPs is the likelihood function which models the noise in the

data; a Gaussian likelihood was used in the primary publication.1

d. Before beginning the iterative search, the GP is initialized (Figure 1A).

i. When no prior information is available to inform the search, themean of the GP is initialized

as a uniform zero-valued function and the first combination of parameter values (i.e., the

first ‘‘query’’) is randomly selected across all possible combinations.

ii. When a prior on the potential efficacy of combinations is available (e.g., a certain region of

the electrode array is more likely to evoke a given movement), the GP-BO can be provided

with this knowledge.

iii. In the primary publication,1 the prior was constructed from responses obtained either

in other subjects or in the same subject during previous optimization session(s). The

construction comprised a map of expected response values for each combination.

This map replaced the conventional uniform zero-valued mean function in the GP. In

this case, the initial combination tested was not chosen randomly but based on the

highest expected response from the map, as illustrated in Figure 1B (Left).

e. After the first stimulation query is performed (Figure 1C), the tested combination of parameter

values and the recorded response are provided to the GP model, which integrates this new

data and updates its internal parameters.

f. Then, the model outputs a prediction of the response mean and the level of uncertainty for

each combination (Figure 1D).

g. Next, an acquisition function is used to select the next combination to query. This function as-

signs a score to each combination and selects the one associated with the optimal score to

query.

i. Here, as in in the primary publication,1 the Upper Confidence Bound (UCB) acquisition

function is used. It is obtained by computing a weighted sum of the predicted mean and

uncertainty.

ii. The next combination to query is the one associated with the highest sum (Figure 1B,

Right).

h. This iterative procedure (i.e., query selection, stimulation delivery and model update)

continues until the search is ended by the user, or a maximum number of queries are

reached.

i. The model is evaluated using two metrics computed after each query: the exploration perfor-

mance and the exploitation performance.

i. The exploration performance reports the efficacy of the combination of parameter values

considered optimal by the algorithm (highest predicted response mean) in proportion to

the optimum. When ground truth data is available, the efficacy of the optimal combination

is known and can be compared to the efficacy of the combination predicted as the optimal

by the model. In absence of ground truth data (e.g., online), the exploration performance is

simply the efficacy of the combination predicted as optimal by the model.
STAR Protocols 5, 102885, March 15, 2024 3



Figure 1. GP-BO algorithm procedure

Steps involved in a GP-BO algorithm procedure are (A) the initialization of the GP with the selected hyperparameter values, corresponding to bounds on

internal parameters and the value of the trade-off hyperparameter k.

(B) Next, the first combination of parameter values is selected randomly or based on prior knowledge. At every subsequent iteration, the combination to

test is the one that maximizes the UCB.

(C) Once the next combination to use has been determined, the stimulation is delivered accordingly, and the evoked response is recorded.

(D) The parameters-response pairs are appended to the dataset which is fed to the GP. The predicted mean and uncertainty maps are updated as well

as the internal model parameters by maximum likelihood estimation. The updated predicted mean and uncertainty maps are passed to the acquisition

function, the UCB, to determine the next combination to test, and the loop goes on for a given number of queries.
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ii. ‘‘Exploitation’’ is the capability of targeting effective regions of the input space early and

persistently. It follows that the exploitation performance metric reports the efficacy of

the parameter choice taken by the algorithm at a given query in proportion to the optimum.

When ground truth data is available, the efficacy of the queried combination is compared to

the efficacy of the ground truth optimal combination. In absence of ground truth data, the

efficacy of the queried combination is compared to the efficacy of the combination pre-

dicted as the optimal by the model.

j. In the primary publication,1 the choice of kernel function, likelihood and acquisition function

was tailored to the specific characteristics of the optimization task.
STAR Protocols 5, 102885, March 15, 2024
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Note: Alternative choices might yield better results in different scenarios. For example, if

the user knows that the noise is not Gaussian, opting for a different type of likelihood could

be more effective.

2. GP-BO algorithm hyperparameters. The search behavior of the algorithm is controlled by a set of

hyperparameters that must be defined before running the algorithm.

a. A first consequential hyperparameter is k (Figures 1A and 1B), which controls the explora-

tion-exploitation trade-off by differentially weighting the predicted mean and uncertainty

in the UCB.
i. A small k biases GP-BO towards exploitation (i.e., repeated selection of known effica-

cious parameters). This could be chosen in situations in which the user prefers mini-

mizing search time and increase treatment time. Combinations of parameter values

that have been found to evoke good though perhaps suboptimal responses early in

the search are favored.

ii. A large k biases GP-BO towards spending more queries exploring the input space.

Combinations that have uncertain responses but are perhaps closer to the optimum

are favored.

b. The Matérn kernel is parametrized by ⍴, also referred to as the length-scale, which controls the

propagation of information between neighboring combinations.

i. A small length-scale implies low correlations; information propagation between neigh-

boring combinations will be limited.

ii. Inversely, a large length-scale implies high correlations; information propagation between

neighboring combinations will make the model smoother.

c. Furthermore, the noise of the Gaussian likelihood is parametrized by swhich controls the level

of noise expected in the responses.

d. The kernel length-scale ⍴ and the Gaussian likelihood noise s can vary within predefined

ranges. The lower and upper bounds of these ranges are defined as hyperparameters.

Note: In the primary publication,1 we found that the performance of the algorithm was less

sensitive to these hyperparameter values as compared to k. However, they could have a

more significant impact in other optimization paradigms.

e. Finally, the number of combinations to test randomly at the beginning of the search is also a

hyperparameter.

Animal or subject

Timing: depends on the experimental setup | Hours to days

In this step, prepare your animal or subject for the neurostimulation intervention. Specifically, this

entails preparing the stimulation capabilities in the animal or the subject as well as ability to record

and measure the evoked response feature.

Of course, the implementation of these capabilities will vary depending on the characteristics of your

unique experimental paradigm. Some considerations should be factored in.

3. Determine what form the stimulation takes in the animal or subject. Does the animal or subject

need to be implanted invasively or is the stimulation performed in a non-invasive manner?

How is the stimulation parametrized? Can some parameters be fixed to known standard

values?

4. Determine what are the effects expected to be evoked by the stimulation. How can this effect be

measured? Does the subject or animal need to be implanted to measure and record this effect or

can it be done in a non-invasive way?
STAR Protocols 5, 102885, March 15, 2024 5
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Evoked response feature and optimized parameters

Timing: depends on experimenter, however, might emerge naturally from amature exper-

imental setup

In this step, identify the evoked response feature you want to maximize and the neurostimulation

parameters that will be optimized for that purpose.

5. Determine what is the evoked response feature of interest. The evoked response feature should

quantify the stimulation effect and report its efficacy. The following factors should be considered

when selecting the feature to measure:

a. Validity: Keeping the ultimate goal of your neuroprosthetic intervention in mind, the feature

should assess a quantity that closely matches the intended effect.

Note: For example, if the intended effect of the stimulation is to make a limb muscle generate

a movement, EMG activity in the muscle might act as a good proxy for the intended effect.

b. Data type: The feature should be a scalar value, such as a floating-point number or an integer.

Note: Although categorical features can be modeled within the GPBO framework,9 they

require customization of the provided open-source library.

c. Acquisition delay: Two factors determine the frequency at which the stimulation can be admin-

istered online.
i. The first is the acquisition delay or how long after the stimulation can the feature be

recorded.

ii. The second is the processing delay associated with updating the model and obtaining the

next combination of parameter values to query. This delay depends on the total number of

combinations of parameter values and the computing equipment. As a reference, in the

primary publication,1 we found that on a standard PC (e.g., Intel Core i7-9700K CPU@

3.60 GHz), the 500th query of a 10k-combinations input space takes 130 ms. Using a

GPU (e.g., NVIDIA �GeForce �RTX 2080), this computation time is reduced to 7 ms (see

Fig. S8 in the primary publication1).

iii. The acquisition delay will increase the optimization time and potentially limit the number of

queries that can performed.

Note: Since several queries might be required to converge to an optimal combination, prior-

itizing an evoked response feature that can be obtained within a short delay is advisable if the

experiment is time constrained.

d. Stability: The parameters-response relationship should be stable across minutes to hours to

allow the convergence to a solution within an optimization session.

Note:When the relationship is not stable over longer timescales, optimization sessions can be

repeated to track the solution as it changes. See Fig. 5 in the primary publication1 for more

details on this repeated optimization procedure.

6. In a well-posed optimization problem, the input parameters should have a marked impact

on stimulation efficacy. Once the parameters to optimize have been selected, consider the

following factors:

a. Number of possible parameter values: The algorithm optimizes parameters within a discre-

tized range of potential values. Define a plausible range and the level of granularity within

this range.
6 STAR Protocols 5, 102885, March 15, 2024
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b. Parameter representation in the input space: A given parameter might vary within a discrete

range. However, careful consideration must be used to find the best representation of the

parameter within this range.

Note: For example, if the stimulation location is the parameter of interest, representing

each spatial dimension as an independent parameter is advisable. For an electrode in a

2D MEA, the first parameter would be the position along the x axis and the second the po-

sition along the y axis. This representation is richer since it allows propagation of informa-

tion between neighboring stimulation locations and does not collapse two dimensions into

a single range.

c. Characteristics of the parameters-response relationship: The smoothness (the degree

of similarity between responses to neighboring parameter values) of the parameters-

response relationship and the noise level present in responses will also influence the num-

ber of queries required for convergence.

i. In general, a smooth relationship with low noise allows faster convergence.

ii. As a reference, we found that a number of queries corresponding to 25%–50% of the total

number of combinations of parameter values was required when optimizing the 2D spatial

location of the stimulation in the presence of a non-smooth relationship, which we argue is

the worst-case scenario for our application in the primary publication1 (Figures 2 and 3 of

the primary publication).

iii. Whereas for a 5D spatiotemporal space that explored smoother parameters (i.e., pulse-

width, frequency, train duration), 1% was enough (Fig. 8).

iv. These results were obtained with a noise standard deviation corresponding on average to

25% of the maximum response (Fig. S3).

Note: Using a procedure similar to hyperparameter calibration, the user can perform offline

tests to estimate the required number of queries to reach a desired level of performance.
ure 2. Hyperparameter calibration procedure

ps involved in the hyperparameter calibration procedure are (A) the acquisition of a valid dataset (previously

lected data, semi-synthetic or synthetic).

The dataset is used to simulate the GP-BO algorithm search procedure using different values of the

erparameter of interest, each for a given number of repetitions (10 or 50 is typically used). Other hyperparameters

fixed to default values determined as best in previous calibration procedures.

Once the simulations completed, the average performance at the final query is computed across repetitions for

dels associated with each hyperparameter value.

The performances associated with each hyperparameter values are compared.

The hyperparameter value associated with the highest performance is selected to be used in the online

timization procedure.

STAR Protocols 5, 102885, March 15, 2024 7



Figure 3. Tucker-Davis Technologies experimental apparatus with an implanted animal

To realize the optimization procedure, the computer through the RZ2 BioAmp processor, provides stimulation

parameters to the IZ2 stimulator and triggers the stimulation. The PZ5 EMG amplifier is then able to record the

biomarker response and make it available to the computer through the RZ2. Since both the IZ2 and PZ5 share the same

clock (the RZ2 clock), the response is easily aligned on the stimulation.
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d. Total number of combinations of parameter values in the parameter space:

i. If only one parameter is optimized, the total number of combinations of parameter

values is simply equal to the number of possible parameter values. As demonstrated

in Fig. S8 of the primary publication,1 the total number of combinations of parameter

values of the parameter space will influence the computation time, along with the num-

ber of queries required for the algorithm to converge to an optimal combination

(solution).

ii. Moreover, as the search progresses and more data are provided to the GP, the computa-

tion time will increase. As a reference, Figure S8C in the primary publication1 shows the

relationship between increasing query history and computation time.

iii. Overall, the total number of queries required depends on the desired optimization per-

formance. The number of queries required to reach this performance will in turn depend

on the total number of combinations of parameter values in the parameter space, the

smoothness of the parameters-response relationship and the amount of noise in the

responses.

Experimental apparatus

Timing: hours to a day depending on the apparatus

In this step, configure the experimental apparatus to generate the adequately parametrized stimu-

lation and record the evoked response feature.

7. Prepare a computer to run the algorithm and control the experiment.

a. To run the algorithm, the computer requires the appropriate configuration of our published

library (see key resources table).

b. To control the experiment, the computer must interface with the electrophysiological compo-

nents of the experimental apparatus.

8. Prepare an electrophysiological apparatus to generate the adequately parametrized stimulation

once instructed by the computer.

a. For low-latency-short-duration evoked response features, it is important that this system de-

livers the stimulation trigger to the system that records the response. This allows the appro-

priate alignment of the response on stimulation onset.
8 STAR Protocols 5, 102885, March 15, 2024
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b. This stimulation generating element of the apparatus must be addressable from within Python

to parametrize the next stimulation and trigger it.

9. Prepare a system, possibly electrophysiological depending on the nature of the evoked response

feature, to record the response and make it available to the library so the scalar feature can be

extracted and passed to the algorithm.

a. This response recording element of the apparatus must be addressable from within Python so

the value of the feature can be extracted, passed to the algorithm and the loop can proceed.

Run algorithm calibration procedure

Timing: 1 day

In this step, prepare the algorithm for the optimization of your parameters of interest by simulating

the procedure with preliminary data. The primary objective here is to calibrate the hyperparameters

values or in other words find which values are likely to work well online. This is a crucial step for

achieving optimal performance within a new experimental paradigm.

10. Determine the data source (Figure 2A). To run the hyperparameter calibration procedure, three

main options are available:
a. Pre-collected data: This implies using data for which the parameters to optimize are system-

atically varied while recording the evoked response feature.

Note:At this stage, since the experimental apparatus has been configured in the previous sec-

tion, collecting preliminary data is possible.

b. Semi-synthetic data: This is possible when you have access to pre-collected though incom-

plete datasets that can be artificially augmented to complete them.
i. For instance, consider a dataset in which each parameter value has been used to stimulate

for a limited number of repetitions (e.g., n = 3).

ii. First, the mean evoked response feature can be computed for each parameter value.

iii. Next, parameterized noise can be added to the mean response features to simulate a da-

taset in which each parameter has been used to stimulate for a sufficiently large number of

repetitions (e.g., n = 20).

c. Fully synthetic data: This implies generating data based on your knowledge of the system.

i. For each combination of parameter values considered, plausible evoked response fea-

tures must be assigned. Care must be taken to replicate the properties of the parame-

ters-response relationship, such as smoothness and noise levels.

ii. This task can be challenging, as it involves relying on partial knowledge of the black-

box system. In some cases, this information can be found in other publications. For

example, Watson et al. provide insight on the effect of cortical stimulations on EMG

responses.10–12
11. Prepare hyperparameter calibration. After acquiring the data, you can simulate the execution

of the algorithm using different values of the hyperparameters and determine which values

yield the best performance (Figures 2B–2E). Hyperparameters that are amenable to optimi-

zation are:
a. k:

i. We found that the performance of the algorithm exhibited the most sensitivity to this hy-

perparameter (see Fig. S1 of the primary publication1).

b. Bounds on the length-scale (⍴) and on the likelihood noise (s):

i. We found that the performance of the algorithm was less sensitive to these hyperpara-

meters (see Fig. S1 of the primary publication1) however this may not be the case in

new experimental paradigms.
STAR Protocols 5, 102885, March 15, 2024 9
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ii. Nevertheless, if prior knowledge about the smoothness of the parameters-response rela-

tionship exists, bounds for the length-scale can be biased toward higher or lower values

to respectively reflect a smoother or coarser space.

iii. Similarly, if a high or low level of noise is expected in the responses, bounds for the noise

parameterof theGaussian likelihoodcanbe respectivelybiased toward largeror lowervalues.

c. The number of queries to perform:

i. As previously stated, the total number of queries depends on the desired optimization

performance.

ii. The number of queries required to reach this performance will in turn depend on the total

number of combinations of parameter values, the smoothness of the parameters-

response relationship and the amount of noise in the responses.

iii. To estimate the performance of the algorithm after a certain number of queries, different

values can be assessed in a procedure similar to hyperparameter optimization.
12. Run hyperparameter calibration.
a. Verify the installation of our published library (see key resources table) with an appropriate

Python virtual environment.

b. The selection of hyperparameters to calibrate as well as where to load the data from is config-

ured by populating a config file.

c. Run the hyperparameter calibration command. Example commands can be found in

‘‘EduOptimNeurostim/tutorials/Experiment1.ipynb’’.
Run online optimization procedure

Timing: minutes to hours

In this step, deploy the algorithmic framework to optimize the stimulation parameters in the animal

or subject online.

13. Test the software-hardware apparatus.
a. Is the stimulation adequately parametrized and triggered?

b. Is the evoked response feature adequately recorded?

c. Is the algorithm adequately updated with the new data?
14. Bring the animal or the subject to the experimentation space.

15. Connect the stimulation and the recording apparatus so it interfaces appropriately with the

animal or the subject.

Note: The setup should ensure a stable parameters-response relationship. For example, the

animal might be sedated or habituated to remain calm while gently held.

16. Run the algorithm using the optimal hyperparameters found in the previous section.

17. Assess the evolution of the exploration and exploitation metrics across queries and the combi-

nation of parameter values found as optimal after the last query in the output plots.

18. For examples of the online optimization procedure using the GP-BO algorithm, see Video S1

and S2 in the primary publication.1
KEY RESOURCES TABLE
GENT or RESOURCE SOURCE IDENTIFIER

icals, peptides, and recombinant proteins

ril 100 (enrofloxacin 100 mg/mL) Bayer DIN: 02249243

cort 5 (dexamethasone sodium phosphate 5 mg/mL) Rafter 8 Products DIN: 02314118

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Isoflurane USP 250 mL Fresenius Kabi DIN: 02237518

Rheumocam (meloxicam 5 mg/mL) Merck DIN: 02413868

Vetergesic (buprenorphine hydrochloride 0.3 mg/mL) Ceva DIN: 02342510

Xylocaine (lidocaine hydrochloride 20 mg/mL) Aspen Pharmacare Canada DIN: 02302438

Proviodine solution (povidone-iodine 10% solution) Teva DIN: 00172944

Lactated ringer’s injection B. Braun DIN: 01931636

Optixcare eye lube Aventix Cat#5914304

Ortho-jet powder (fast curing orthodontic acrylic resin
powder, 454 g)

Lang Dental Manufacturing
Company

ID: 1330

Ortho-jet liquid (fast curing orthodontic acrylic resin
liquid, 946 mL)

Lang Dental Manufacturing
Company

ID: 1306

Software and algorithms

Synapse* Tucker-Davis Technologies https://www.tdt.com/support/downloads/

RPVDSex* Tucker-Davis Technologies https://www.tdt.com/support/downloads/

Published library* Bonizzato et al.1 https://github.com/mbonizzato/EduOptimNeurostim

Deposited data

Rat and NHPs cortical stimulation datasets* Bonizzato et al.1 https://osf.io/54vhx/

Experimental models: Organisms/strains

Female or male Long-Evans rat (275–350 g at surgery) Charles River Laboratories Strain Code: 006

Other

Ethilon nylon suture 4-0 (45 cm) Ethicon Product Code: 662SLH

Absorbable coated Vicryl suture 4-0 (45 cm) Ethicon Product Code: J386H

Screws McMaster-Carr Cat#96817A704

Gelfoam size 12 (12 cm2) Pfizer Manufacturer Code: 09-0891-01-005

Ultra-precise small animal stereotaxic instrument Kopf Instruments Model 963

Rat anesthesia mask (compatible with the stereotaxic
instrument)

Kopf Instruments Model 906

Isoflurane anesthesia machine Dispomed SKU: 975-0510-000 / 965-0500-000 /990-VI5K-SVEEK

Rodent mask Dispomed SKU: 980-0200-082 / 904-1050-010

Induction chamber Dispomed SKU: 904-1040-000

Dumont #5SF forceps Fine Science Tools Item No. 11252-00

Needle holder Fine Science Tools Item No. 12001-13

Small scissors Fine Science Tools Item No. 14184-09

Dura scissors Fine Science Tools Item No. 15002-08

Rongeur Fine Science Tools Item No. 16221-14

Slim elongated needle holder Fine Science Tools Item No. 12005-15

Homeothermic blanket Harvard Apparatus Item No. 55-7020

Germinator 500 glass bead sterilizer CellPoint Scientific Product No. 5-1450

Hand drill Foredom SKU: K.1070

Carbide burs HP-1/2 SS White SKU: 14821

Screwdriver matching screws Moody Tools SKU: 51-2089

Wide-field surgical microscope Zeiss Model S100-OPMI pico

Small pet hair grooming trimmer Oneisall ASIN: B089W594LC

EMG wire assembly* Omnetics DWG No: A118591-001

Omnetics connector* Omnetics DWG No. A22005-001

Mini-DB26 connector* TE Connectivity TE Internal #5749621-2

Isolated pulse stimulator A-M Systems MODEL 2100

ZIF-Clip based microwire arrays* Tucker-Davis Technologies Part No. ZIF2010-32

32-channel digital ZIF-Clip headstage holder* Tucker-Davis Technologies Part No. ZCD-ROD32

RZ2 BioAmp processor* Tucker-Davis Technologies N/A

IZ2 Stimulator 32-channels (IZ2-32)* Tucker-Davis Technologies N/A

PZ5 Neurodigitizer amplifier* Tucker-Davis Technologies N/A

32-channel aluminum ZIF-Clip headstage* Tucker-Davis Technologies Part No. ZC32

PO5E interface card* Tucker-Davis Technologies N/A

Computer (Windows)* N/A N/A

ll
OPEN ACCESS

STAR Protocols 5, 102885, March 15, 2024 11

Protocol

https://www.tdt.com/support/downloads/
https://www.tdt.com/support/downloads/
https://github.com/mbonizzato/EduOptimNeurostim
https://osf.io/54vhx/


ll
OPEN ACCESS

12

Protocol
Alternatives: Products marked with a * in the table were used to perform the experiments in

our laboratory and are recommended for the successful completion of the protocol. Other

items without the symbol can be easily replaced with alternatives.
STEP-BY-STEP METHOD DETAILS

Animal or subject | rat implantation surgery

Timing: 4 h

The purpose of this step is to implant a rat already habituated to human interaction with a MEA in the

hindlimb motor cortex as well as subcutaneous EMG wires in a leg muscle. This is a model used to

study neuroprosthetic interventions for rehabilitation after spinal cord injury.13 All the following sur-

gical procedures must be conducted aseptically.

Prepare the animal

Timing: 30 min

The purpose of this sub-step is to induce anesthesia and prepare the animal for the EMG and MEA

implantation.

1. Lay the homeothermic blanket under the stereotaxic frame and cover it with surgical drapes.

2. Weigh the rat.

3. Induce anesthesia using the induction chamber. Set the oxygen level to 1 L/m and increment the

isoflurane level 1% every 30 s until the level reaches 5%.

4. Once the animal is well sedated, transition to the rodent mask on �2% isoflurane.

CRITICAL: For the rest of the surgery, adapt the isoflurane level as a function of the arousal
of the animal. Assess the arousal by the presence of a pain reflex when pinching the hind

paw. There should be no response. The isoflurane level should be as low as possible while

maintaining adequate anesthesia.
5. Apply eye lube with sterile Q-tips to keep the eyes moisturized and protected from dust and

hairs.

6. Use the hair trimmer to shave the fur off the hind limb of interest as well as off the head

and the neck. Take precautions to not shave the whiskers or to damage the mammary

papillae.

7. Apply proviodine to the skin of the shaved areas using sterile wipes.

8. Place the rat into the stereotaxic frame and connect the anesthesia machine to the stereotaxic

frame mask.

9. Administer dexamethasone (1 mg/kg) intramuscular in the Gastrocnemius muscle of the leg

opposite to the leg of interest to prevent inflammation.

10. Administer enrofloxacin (10 mg/kg) intramuscular in the Gastrocnemius muscle to prevent

infections.

11. Inject saline (5 mL/kg/h) subcutaneously to hydrate the animal during the procedure.

12. Manage the animal’s temperature.
a. Lubricate the temperature probe of the homeothermic blanket with petroleum jelly and

insert it into the rectum of the rat.

b. Secure the probe to the tail using surgical tape.

c. Turn on the homeothermic blanket.
13. Monitor the vital signs of the animal frequently (every 10 min) for the remainder of the surgery.

Temperature should be maintained around 36.5�C.
STAR Protocols 5, 102885, March 15, 2024
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EMG implantation

Timing: 1–2 h

The purpose of this sub-step is to implant the Tibialis Anterior with a pair of subcutaneous EMGwires

to record the muscle activity evoked by stimulation.

14. Immerse the EMG wire assembly and the TDT microwire array (MEA) in 70% isopropyl alcohol.

Remove from the alcohol and thoroughly dry.

15. The surgical procedure must be conducted aseptically.

CRITICAL: Every surgical tool going in the animal should be sterilized beforehand or go
through the bead sterilizer.
16. Dilute 20 mg/mL Lidocaine 1:4 with sterile water to get a final concentration of 5 mg/mL.

17. Prepare to cut the skin along themidline of the skull, from the imaginary line connecting the eyes

to the back of the head. Inject 3 mg/kg of lidocaine subcutaneously (e.g., 0.2 mL of the 5 mg/mL

solution for a 300 g rat).

18. Make the incision with a #15 blade mounted on the scalpel. If needed, elongate the opening

with the small scissors. This incision must reveal the skull above the motor cortex where a crani-

otomy will later be performed.

19. Prepare to make a small incision in the skin of the hindlimb above the Tibialis Anterior muscle.

Inject 3 mg/kg of lidocaine subcutaneously (e.g., 0.2 mL of the 5 mg/mL solution for a 300 g rat).

20. Make the incision using the #15 blade mounted on the scalpel again.

21. Use the slim elongated needle holder to subcutaneously thread a pair of EMG wires from the

head incision to the incision above the Tibialis Anterior.
a. Pull the pair of microwires out of the skin.

b. Create subcutaneous space around the leg incision by carefully opening the connective tis-

sue by opening the small scissors and using the blunt exterior of their blade.

Note: This will allow the placement of a loop in the EMG wires after their implantation, pre-

venting direct tension when the animal is moving.

22. Thread the wires through the muscle.
a. With the needle holder, gently bend two 23G needles to form a rough arc.

b. Insert the needles through the muscle, making sure they travel a parallel and adjacent trajec-

tory through the muscle.

c. Thread the wires into the bevelled tip of the needle and pass the wires through the muscle by

pulling the needles back out.
23. Remove a small portion of insulation on the wires using the #15 blade approximately 0.5 cm

before their extremity to create an electrical interface.

24. Secure the wires into the muscle.
a. Tie their extremities together with a tight knot using the nylon 4‒0 suture thread.

b. Pull the uninsulated section of the wires back into the muscle to make the knot sit close to the

muscle.

c. Again, using nylon 4‒0 suture thread, tie another tight knot around the wires where they

entered the muscle. The EMG wire insulation can be slightly stretched manually to have it

protrude < 0.5 mm the wires ending.

Note: This will ensure the absence of any electrical contact at the wire tip.

25. Confirm the appropriate implantation of the muscle.
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CRITICAL: Verify the electrical contact with the appropriate muscle by visualizing an
adequate motor response to a brief train of electrical stimulation applied through the

implanted wires. The movement response should be clearly visible and specific to

the target muscle. For the Tibialis Anterior, expect a clear ankle dorsi-flexion. To apply

the stimulation, connect the wires to the isolated pulse stimulator and send a stimulation

parametrized as to do ICMS: a train of 13 cathodal 200 ms duration square pulses with an

inter-pulse interval of 3.3 ms. To ensure the quality of implantation, movements should be

evoked with stimulation intensities <300 mA.14
26. Gently insert the wire under the skin while making sure to leave a 1–2 cm loop in the wires to

prevent direct tension.

27. Suture the incision skin with absorbable suture thread.

28. Insert 2 ground wires subcutaneously over the fatty tissue in the torso using the slim elongated

needle holder.

Electrode implantation

Timing: 1–2 h

The purpose of this sub-step is to implant a MEA in the hindlimb representation of the motor cortex.

29. Coming back to the head incision made earlier, dissect away all periosteum from the skull

using the small forceps and the small scissors and/or by scrubbing the skull with sterile

Q-tips.

30. Outline a 2 (medio-lateral [ML]) 3 3 (antero-posterior [AP]) mm window, contralateral to the im-

planted hindlimb, to drill above the region of interest of the motor cortex using a pencil.

CRITICAL: The most antero-medial corner of the rectangle window should be positioned
at ‒1 mm AP and +1 mm ML to bregma.
31. Under the microscope, using the hand drill with a size HP-1/2 carbide burr adjusted so it pro-

trudes only 2 mm from the drill head, drill four holes in the corner of the window.

32. Drill four additional holes for screw insertion. Two holes anterior to the window, each

on opposing sides of the medial line of the skull. Idem for two holes posterior to the window.

33. Using the screwdriver, install the screws in the holes making sure they are stable however don’t

go too deep (approximately 1.5 turns deep once the screw bites).

34. Complete the craniotomy. Using the rongeur, pinch between the holes to cut the bone.
a. Position the tip of the jaw of the rongeur in adjacent holes.

b. Apply gentle pressure and pull up away from the skull before applying sufficient force to

close the rongeur, cutting the bone and connecting holes along an edge of the window.

c. Repeat for the other three edges.
35. Use the small forceps to remove the remaining bone flaps and then the rongeur to clean the

edges of the window. Be careful not to damage the surface of the brain. At this point, if the brain

shows signs of edema, see Troubleshooting problem 1 below.

36. Verify the placement of the MEA with regards to the window.

CRITICAL: In our study, the most antero-medial site of the MEA was positioned at coor-
dinates AP ‒1.1 mm, ML +1.3 mm from bregma with its length in the AP axis, however hin-

dlimb representation can also be found up to 1 mm anterior to these coordinates.13
37. Measure the origin or the zero of the dorso-ventral (DV) coordinate of the MEA placement.
a. To do so, mount the MEA into its headstage holder on the stereotaxic manipulator and

descend it until it contacts the exposed dura.
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b. Note the measurement and raise back the MEA.
38. Open the dura.
a. Using the needle holder, gently bend the 30-gauge needle and use the needle to carefully

initiate a cut in the dura.

b. From the cut, remove the dura using the small forceps and the small Vannas scissors to fully

expose the brain in the window.
39. Using the stereotaxic manipulator, lower the MEA back to the measured DV zero.

40. Twist the two ground wires of the MEA around 2 of the 4 screws.

41. Still using the stereotaxic manipulator, descend the MEA to a 1.5 mm depth in the brain.

42. Cover the exposed brain around the MEA using Gelfoam. Carefully hydrate the Gelfoam using

sterile ringer saline before applying it onto the brain.

43. Use acrylic powder and liquid to build a small protective hat above the craniotomy

making sure it is properly anchored to the four screws and encases the MEA and EMG

connector.

Note: The acrylic hat should be as smooth as possible and cover the skull to fill the opening

made by the incision. Wait for the acrylic to harden.

44. Gradually decrease the isoflurane anesthesia and remove the animal from the stereotaxic frame

while continuously monitoring vital signs and ensuring the body temperature of the animal re-

mains stable while the animal is waking up.

45. Administer meloxicam (1 mg/kg) subcutaneously. Administer buprenorphine (0.025 mg/kg)

subcutaneously.

46. Continue with a daily dose of meloxicam (1 mg/kg) and enrofloxacin (10 mg/kg) for 3–4 days

post-surgery on an appropriate schedule.
Evoked response feature and optimized parameters | EMG envelope peak amplitude and

ICMS electrode location

Timing: depends on the experimenter

In this step, the EMG envelope peak amplitude is selected as the evoked response feature and the

stimulation electrode location as the ICMS parameter to be optimized.

47. The EMG activity feature reports stimulation efficacy. The following factors are taken into

consideration:
a. Validity: EMG activity serves in this context as an adequate proxy for targeted muscle

contraction, which is the actual target to maximize.

b. Data type: Even if the EMG activity is a complex signal, its envelope can be computed, and a

simple feature of the envelope can be obtained. Specifically, the peak amplitude of the en-

velope evoked by the stimulation is used as the scalar response.

c. Acquisition delay: Since the EMG activity decays rapidly after the offset of the stimulation,

the amplitude of the envelope can be computed and recorded in less than a second.

d. Stability: Given a successful implantation surgery, responses to stimulation can be ob-

tained across multiple days to weeks. Even if EMG responses are noisy, the parame-

ters-response relationship is sufficiently stable for the algorithm to effectively operate

in a given session.

Note: The solution might evolve over time, for example as expected after an injury, and addi-

tional runs of the algorithm might be required to track these changes. In these cases, instead

of initiating the search tabula rasa, previous data can be used as prior to accelerate the search

(see Fig. 5 of the main publication1 ).
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48. The stimulation location parameter in the MEA is the electrode contact from which the stimula-

tion is delivered. The following factors are taken into consideration:
16
a. Number of possible parameter values: Here the use of a 32-electrode MEA constrains the

number of possible parameter values to 32 as each electrode only has one contact.

b. Parameter representation in the input space: To respect the topographical arrangement

of the electrodes, each spatial dimension is taken as an independent parameter. It

follows that the first and second parameters are the vertical and horizontal coordinates of

the electrode respectively (the TDT MEAs used have 8 rows by 4 columns of electrodes).

c. Characteristics of the parameters-response relationship:

i. Because of the mosaic nature of movement representation in the motor cortex,15–19 the

relationship between stimulation electrode location and the EMG responses can be quite

unsmooth.

ii. Specifically, this phenomenon is illustrated by neighboring electrodes evoking very

different movements (e.g., ankle dorsiflexion versus hip external rotation), and conse-

quently EMG responses in the Tibialis Anterior muscle (respectively resulting in a strong

versus weak response) (see Fig. 2B of the primary publication1).

iii. In contrast, stimulation frequency or stimulation duration results in smoother parameters-

response relationship (see Fig. 7D of the primary publication,1 right panel).

d. Total number of combinations of parameter values in the parameter space: Even if the single

parameter to optimize is represented using two dimensions, the total number of combina-

tions of parameter values in the parameter space is still 32 (8 34).
Experimental apparatus | Tucker-Davis Technologies

Timing: 1–2 h

The purpose of this step is to prepare the experimental apparatus to emit the stimulation parame-

trized adequately when triggered and record the evoked response feature.

49. In the space for electrophysiologic experimentation, prepare the Windows computer.
a. Install the PO5E Interface Card to interface with the TDT hardware.

b. Update Windows.

c. Ideally, plug in two monitors.
50. Interface the computer with the electrophysiology apparatus following the wiring schematic in

Figure 3.
a. Plug in the RZ2 BioAmp Processor in the computer using an optical fiber cable.

b. Plug in the IZ2 Stimulator in the RZ2 using an optical fiber cable. Plug in the 32-channel ZIF-

Clip headstage into the IZ2.

c. Plug in the PZ5 Neurodigitizer Amplifier in the RZ2 using an optical fiber cable.

d. To interface the implanted EMGwire assembly with the PZ5, a custom headstage is required.

i. The headstage is composed of two connectors; an Omnetics connector on the animal and

a Mini-DB26 on the PZ5 (See key resources table).

ii. Wire the connectors together using the following instructions and plug the resulting head-

stage into the PZ5: https://www.tdt.com/docs/technotes/tn/TN0896/.
51. Install the required software.
a. Turn on the RZ2, the PZ5 and the IZ2.

Note: When booting the PZ5, set the mode to EMG and the acquisition frequency to 6 kHz.

Synapse expects to receive a signal at this frequency during the algorithmic online procedure.

b. Install the TDT Drivers/RPvdsEx and Synapse (See key resources table).

c. Install our GitHub library into an appropriate folder (See key resources table).

52. Configure Synapse.
STAR Protocols 5, 102885, March 15, 2024
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a. Open Synapse.

b. Detect the available hardware.

i. Click ‘‘Menu >’’ > ‘‘Edit Rig’’. Click ‘‘Detect’’.

ii. The detected hardware is displayed in a tree containing the PC at the root, the RZ2 down a

branch and its associated PZ5 and processors.

c. Add the IZ2.

i. By default, Synapse does not detect the IZ2.

ii. Click on one of the 8 processors (e.g., ‘‘DSP8’’) and change the processor model to

‘‘DSPI’’ using the dropdown menu.

iii. Right click on the newly configured ‘‘DSPI’’ (e.g., ‘‘DSPI8’’) processor and click on ‘‘Add

IZn’’.

iv. Verify the ‘‘Model’’ and ‘‘Channels’’ of the IZ2 have been appropriately configured.

v. Click ‘‘OK’’ to exit the rig editor.

d. Load the provided circuit in Synapse.

i. Click on the ‘‘Experiment’’ button (the logo right under ‘‘Menu >’’ at the top left) > ‘‘Import

Experiment’’. Select the file at ‘‘EduOptimNeurostim/Synapse/circuit.synexpz’’.

ii. This circuit implements control of the stimulation parameters using the ‘‘eStim1’’ gizmo.

iii. The EMG signal is streamed by the ‘‘NPro1‘‘ gizmo from the PZ5, a specific muscle signal

is selected using the ‘‘Sel1’’ selector gizmo.

iv. This signal is sent to the ‘‘buffer_1’’ gizmo which captures the peri-stimulus signal and en-

ables its retrieval.

v. Synapse provides a Python API enabling the interaction with variables of the gizmo.
53. Verify the configuration of the circuit.
a. Are the default values for stimulation parameters appropriate?

i. Click on the ‘‘eStim1’’ gizmo and open the ‘‘Stim Voices’’ tab. Verify the parameterization

of the stimulation.

ii. By default, the circuit sets the pulse duration at 200 ms, the interpulse period at 3 ms,

the pulse amplitude at 30 mA and the number of stimulation pulses in the train burst at 13.

b. By default, the circuit saves both the EMG signal using the ‘‘NPro1’’ gizmo and the stimula-

tion waveforms using the ‘‘eStim1’’ gizmo in a data tank. The acquisition frequency of these

saved signals is controlled at different levels.

i. Clicking on the RZ2 icon in the ‘‘Processing Tree’’ and clicking on the ‘‘Main’’ tab, you can

adjust the ‘‘Master Device Rate" which will set an upper bound for the IZ2 and PZ5 spe-

cific rates.

ii. Then, you can adjust the sampling rate for the EMG signal in the ‘‘NPro1’’ gizmo ‘‘Storage’’

tab.

iii. Similarly, you can adjust the sampling rate for the stimulation waveform in the ‘‘eStim1’’

gizmo ‘‘Misc and Saving’’ tab.
54. For any problem relating to Synapse, see Troubleshooting problem 2 below.

Run algorithm calibration procedure | calibration of the trade-off hyperparameter k

Timing: 1 day

The purpose of this step is to find the value of k that is most likely to work best when optimizing the

electrode location used to evoke maximal peak EMG amplitude in the Tibialis Anterior online. Using

pre-collected data in which the 32 electrodes have been stimulated multiple times and the EMG re-

sponses have been recorded, the algorithmic procedure using different values of k can be simulated

and the value which works best can be identified.

55. Install the library and navigate to it using the Command Prompt.
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> git clone https://github.com/mbonizzato/EduOptimNeurostim.git

> cd /EduOptimNeurostim
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56. Follow the instructions in the ‘‘README’’ of the library to install the appropriate version of Py-

thon and the dependency libraries using virtualenv. Alternatively, the virtual environment can be

created using Anaconda.
> virtualenv --python=python3.7.4 <PATH_TO_ENVIRONMENT>

> <PATH_TO_ENVIRONEMENT>/venv/Scripts/activate
57. From the ‘‘/config’’ folder, create your own config file by copying ‘‘/online.json’’ to create

‘‘/config.json’’.

58. The following steps imply calling different versions of the algorithm. The calls are always made

through the ‘‘/main.py’’ script and the behavior of the script is controlled by the ‘‘/config.json’’

file. This file contains key-value pairs that specify various aspects of the behavior of the algo-

rithm. The essential ones are listed below, with a complete list available in the ‘‘README’’.

> pip install -r requirements.txt
"ou

"da

"da

"se

}

"da

"on

"on

"da

"se

}

18
a. To control where the outputs of the algorithm are saved in the ‘‘/EduOptimNeurostim’’

directory, the value associated with the key ‘‘output_path’’ is used.
tput_path": "output/rat_mapping_2D"
b. To control the source of the data fed to the algorithm, the values associated with the ‘‘data’’

key are used.

i. Setting the value associated with the ‘‘dataset_path’’ key to ‘’data/rat’’ for example

points the algorithm to pre-collected data and runs hyperparameter calibration on this

data by default.

ii. For more details on running hyperparameter calibration, consult: ‘‘EduOptimNeurostim/

tutorials/Experiment1.ipynb’’.
ta": {

taset_path": "data/rat",

lected_muscles": null

ta

li

li

ta

le

ST
iii. Alternatively, configuring the values under the ‘‘data’’ key can specify the data will be ac-

quired online through the experimental apparatus with Synapse instead of being drawn

from a pre-existing dataset.
": {

ne": true,

ne_api": "synapse",

set_path": null,

cted_muscles": null
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}

"pr

"pa

"sc

}

"ac

"na

"ka

"de

"va

"fin

}
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c. When the data is acquired online through the experimental apparatus, the parameter space

must be specified under the ‘‘input_space’’ key. In the offline context, the parameter space is

automatically inferred from the provided pre-collected data.
put_space": {

annel_x": [1, 2, 3, 4, 5, 6, 7, 8],

annel_y": [1, 2, 3, 4]
d. To provide an optional prior to the algorithm, the values associated with the ‘‘prior’’ key are

used.

i. Setting the value under the ‘‘path’’ key specifies where the algorithm looks for the prior

and the ‘‘scale’’ key controls if the prior is scaled by a factor before it is provided to the

algorithm.

ii. For more details on running the algorithm with a prior, consult ‘‘EduOptimNeurostim/tu-

torials/Experiment5.ipynb’’.
ior": {

th": null,

ale": null
e. To control the acquisition function, the values under the ‘‘acquisition’’ key are used.

i. The UCB acquisition function is selected by setting ‘‘ucb’’ as value under the ‘‘name’’ key.

ii. To control the k used in the UCB, the values under the ‘‘kappa’’ key are used.

iii. The default k used is set by the value under the ‘‘default’’ key.

iv. The k values evaluated in a hyperparameter calibration procedure are set in the list under

the ‘‘values’’ key.

v. The hyperparameter k is included in the calibration procedure if the value under the

‘‘find_best’’ key is set to ‘‘true’’.
quisition": {

me": "ucb",

ppa": {

fault": 3.0,

lues": [1.0, 1.5, 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0],

d_best": true}
f. To control the optimization algorithm, the values under the ‘‘optimization’’ key are used.

i. Specifically, the algorithm used is selected by setting the value under the ‘‘name’’ key.

‘‘name’’ should remain ‘‘gpbo’’ unless the user is interested in alternative algorithms,

which the primary publication1 demonstrated to be inferior.

ii. For more details on alternative optimization algorithms, consult ‘‘EduOptimNeurostim/

tutorials/Experiment1.ipynb’’.

iii. Moreover, the number of queries to perform during the algorithmic execution is

controlled by the value under the ‘‘max_queries’’ key.
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"data

"data

"sele

}

"acqu

"name

"kapp

"defa

"valu

"find_

}
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iv. The number of times the algorithmic performance is evaluated with a given hyperpara-

meter value in the calibration procedure is controlled by the value under the ‘‘n_repeti-

tions’’ key.

v. The number of queries performed randomly at the beginning of the algorithmic execution

is controlled by the value under the ‘‘n_random_steps’’ key.

vi. As with k, if the value under the ‘‘find_best’’ key is set to ‘‘true’’, the number of random

queries set under the ‘‘values’’ key are evaluated in a hyperparameter calibration

procedure.
mization": {

": "gpbo",

queries": 32,

petitions": 30,

ndom_steps": {

ult": 1,

es": [1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 32],

best": false}
59. In the current setting, you have access to data from previous instances of the same experimental

procedure. Use this data to run hyperparameter calibration and determine which values of

hyperparameters are optimal.
a. Make antecedent data available. As indicated in the ‘‘README’’, Windows requires the use

of GitBash to run the following command.
/scripts/download_nhp_rat_dataset.sh data
b. Adequately populate the ‘‘/config.json’’ file.

i. Point the algorithm to the antecedent data.
": {

set_path": "data/rat",

cted_muscles": null
ii. Since the hyperparameter k is particularly consequential for the algorithmic performance,

include it in the hyperparameter calibration by setting ‘‘find_best’’ to ‘‘true’’ under the

‘‘kappa’’ key.
isition": {

": "ucb",

a": {

ult": 3.0,

es": [1.0, 1.5, 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0],

best": true}
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iii. To include other hyperparameters in the calibration procedure, simply set their respec-

tive ‘‘find_best’’ key to ‘‘true’’ in the ‘‘/config.json’’ file. As specified above, when search-

ing for the best stimulation location, we found the calibration of these other hyperpara-

meters to have minimal impact.

iv. Change the output path to an appropriate name.
ut_path": "output/hyperparameter_cali_kappa"
v. Configure the number of queries by setting ‘‘max_queries’’ to 32, resulting in as many

queries as there are electrodes in the MEA. This small number of queries has been shown

to perform well (see Fig. 2D & Fig. S4C of the primary publication1).
mization": {

": "gpbo",

queries": 32,

petitions": 30,

ndom_steps": {

ult": 1,

es": [1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 32],

best": false}
60. Run hyperparameter calibration. This may take a while.
on main.py -c config/config.json
61. From the output graph in ‘‘/output/hyperparameter_cali_kappa’’, determine which value of hy-

perparameter k leads to highest average performance and populate this value in the ‘‘default’’

field under the ‘‘kappa’’ key in the ‘‘/config.json’’ file.
Run online optimization procedure | optimizing the ICMS electrode location to maximizes

peak EMG amplitude

Timing: 1 h

The purpose of this step is to run the algorithm in the implanted rat to optimize the stimu-

lation electrode location used to evoke a maximal peak EMG amplitude in the Tibialis Anterior

muscle.

62. Prepare the config file for the online optimization procedure.
a. In this context, it is important to understand the distinction between channel number and the

Cartesian coordinates of the electrode location.

i. In Synapse, stimulation electrodes are addressed as channels from 1 to 32. This specifies

which of the IZ2 pins outputs the stimulation.

ii. In contrast, electrodes in the MEA are arranged in a 2D grid indexed as Cartesian coor-

dinates (e.g., (1,1), (1,2) .).

iii. The mapping from channel number to the Cartesian coordinates of the electrode contact

depends on the specific headstage used.
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iv. The algorithm represents electrodes in a 2D grid and selects queries at Cartesian coordi-

nates. To provide Synapse with the appropriate channel number to stimulate, the map-

ping must be provided in the form of a ‘‘/config/ch2xy_online.json’’ file. The path to

this file has to be set in ‘‘/config.json’’.
rode_mapping_path":"config/ch2xy_online.json"
b. Specify the input space by listing the possible x and y Cartesian coordinates for the stimula-

tion channels.
t_space": {

nel_x": [1, 2, 3, 4, 5, 6, 7, 8],

nel_y": [1, 2, 3, 4]
c. At this stage, additional parameters, such as the stimulation frequency, can be introduced for

online optimization alongside the stimulation location (i.e., electrode contact).

i. Note that to guarantee the validity of the hyperparameter selection, it is advisable to

include these additional parameters in the hyperparameter calibration dataset.

ii. To achieve this, a semi-synthetic dataset can be constructed by merging the data on stim-

ulation location from the provided "data/rat" dataset with information about the effect of

frequency derived from Figure 5 in Watson et al., 2016.10

iii. Specifically, the simplifying assumption that the impact of frequency on the response ampli-

tude is applied as a normalizedmodulation factor can bemade. For instance, for frequencies

[100, 200, 300, 400, 500], the modulation factors [0.52, 0.94, 1, 1.05, 1.11] can be derived.

iv. To include the frequency as a parameter in the dataset construction, the efficacy of the

electrode is simply multiplied with this factor. For example, if a response to electrode

13 is 0.4, then this response which was obtained at 300 Hz in the provided dataset is

extrapolated to be 0.4 multiplied by 0.52 at 100 Hz. This is repeated for every response

in the dataset for every frequency.
t_space": {

nel_x": [1, 2, 3, 4, 5, 6, 7, 8],

nel_y": [1, 2, 3, 4],

uency": [100, 200, 300, 400, 500]
d. Change the output path to an appropriate name.
ut_path": "output/online_rat_mapping_2D"
e. Change the data source.
": {

ne": true,

ne_api": "synapse",

set_path": null,

cted_muscles": null
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f. Verify the number of queries that will be effectuated is adequate. Under the ‘‘optimization’’

key, ‘‘max_queries’’ should still be set to 32.
x_queries": 32
g. If you want to use a prior on the stimulation location efficacy, it can be fed by adding the

following value under the ‘‘path’’ key.

i. The ‘‘scale’’ key corresponds to a scaling factor for the prior which controls the strength of

its influence.

ii. We have found that in this context, using a scale of 0.5 works best.
ior": {

th": "priors/rat_mapping_2D.mat",

ale": 0.5
63. The following command calls the algorithm online. Press ‘‘enter’’ to execute queries.
64. Before running the algorithm with the animal, dry run the procedure.

CRITICAL: Does the hardware work as expected? Does the software work as expected? To

> python main.py -c config/config.json
test both the above components, connect both stimulation and recording headstages to

test wires and immerse the wires in saline. Run the above command. Verify the presence

of a stimulation artefact in the recordings.
65. Bring the animal to the space for electrophysiologic experimentation.

66. Connect the stimulation and EMG headstages to the connectors on the head of the animal.

67. Run the above command and maintain the animal in a position where the hindlimb is freely sus-

pended during the 32 queries (a few minutes).

CRITICAL: Avoid executing queries when the animal is moving. During the algorithm pro-
cedure, observe the evolution of the evoked muscles responses. Different issues can arise

here, see Troubleshooting problem 3–6 below.
68. Return the animal to the cage.

69. Assess the evolution of the exploration and exploitation metrics across queries and the combi-

nation of parameter values found as optimal after the last query in the output plots saved in

‘‘/output/online_rat_mapping_2D’’.
EXPECTED OUTCOMES

Using the method detailed in this protocol, the ICMS electrode location used in the rat motor cortex

to evoke maximal EMG activity in the Tibialis Anterior can be effectively optimized. In this setting,

because of the mosaic nature of movement representation in the motor cortex,15–19 the parame-

ters-response relationship is quite unsmooth, making optimization harder. However, the use of a

32 electrode MEA restricts the total number of combinations of parameter values in the input space,

making optimization easier. Going over the specifics of the current setting, the robustness of the al-

gorithm across datasets with different smoothness of the parameters-response relationship and

high-dimensional input spaces has been demonstrated.1 Moreover, the method was previously
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used to optimize diverse stimulation parameters such as the stimulation timing, duration, frequency,

pulse width and the spinal site of stimulation (see Fig. 7 & Fig. 8 of the primary publication1). Stim-

ulation parameters can also be optimized using other evoked response features, for example the

kinematic step height during locomotion (see Fig. 6 of the primary publication1). Because of this flex-

ibility, only minor changes are required for the successful adaptation of our method to other neuro-

prosthetic paradigms.
QUANTIFICATION AND STATISTICAL ANALYSIS

EMG processing

During the online optimization procedure, the EMG signals are recorded at 6 KHz, high-pass filtered

at 70 Hz, rectified and low-pass filtered at 30 Hz to obtain the envelope of the signal. Then, 50 ms

after the onset of the stimulation (which lasts 43 ms), the peak amplitude of the envelope is ex-

tracted. This delay guarantees that a potential stimulation artefact is excluded from the response

quantification. This is how the evoked response feature value is obtained.
Performance plots

As discussed above, themodel is evaluated using twometrics computed after each query: the explo-

ration performance and the exploitation performance. The metrics are computed differently in the

presence of ground truth data such as when the algorithmic procedure is simulated with pre-

collected data or in the absence of ground truth data such as when the algorithm is used online.

In the presence of ground truth data, the exploration metric reports the efficacy of the parameters

(e.g., given stimulation electrode) considered optimal by the algorithm in proportion to the opti-

mum. For example, if the exploration performance of the algorithm is 80% after 10 queries, it means

that the combination of parameter values currently considered best elicits a response that is 80% of

the highest response achieved across all combinations. In the absence of ground truth data, the op-

timum is not known. In this case, instead of being compared to the optimum, the efficacy of the pa-

rameters considered optimal by the algorithm is simply reported. ‘‘Exploitation’’ is the capability of

targeting effective regions of the input space early and persistently, a likely indication for an effective

therapy. In the presence of ground truth data, it follows that the exploitation metric reports the ef-

ficacy of the current choice of parameters in proportion to the optimum. For instance, if the exploi-

tation performance of the algorithm is 80% after 10 queries, it means that the stimulation delivered

at query 10 would elicit a response that is 80% of the highest response achieved across all param-

eters. In absence of ground truth data, the efficacy of the queried parameters is compared to the

efficacy of the parameters predicted as the optimal by themodel. A performant algorithm procedure

will be characterized by both metrics curves climbing across queries. However, exploration and

exploitation exist in a trade-off which is controlled by k. As discussed above, the UCB acquisition

function computes a weighted sum of the predicted mean and uncertainty for each combination

of parameter values. The hyperparameter k acts as a weighting factor for the uncertainty. At a stage

in the algorithmic procedure, a dataset containing the queries performed so far is provided to the

GP-BO and informs the predictions of mean and uncertainty. A given combination (e.g., simulation

electrode number 16) is selected to be queried next when its associated sum is higher as compared

to the sum associated with other combinations. Using a small value of kwill make the sum dominated

by the predicted mean. The combination will be queried if it has a higher predicted mean, favoring

exploitation. Using a large value of k will make the sum dominated by the uncertainty. The combi-

nation will be queried if it still has higher uncertainty despite the data available, favoring exploration.

While a degree of exploration is necessary to discover optimal combinations, an excessive bias to-

ward uncertainty reduction can detrimentally affect exploitation performance due to more frequent

tests in suboptimal regions of the parameter space (see Fig. S1 in the primary publication1).

When running a hyperparameter calibration procedure, to compare the overall performance when

using specific values of hyperparameter, the performance at the final query is used to encapsulate
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the whole curve. The final query performances are averaged over replicates and plotted for each hy-

perparameter value.
LIMITATIONS

While the GP-BO algorithm is an effective optimization technique, it is not guaranteed that it will find

the global optimum in a viable number of queries.

Moreover, since the algorithm only maximizes the evoked response feature, it may lead to unfore-

seen or undesired effects. For example, by searching the electrode location to evoke maximal EMG

activity in a muscle of interest, the electrode predicted as optimal might lead to the coactivation of

the muscle of interest and another off-targetmuscle. If this is problematic, another evoked response

feature which better recapitulates the desired features of response might be considered (e.g., step

height).

Additionally, stochasticity intervenes at different levels in the optimization procedure. The search

procedure starts with a given number of random queries. Also, the EMG responses display some

level of noise. However, the performance of the algorithm reported in the primary publication1

are averages obtained over replicates. It follows that it may be necessary to repeat the optimization

procedure more than once to gain a sufficient level of confidence in its recommendation of optimal

parameter values.
TROUBLESHOOTING

Problem 1

During the surgery, before the array implantation, the brain of the rat brain shows signs of edema

(related to Step 35 in Rat Implantation Surgery).
Potential solution

� Consider opening cisterna magna with a small incision to relieve the intracranial pressure.

� Consider adding a mannitol injection to your surgical procedure.
Problem 2

Problems in configuring the Synapse software (related to Step 54 in experimental apparatus).
Potential solution

� Consult the documentation at https://www.tdt.com/files/manuals/SynapseManual.pdf.
Problem 3

During the algorithmic execution, the stimulation seems ineffective (related to Step 67 in run online

optimization procedure).
Potential solution

� Check the hardware and verify the stimulator is appropriately armed.

� Try the stimulation with a set of parameters that are known to produce a potentially suboptimal

though visible response. This step helps to rule out hardware problems or failure of the implants.

� When the parameter space is large and most combinations of parameter values are ineffective, it

is possible that most stimulation effectuated by the algorithm will be ineffective. In this case the

number of queries effectuated is not sufficient for the total number of combinations of parameter

values of the problem.
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Problem 4

The algorithm does not seem to converge on a combination of parameter values within the allowed

number of queries (related to Step 67 in run online optimization procedure).

Potential solution

� Consider effectuating a larger number of queries.

� Consider reducing the size of the parameter space.

� In the case where the two options above are not possible, try reducing the value of k, and evaluate

if even given the small number of queries the algorithm is still performant (i.e., there is an increase

in stimulation efficacy over queries). If not, the problem might not be solved with the limited num-

ber of queries.

Problem 5

The algorithm converges too early and/or on a clearly suboptimal combination of parameter values

(related to Step 67 in Run Online Optimization Procedure).

Potential solution

� Raise the value of k.

Problem 6

The evoked responses are contaminated by the spontaneous movements of the animal (related to

Step 67 in run online optimization procedure).

Potential solution

� Although the algorithm is robust to occasional spurious responses, the optimization works better if

the parameters-response relationship remains stable. Since stimulations are manually triggered,

make sure to press the triggers while the rat is at rest. Try placing the rat in a more relaxing posi-

tion. To facilitate this, it is best to habituate the rat to human contact before the experiments.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Numa Dancause (numa.dancause@umontreal.ca).

Technical contact

Léo Choinière (leo.choiniere@umontreal.ca)

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The complete cortical mapping dataset consisting of 4 NHPs and 6 rats is publicly available as of

the date of publication at the following Open Science Framework Repository Database: https://

osf.io/54vhx/

� All original code has beendeposited at GitHub and is publicly availablewith a variety of tutorials. See:

https://doi.org/10.5281/zenodo.10494808 or https://github.com/mbonizzato/EduOptimNeurostim

for a Python-based library and educational material (Jupyter Notebook tutorials) or https://github.

com/mbonizzato/OptimizeNeurostim/ for MATLAB-based implementations.
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� Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.
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(FRQNT) Master’s training scholarship (318568) and Institut de valorisation des données (IVADO)

MSc Excellence Scholarship (0961371377).

M.B. acknowledges support from a salary/research award from Fonds de Recherche Québec Santé
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