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TSLP enhances progestin response in endometrial cancer via
androgen receptor signal pathway
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BACKGROUND: The enriched proteins within in vitro fertilisation (IVF)-generated human embryonic microenvironment could
reverse progestin resistance in endometrial cancer (EC).
METHODS: The expression of thymic stromal lymphopoietin (TSLP) in EC was evaluated by immunoblot and IHC analysis.
Transcriptome sequencing screened out the downstream pathway regulated by TSLP. The role of TSLP, androgen receptor (AR) and
KANK1 in regulating the sensitivity of EC to progestin was verified through a series of in vitro and in vivo experiments.
RESULTS: TSLP facilitates the formation of a BMP4/BMP7 heterodimer, resulting in activation of Smad5, augmenting AR signalling.
AR in turn sensitises EC cells to progestin via KANK1. Downregulation of TSLP, loss of AR and KANK1 in EC patients are associated
with tumour malignant progress. Moreover, exogenous TSLP could rescue the anti-tumour effect of progestin on mouse in vivo
xenograft tumour.
CONCLUSIONS: Our findings suggest that TSLP enhances the sensitivity of EC to progestin through the BMP4/Smad5/AR/KANK1
axis, and provide a link between embryo development and cancer progress, paving the way for the establishment of novel strategy
overcoming progestin resistance using embryo original factors.
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INTRODUCTION
Endometrial cancer (EC) is one of the most common types of
gynaecologic cancers in women worldwide [1]. Long-term, high-
dose progestin therapy has historically been the most commonly
used strategy in conservative treatment for endometrial cancer
and hyperplasia [2], providing considerable relief to young EC
patients with infertility. However, not all patients respond well to
progestin and the failure rate of progestin therapy is still as high as
30% [3]. Once progestin resistance occurs, the time of surgery is
delayed appropriately, which commonly results in a poor
prognosis. Therefore, preventing progestin resistance is a long-
sought goal in conservative therapy for EC.
Substantial progress has been made in overcoming progestin

resistance in recent decades. However, a suitable method to
sensitise EC cells to progestin is still lacking. An embryonic
microenvironment may be able to reverse the metastatic
behaviour of cancer cells [4]. Mintz and Illmensee demonstrated
that teratocarcinoma cells’ tumorigenic phenotype could be

suppressed in a mouse embryonic blastocyst microenvironment,
and the developmental adaptability of these tumour cells was
manifested in their ability to participate in generating normal
tissue [4]. Testing of numerous cancer cell lines revealed the
tumour-suppressive characteristics of embryonic microenviron-
ments, supporting this theory [5, 6]. In our previous study, we
discovered that the in vitro fertilisation (IVF)-generated human
embryonic microenvironment can reverse progestin resistance in
EC by enhancing cancer stem cell differentiation [7]. This
observation suggests that the components, including proteins,
RNA and DNA, of the human embryonic microenvironment might
play an essential role in the suppression of EC cell growth.
Importantly, these components are derived from human embryos,
and are thus safe if they were developed to overcome human EC
progestin resistance. Another intriguing thing is that embryonic
cells share some similar properties with cancer cells, such as the
morphology, multipotency and differentiation of naïve cells. This
prompted us to investigate which factor in the embryonic
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microenvironment is indispensable in facilitating progestin
response and to explore the function of the candidate factor in EC.
Thymic stromal lymphopoietin (TSLP) is found in the IVF-

generated human embryonic microenvironment [7]. Whether
TSLP plays a role in overcoming progestin resistance is unknown.
The inflammatory cytokine TSLP is secreted mostly by epithelial
cells. TSLP has been shown to regulate the occurrence and
progression of tumours [8–10]. Overexpression of TSLP in the early
stages of breast and pancreatic cancer can activate Th2 cells and
inhibit tumour progression [11]. Furthermore, TSLP inhibits cancer
progression by stimulating apoptosis and suppressing cell growth
[12]. Demehri et al. noted that increased TSLP levels in the
epidermis can stimulate the formation of an antitumor environ-
ment [13]. However, the expression profile and role of TSLP in EC
have not been fully elucidated.
Since the 1990s, increasing evidence has shown that the

androgen receptor (AR) is involved in EC occurrence and
development [14, 15]. As we all know, progesterone receptor (PR)
signalling antagonises oestrogen-driven tumorigenesis. AR and PR
have a certain functional overlap, which prompts us to investigate
whether AR performs similar functions in endometrial tumorigen-
esis. Mechanistically, both receptors can bind to the same cis-
responsive elements and regulate similar downstream genes [16].
Functionally, androgen and its ligand are responsible for the
suppression of EC growth [17, 18]. This conclusion is supported by
the finding that using testosterone to treat women who underwent
denaturation can lessen endometrial gland and stromal cell
proliferation, and enhance AR expression in the matrix [19].
Functional studies have also revealed that treatment of human
primary endometrial stromal cells with dihydrotestosterone (DHT)
in vitro can significantly diminish cell proliferation, migration, and
AR-dependent apoptosis [20]. Accumulating evidence clearly
illustrates that AR signalling is crucially involved in EC therapy.
Bone morphogenetic protein (BMP) is the most critical member of

the TGF-β superfamily, a group of cell growth factors secreted from
the bone matrix and highly effective in inducing bone, cartilage, and
tissue formation [21]. The R-Smads, which comprise Smad1/5/8, are
the main BMP receptor signal transducers. The ligand-bound BMP
type I receptor phosphorylates the C-terminal of R-Smads, allowing
them to interact with Smad4 and translocate to the nucleus where
they control the transcription of target genes [22]. In DU145 prostate
cancer cells, Smad3 can function as a positive coregulator of AR [20].
Thus, because EC is a sex hormone-dependent cancer, it would be
interesting to investigate the interrelationship between BMP/Smad
signalling and the AR axis in EC. Since AR is also a transcription factor,
it generally regulates downstream gene expression by binding to the
androgen response element (ARE) in the promoter region of a target
gene [19]. KANK1 was defined as an anti-oncogene for the first time in
renal cell carcinoma [23]. This gene is downregulated in a variety of
cancers, including renal cell carcinoma, nasopharyngeal carcinoma,
gastric cancer, and others [23–25]. By regulating RhoA activity via PI3K/
Akt signalling, KANK1 can regulate actin polymerisation, and inhibit
cell migration [26]. Our earlier findings indicated that the PI3K/Akt
pathway was closely related to progestin resistance [27]. Therefore, we
speculated that KANK1 may be involved in progestin sensitivity.
Our goal in this study is to investigate: (1) the role of TSLP in

reversing progestin resistance or facilitating progestin sensitivity;
(2) how AR signalling contributes to TSLP-mediated progestin
sensitivity; and (3) the relationship between TSLP-AR-KANK1
signalling and EC clinical outcomes. These findings will be
beneficial for the development of new therapeutic strategies for
the conservative treatment of EC.

MATERIALS AND METHODS
Cell lines and cell culture
All cell lines were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). The human EC cell lines ECC1 (RRID:

CVCL_7260) and SPEC2 (RRID: CVCL_A679) were cultured in RPMI-1640
medium (Gibco, USA) supplemented with 10% foetal bovine serum (Gibco,
USA) and 1% penicillin/streptomycin (Gibco, USA). The human endometrial
adenocarcinoma cancer cell lines Ishikawa (RRID: CVCL_2529), HEC1B
(RRID: CVCL_0294), AN3CA (RRID: CVCL_0028) and normal human
endometrial stromal cell (HESC) (RRID: CVCL_C464) were cultured in
DMEM medium (Gibco, USA) supplemented with 10% foetal bovine serum,
and 1% penicillin/streptomycin in a humidified atmosphere of 5% CO2 at
37 °C. All cell lines were authenticated in the past 3 years by short tandem
repeat identification, and all experiments were performed with
mycoplasma-free cells.

Protein microarray analysis of IVF-generated fluids
In case it forms the ice crystal during vitrification of the embryos selected
for clinical use at the Reproductive Medicine Center, high-quality
blastocysts were routinely treated with laser and then the blastocyst fluid
flowed out and has been collected as described previously [7]. We used
commercial G2 blastocyst medium without cultured embryos as a control,
and chose Raybiotech’s AAH-BLM-1000 ProteinChip to test in accordance
with standard operating procedures. Informed consent was obtained from
all subjects. The study was approved by the Medical Ethics Committee of
Shanghai General Hospital, Shanghai Jiao Tong University, with a project
licence number of 2021KY130.

Transient transfection of plasmids and construction of stable
cell lines
The TSLP, TXK, APEX1, ADAMTSL2, TNK1, LALBA, RYK and AR over-
expression plasmids were constructed in the pCDNA3.1 vector and
maintained in our laboratory. The KANK1, Smad5 overexpression plasmids,
and the shRNA-KANK1 plasmid were purchased from Shandong WZ
Biosciences Inc. (Shandong, China). The plasmids Flag-BMP4, HA-BMP4,
and Flag-BMP7 were purchased from Shanghai Generay Biotech Co., Ltd
(Shanghai, China). The above plasmids were transfected into EC cells using
LipofectaminTM 3000 (Invitrogen, USA) according to the manufacturer’s
instructions. Stably transfected cell lines overexpressing Flag-TSLP were
produced using retrovirus as previously described [28].

Immunoblot analysis
Immunoblot analysis was performed as previously described [7]. Detailed
methods are provided in the Supplementary Methods. The primary
antibodies used for western blot included anti-TSLP, anti-Cyclin D1, anti-
AR, anti-PR and anti-β-actin (all from Cell Signaling Technology), anti-α-
Tubulin, anti-BMP4, anti-BMP6, anti-BMP7, anti-Smad1, anti-Smad5, anti-
Smad9, anti-phospho-Smad5 and anti-Lamin B1 (all from Abcam), and anti-
KANK1 (Santa Cruz Biotechnology).

RNA extraction and transcriptome sequencing
According to the manufacturer’s protocol, total RNA was extracted from
Ishikawa and Ishikawa-TSLP cell lines using the TRIzol reagent (TAKARA,
Japan). The cDNA library was created by Personalbio (Shanghai Personal
Biotechnology, Co., Ltd., Shanghai, China) using the TruSeq RNA Sample
Prep Kit (Illumina). Quantification was performed using the Quantifluor-ST
fluorometer (Promega, E6090) and the Quant-iTPicoGreen dsDNA Assay Kit
(Invitrogen, P7589), and qualified by using Agilent 2100 Bioanalyzer and
High Sensitivity DNA Kit (5067-4626, Agilent Technologies, USA). Following
that, 100-bp paired-end reads were used for paired-end sequencing on an
Illumina Hiseq 2000 platform at Personalbio.

Quantitative real-time PCR (qPCR)
TRIzol reagent was used for RNA extraction, which was followed by reverse
transcription with a reverse transcriptase kit (TAKARA, Japan) according to
the manufacturer’s instructions. The ABI QuantStudio6 system was used to
perform qPCR. Relative expression levels were calculated using the 2-ΔΔCt

method using GAPDH as a loading control. The PCR primers are listed in
Supplementary Table 1.

Hormone treatment and cell proliferation
A total of 3000 cells were inoculated in each well of a 96-well plate.
Medroxyprogesterone acetate (MPA) was applied to treat EC cells for the
given time and at the given dose. Then, 10 μL of CCK-8 reagent (Dojindo,
Japan) was added directly to each well of culture medium at the indicated
times. The cells were then incubated in a 37 °C incubator for 2 h and the
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optional density (OD) was measured at 450 nm using a microplate reader
(BioTek Instruments, USA).

Dual-luciferase reporter assay
The AR-Luc reporter plasmid was purchased from Shanghai Genomeditech
(Shanghai, China). The ARE sequences in the KANK1 promotor and the
corresponding mutant sequences were designed and inserted into the
pGL4.74 vector, with the resulting luciferase reporter plasmids termed
KANK1-AREs, and AREs-mut, respectively. The Dual-Luciferase Assay Kit
(Promega) was used to evaluate the relative luciferase activity. The pGL4.27
plasmid was transfected as a negative control. The ARE sequences in the
KANK1 promotor and the corresponding mutant sequences were as
follows:
#1:AAAAGACTGTGTTCT Mutant #1: AAAGGACTGTGGGAT
#2: GTAAGTGTTTGTTCT Mutant #2: GTAGGTGTTTGGGAT
#3: AACAGTTTATGTTCT Mutant #3: AACGGTTTATGGGAT
#4: GGTTCAAGCAGTTCT Mutant #4: GGTGCAAGCAAGGCT.

Electrophoretic mobility shift assay (EMSA)
The extraction method of cellular nuclear proteins was based on previous
reports [29]. The biotin-labelled oligonucleotides utilised as probes were
purified using Sephadex G50 spin columns. The labelled probe was
incubated at 50,000 c.p.m. with nuclear extracts (20mg) [29]. The mixture
was incubated for 20min at room temperature in the presence or absence
of the unlabelled competitive oligonucleotide. Then the whole reaction
mixture was subjected to electrophoresis on a 6% polyacrylamide gel for
3 h at 150 volts. The sample was then transferred to a nylon membrane at
380mA (~100 V) for 30–60min using 0.5×TBE solution as the transfer
solution. Next, the nylon membrane was placed in a UV crosslinker,
selecting 254 nm UV wavelength, and crosslinked at 120mJ/cm2 for
45–60 s. Then the nylon membrane was put into the sealing solution for
sealing. Finally, the biotin-labelled probes were detected by
chemiluminescence.

Co-immunoprecipitation (Co-IP)
Ishikawa cells were co-transfected with HA-tag BMP4 plasmid, Flag-tag
BMP4 plasmid, and Flag-tag BMP7 plasmid, and then treated with 100 ng/
ml rhTSLP for 48 h or left untreated. Cells were lysed with NP-40 lysis
buffer. Cell lysates were incubated with an anti-HA polyclonal antibody
and protein G-agarose beads (Roche) overnight at 4 °C. The agarose beads
were then washed three times with weak protein lysate. Finally, the
agarose beads-antigen-antibody complexes were collected and boiled at
100 °C for 10min as IP samples. The samples were centrifuged at 2000 rpm
for 3min and the supernatants were collected to verify protein binding by
western blot.

Chromatin immunoprecipitation (ChIP)
The ChIP assay was carried out using a ChIP Assay Kit (Beyotime). Cells
were fixed and harvested using the manufacturer’s protocol. DNA was
sonicated and was then incubated with the indicated antibodies. The
quantity of bound DNA was determined using qPCR. The primer
sequences utilised were as follows: 5’-TAACTGGCCGGTACCG-3’ and 3’-
TAAGCTTCTGCAGATC-5’. The process of qPCR was as follows: Denaturing
at 95 °C for 10 s, Annealing at 60 °C for 30 s, 40 cycles. The value of
enrichment was calculated based on the relative amount of input and
the ratio of IgG.

Immunofluorescence
Immunofluorescence was performed as previously described [7]. An anti-
phospho-Smad5 antibody (Beyotime) was used for immunofluorescence
analysis. Pictures were taken under a fluorescence microscope (Leica,
Munich, Germany).

Clinical specimens and immunohistochemical (IHC) analysis
A total of 135 samples were collected from the Department of Obstetrics
and Gynaecologist at Shanghai General Hospital in China, comprising
117 samples of EC and 18 samples of the proliferative phase. The
experiments were undertaken with the understanding and written
consent of each subject. The study methodologies conformed to the
standards set by the Declaration of Helsinki. Tissues were obtained in
accordance with the Medical College’s Institutional Review Board’s rules
from Shanghai Jiao Tong University in China, with a project licence

number of 2022KY053. Samples were stained for TSLP (Abcam,
ab188766, 1:400), AR (Cell Signaling Technology, #5153, 1:400) and
KANK1 (Santa Cruz, sc-517629, 1:200). IHC staining and scoring were
carried out exactly as previously demonstrated [30, 31].

In vivo xenograft experiments
The animal experiments in this study were authorised by Shanghai
General Hospital’s Animal Ethics Committee, with a project licence
number of 2020AW121. Ishikawa or Ishikawa-TSLP endometrial cancer
cells were subcutaneously implanted into female BALB/c nude mice
(1 × 106 cells, respectively, n= 5). The mice were then randomly divided
into groups of five mice each. After the tumours were successfully
implanted, the mice were injected intraperitoneally with MPA at a dose
of 100 mg/kg every 2 days according to their body weight, and the mice
were weighed. The control group was injected with an equal volume of
saline. Tumour volume was measured with callipers three times a week.
Tumour volume was calculated as (length × width2)/2. The tumours from
these animals were harvested for IHC experiments and weighed as
previously reported [32].

Statistical analysis
Sample size and statistical tests are described in the figure legends. Every
series of data are shown as mean ± SEM. Data analysis was conducted using
SPSS 19.0. The Kolmogorov–Smirnov test was used for the normality test. The
Student’s t test (two groups), or one-way analysis of variance (ANOVA) (more
than two groups) was used to compare the data that were normally
distributed. Mann–Whitney U test was used when data were not normally
distributed. The Kruskal–Wallis test was performed to compare quantitative
factors between three groups. Pearson correlation test was used to examine
the association between the IHC staining of the TSLP, AR and KANK1 proteins.
P< 0.05 indicates a significant difference compared with the control group.

RESULTS
TSLP facilitates the sensitivity of EC cells to progestin
To identify the critical factors within the embryonic microenviron-
ment facilitating the response to MPA, we screened the IVF-
generated human embryonic sac-derived fluid and all proteins with
expression differences are listed in Supplementary Table 2. The top
20 upregulated factors are shown in Fig. 1a, with blank G2
blastocyst culture medium as a control. TSLP is included, with an
~12-fold increase. Seven candidate molecules (TSLP, TXK, APEX1,
ADAMTSL2, TNK1, LALBA and RYK) were selected for determination
of their roles in EC cell growth according to their function
annotations. TSLP exhibited the maximal inhibitory effect on cell
proliferation among these factors in both Ishikawa and ECC1 cell
lines (Fig. 1b). It has been demonstrated that TSLP is secreted
mainly by primary epithelial cells in response to some microbial
products, inflammatory cytokines, or physical injury [33]. This
prompted us to investigate the expression profile and roles of TSLP
in the glandular epithelium of EC. We hypothesised that aberrant or
a lack of TSLP expression in EC cells results in uncontrollable
proliferation. As expected, compared with the normal HESC cells, EC
cells showed a relatively lower level of TSLP expression, including
the Ishikawa, ECC1, HEC1B, SPEC2, and AN3CA cell lines (Fig. 1c).
Moreover, TSLP was highly expressed in the normal endometrium
in the TCGA database (Supplementary Fig. 1a). TSLP suppressed EC
cell proliferation in a dose-dependent manner (Fig. 1d), which
paralleled the decline in the Cyclin D1 level (Fig. 1e). Most
importantly, TSLP overexpression reinforced the effect of MPA on
proliferation arrest (Fig. 1f). These findings suggest that TSLP
expression declines in EC cells and that TSLP downregulation might
contribute to blunted response to MPA. In addition, the inhibitory
effect of transfected TSLP plasmid on the invasion and migration of
EC cells was observed (Supplementary Fig. 1b–d).

Augmented AR signalling attributes to intensive progestin
response
To explore the underlying mechanisms by which TSLP promotes
the progestin response, gene expression profiles were
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quantitatively analysed by RNA-seq in Ishikawa and Ishikawa-TSLP
cells. The regulation of cell proliferation, PR, and AR signalling
pathways were shown to be involved in TLSP-mediated regulation
by GO enrichment analysis (Fig. 2b). Immunoblotting revealed that
TSLP had no effect on PR expression but enhanced AR expression in
a dose-dependent manner (Fig. 2c). Given that PR and AR share
similar biofunctions and parts of downstream genes [16], we
analysed the correlation between their expression levels in EC. A
positive association was found based on the TCGA dataset in GEPIA
(Supplementary Fig. 2a). A high expression level of AR was also
positively correlated with the overall survival rate of EC patients
(Supplementary Fig. 2b), and AR was highly expressed in normal
endometrium compared with carcinoma tissue in the TCGA
database (Supplementary Fig. 2c), suggesting a potential role of
AR expression in predicting a good clinical outcome. Thus, there is a
need to determine whether AR contributes to TSLP-driven
progestin sensitivity. It has been found that TSLP upregulated AR
in both mRNA and protein levels (Fig. 2c, d). Furthermore, TSLP

overexpression mediated enhanced AR transcriptional activity in a
dose-dependent manner by dual-luciferase reporter assay (Fig. 2e).
The increase in AR expression significantly suppressed EC cell
growth (Fig. 2f) and was accompanied by decreased Cyclin D1
expression (Fig. 2g). AR overexpression plus MPA treatment
arrested cell proliferation activity compared with AR transfection
or MPA treatment alone, and the change in the proliferation profile
upon the indicated treatment was negatively correlated with the
change in the AR expression pattern (Fig. 2h). To determine the
underlying mechanism by which TSLP enhanced the progestin
response, the AR expression pattern in cells with the indicated
treatment was detected. As shown in Fig. 2i, overexpression of TSLP
combined with MPA treatment increased AR expression. Conver-
sely, knockdown of AR attenuated TSLP overexpression-induced
proliferation arrest (Fig. 2j). Immunoblot confirmed the effect of
siRNA in knocking down AR protein (Fig. 2j). Together, these data
demonstrate that TSLP triggers AR signalling activation and in turn
sensitises EC cells to progestin treatment.
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TSLP upregulates AR through the BMP4/Smad5 pathway
The mechanism by which TSLP regulates AR remains unclear.
KEGG pathway (Fig. 2a) and GO enrichment analyses (Fig. 2b) of
the RNA-seq data showed that “TGF-β signalling pathway”, “BMP
signalling pathway” and “Smad protein signal transduction” were
involved in the regulation of EC proliferation by TSLP. According
to these results as well as the associations among TGF-β, BMP and
Smad previously reported [21], we assumed that TSLP regulates
AR via the BMP/Smad pathway. We measured the protein levels of
BMP4, BMP6, and BMP7 when TSLP was overexpressed. Among
these BMP subtypes, induced expression of only BMP4 was
observed, the rest have no significant changes (Fig. 3a). Higher
levels of Smad-dependent signalling are triggered by hetero-
dimeric BMPs than by homodimeric BMPs [34]. We further
evaluated whether TSLP affects the dimerisation of BMP4 in EC
cells after treatment with 100 ng/ml of rhTSLP, a concentration
defined based on its dose-dependent effect on cell growth
(Supplementary Fig. 3). The co-IP assay showed that TSLP mainly
promoted the formation of the BMP4/BMP7 heterodimer, not the
BMP4/BMP4 homodimer (Fig. 3b).
As Smad family genes are downstream genes regulated by

BMPs, we attempted to determine which member of the Smad
family is involved in the TSLP-mediated enhancement of AR

expression. Knockdown of Smad5 blocked the TSLP-induced
upregulation of AR mRNA expression, while silence other Smad
members slightly attenuated TSLP-induced AR without significant
difference (Fig. 3c). Immunoblot confirming the specificity of
siRNA in knocking down Smad1, 5 and 8 protein is shown in
Supplementary Fig. 4. As shown in Fig. 3d, e, TSLP was able to
upregulate the protein and mRNA expression of Smad5. The
expression of BMP4 and Smad5 were upregulated under rhTSLP
treatment (Supplementary Fig. 5). TSLP also increased the
p-Smad5 protein level with a dosed manner (Fig. 3e). These
findings suggest that TSLP not only increases Smad5 expression
at the transcriptional level, but also regulates Smad5 activity via
the BMP4/7 heterodimer, which both ultimately increases the
abundance of p-Smad5 and promotes downstream transcription.
As shown in Fig. 3f, overexpression of Smad5 markedly enhanced
AR transcriptional activity by dual-luciferase reporter assay.
Furthermore, we used EMSA to determine whether Smad5 is
recruited to the promoter of AR. As expected, Smad5 over-
expression significantly increased protein-DNA association
(Fig. 3g, Lane 2), which was efficiently competed by a 100-fold
molar excess of unlabelled probe (Fig. 3g, Lane 3). This inhibition
was no longer detectable when a mutated oligonucleotide was
used (Fig. 3g, Lane 4). ChIP assays further confirmed this
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Fig. 2 Augmented AR signalling attributes to intensive progestin response. a KEGG pathway-rich analysis of the RNA-seq assay. b GO
analysis of the RNA-seq assay. cWestern blot was performed to determine the PR and AR expression after TSLP overexpression in EC cells. d The
expression of AR mRNA level after TSLP overexpression in EC cells were detected with Real-time PCR, respectively. e The luciferase activities was
detected after co-transfection with the AR-Luc reporter plasmid, TSLP plasmid, or pGL4.27 plasmid, respectively. The dose of TSLP plasmid is
1 μg, 2 μg, and 4 μg respectively. f CCK-8 assay was performed to determine the cellular proliferation after transfection with an increasing dose
of AR plasmid. g Western blot analysis of AR and Cyclin D1 after transfection with increasing doses of AR plasmid. h EC cells underwent
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observation. As shown in Fig. 3h, approximate threefold increase
of Smad5 recruited to AR promoter. As nuclear translocation is
the critical step for p-Smad5 activation, the translocation
phenomenon has been observed. TSLP treatment resulted in
increasing of p-Smad5 level in the nucleus (Fig. 3i). Accumulation

of the red fluorescence signal representing p-Smad5 was present
in the nucleus after TSLP treatment (Fig. 3j). The findings
indicated that TSLP regulates AR expression in EC cells by
promoting the entry of p-Smad5 into the nucleus, where it binds
to the promoter of AR.
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KANK1 is required for TSLP-mediated enhancement of the
progestin response
As a transcription factor, AR generally regulates downstream
target gene expression by binding with an ARE in the target gene
promoter region [19]. We predicted the potential targets of AR by
using the CHEA Transcription Factor Targets dataset and CHIP-seq

databases (GSM2235688 and GSM1909088). By intersecting the
results of the three prediction tools, we identified 260 candidate
genes for further validation (Fig. 4a). Then we performed GO
analysis through the DAVID database (Fig. 4b) and scanned the
promoter regions of the candidate genes. KANK1 was found to
contain four ARE sequences (Fig. 4c). Further investigation
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revealed that AR upregulated KANK1 at both the protein (Fig. 4d)
and mRNA (Fig. 4e) levels. The expression of AR and KANK1 were
upregulated under rhTSLP treatment (Supplementary Fig. 5).
According to the CCK-8 assay, KANK1 overexpression drastically
reduced the viability of EC cell proliferation with a dose manner
(Fig. 4f). We also observed that the inhibitory effect of progestin
on cell proliferation was enhanced by KANK1 overexpression
(Fig. 4g). Therefore, overexpression of KANK1 may play a critical
role in enhancing the sensitivity of EC cells to progestin.
To identify which ARE is the responsive element, we con-

structed four luciferase reporter plasmids (named KANK1-ARE-1,
KANK1-ARE2, KANK1-ARE3, and KANK1-ARE4), each containing
one of the ARE sequences. Transfection of AR markedly increased
the luciferase activity by approximately fourfold in KANK1-ARE-1-
and KANK-ARE2-transfected cells, eightfold in KANK1-ARE3-
transfected cells, and sixfold in KANK1-ARE4-transfected cells
(Fig. 4h), while AR could not increase the luciferase activity in cells
transfected with the mutant ARE plasmid (Fig. 4c, h). Although the
response extent differed, the results suggest that all four ARE
sequences were functional in the KANK1 gene in response to AR
axis signalling.
We carried out EMSA on each of the four ARE sequences to

further confirm the specificity of the putative ARE sites (Fig. 4i). For
EMSA of the ARE-1 sequence, components present in the nuclear

extracts of Ishikawa cells slowed the mobility of the putative ARE
domains in a particular way (Fig. 4i, Lane 1). Notably, AR
overexpression significantly increased the protein-DNA interaction
(Fig. 4i, Lane 2), which was offset by a 100-fold molar excess of
unlabelled probe (Fig. 4i, Lane 3). This inhibition was absent when
a mutated putative ARE oligonucleotide was used (Fig. 4i, Lane 4).
The trend of EMSA results for other ARE sequences was the same
as ARE-1. Furthermore, in order to verify whether TSLP has an
effect on the transcriptional regulation of KANK1, ARE luciferase
reporter plasmids and AR plasmid were transfected into Ishikawa
cells prior to TSLP treatment. The notable elevation of AR
transcription activity has been obtained with AR transfection plus
TSLP treatment (Fig. 4j). To further investigate the effect of KANK1
on the mechanism by which TSLP enhances progestin sensitivity,
three shRNAs targeting KANK1 (shKANK1) were constructed.
shKANK1#1 was used for the subsequent experiments owing to
its strong inhibitory effect (Supplementary Fig. 6). We found that
under progestin treatment, knockout of KANK1 significantly
weakened the inhibitory effects of TSLP (Fig. 4k) and AR (Fig. 4l)
on proliferation in both Ishikawa and ECC1 cells. These results
indicate that KANK1 is the necessary effector molecule for TSLP-
mediated enhancement of the progestin response. Since hormone
withdrawal is known to cause endometrium ‘breakdown’, we
tested whether MPA removal can change AR and KANK1
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Fig. 5 Expression profiles of TSLP, AR and KANK1 in endometrial cancer and the clinical outcome. a IHC staining of TSLP, AR and KANK1 in
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expression, as well as cell growth. As indicated in Supplementary
Fig. 7, AR and KANK1 expression was elevated 48 h after MPA
removal, and this elevation became pronounced after 72 h. MPA
removal resulted in a reduction in cell proliferation, consistent
with the above findings. Notably, MPA withdrawal combined with
TSLP overexpression further inhibited the proliferation of EC cells
and upregulated the expression of AR and KANK1. This further
suggests that TSLP treatment enhances EC sensitivity to progestin
and that TSLP acts by modulating the AR/KANK1 signal pathway.

Expression profiles of TSLP, AR and KANK1 in endometrial
cancer and the associations with clinical outcomes
To further investigate the link among TSLP, AR, and KANK1, we
used IHC staining to identify TSLP, AR, and KANK1 expression
patterns in serial sections of endometrial tissue samples with
gradual malignant progression (Fig. 5a). The intensity of staining
for these molecules was highest in normal endometrium and the
expression of the aforementioned molecules was reduced as the
lesions progressed from histological grade I to III (Fig. 5b and
Table 1). In addition, we discovered comparable patterns of TSLP,
AR and KANK1 staining levels across any pathologic endometrial
period (Fig. 5c). PR and ER are common hormone receptors in EC,
and we tested whether the expression of TSLP, AR and KANK1 is
associated with that of either receptor. The expression of TSLP, AR
and KANK1 was positively correlated with that of PR with statistical
differences, consistent with the previously mentioned role of each
of these three molecules in enhancing progestin sensitivity
(Fig. 5d). However, the correlations of their expression with ER
expression were not significant (Fig. 5e). We also found that the
expression of these three molecules was negatively correlated
with the expression of p53 and ki67, suggesting that these three
molecules have a suppressive impact on EC growth (Fig. 5f, g).
Furthermore, there was a statistically significant association

between AR expression and the level of tumour infiltration
(Table 1), suggesting that AR is a good prognostic marker in EC.

TSLP sensitised endometrial cancer to progestin treatment
in vivo
Female BALB/c mice (n= 5) were implanted with Ishikawa and
Ishikawa-TSLP cells in xenograft assays to establish the effect of
TSLP on sensitising EC cells to progestin in vivo (Fig. 6a). After
tumour implantation, mice were injected intraperitoneally with
100mg/kg of MPA or normal saline every 2 days according to their
body weight. The mice were observed for tumour growth and
weighed in 20 days. MPA treatment dramatically reduced tumour
development in nude mice in the Ishikawa-TSLP group, including
average tumour volume (Fig. 6b, c) and weight (Fig. 6d). IHC
assays also revealed that TSLP overexpression increased the
expression of p-Smad5, BMP4, AR and KANK1 while decreasing the
expression of PCNA in xenograft tumour tissues (Fig. 6e) and the
changes have been summarised in Supplementary Fig. 8. All of the
abovementioned findings suggest that TSLP as an anti-oncogene
promotes the expression of AR through the BMP4/Smad5 path-
way, following enhancement of KANK1 transcription, and then
facilitates the EC cell response to progestin treatment (Fig. 6f).

DISCUSSION
In this study, we identified a novel molecule, TSLP, that could sensitise
EC cells to progestin, which is secreted by IVF-generated blastocysts.
TSLP-driven progestin sensitivity is mediated by the upregulation of
AR via the BMP4/Smad5 pathway. Importantly, we first identified
KANK1 as a novel AR target gene and an effector molecule controlling
the progestin response via the TSLP/BMP4/Smad5/AR/KANK1 axis.
The role of TSLP in tumorigenesis is controversial [35]. TSLP was

found to be produced by breast cancer cells, resulting in Th2

Table 1. Correlations of TSLP, AR, KANK1 and major clinical pathologic factors.

Factors No. of
patients

TSLP positive TSLP
negative

P
value

AR positive AR
negative

P
value

KANK1
positive

KANK1
negative

P
value

+ +
+

+
+
+

+ +
+

+
+
+

+ +
+

+
+
+

Age (year) 0.476a 0.411a 0.421a

<50 32 16 8 8 0 26 2 1 3 10 6 14 2

≥50 85 52 13 20 0 62 5 8 10 32 5 46 2

Histological
grade

0.035b 0.039b 0.027b

Low (I) 60 27 10 23 0 44 5 6 5 20 7 31 2

Intermediate
(II)

31 15 10 6 0 25 1 3 2 12 11 8 0

High (III) 26 19 4 3 0 19 1 0 6 15 4 5 2

Clinical stage 0.135a 0.949a 0.406a

I 97 60 16 21 0 72 6 9 10 38 8 48 3

II–IV 20 8 5 7 0 16 1 0 3 4 3 12 1

Lymph node
metastasis

0.657a 0.966a 0.842a

No 112 65 21 26 0 84 7 9 12 42 9 58 3

Yes 5 3 0 2 0 4 0 0 1 0 2 2 1

Invasion 0.789a 0.02a 0.557a

<1/2 81 47 15 19 0 62 5 9 5 30 7 43 1

≥1/2 36 21 6 9 0 26 2 0 8 12 4 17 3
aMann–Whitney U test.
bKruskal–Wallis test.
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inflammation and promoting tumorigenesis [36]. Conversely, in
breast cancer mouse models, TSLP-mediated inflammation has
been shown to decrease tumour development [11]. In addition,
TSLP could establish an inflammatory microenvironment to
protect against skin tumorigenesis [13]. In a randomised
controlled study, the synergistic suppressive effects of a TSLP
inducer and 5-FU treatment in skin cancer were well confirmed
[37]. The later studies are consistent with our current finding that
TSLP exerts an antitumor effect in EC (Fig. 1d). The extended
protective role of TSLP in other gynaecological processes, such as
pregnancy, embryo development, and implantation has also been
observed [38]. Considering that TSLP is an epithelium-derived
cytokine, we further hypothesised that the loss of TSLP in
endometrial gland epithelial cells may contribute to EC

development and attenuate the response to progestin treatment.
Indeed, a decline in the expression of TSLP in EC was observed
(Fig. 5a). The clinical investigation indicated that loss of TSLP is
tightly associated with malignant progression of EC (Table 1).
TSLP was the most highly expressed protein in the fluid

obtained from IVF-generated blastocysts (Fig. 1a), indicating that
TSLP may be related to embryonic development. Therefore, we
hypothesised that TSLP may regulate embryonic development-
related signalling pathways. Through KEGG and GO enrichment
analyses, we identified the BMP/Smad pathway (Fig. 2a, b). In
mature BMP protein complexes, two monomers are covalently
linked by disulfide bonds [39]. BMP-target genes can be activated
by heterodimeric BMPs to result in considerably higher levels of
Smad-dependent signalling than those induced by homodimeric
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BMPs [40, 41]. Cross-talk between TGF-β and androgen-signalling
pathways has previously been reported in prostate cancer [42].
However, the association between AR and Smads in EC has not
been reported. In this study, we first found that TSLP mainly
promoted the formation of the BMP4/BMP7 heterodimer (Fig. 3b)
and thus promoted Smad5 binding to AR (Fig. 3f, g).
An increasing number of studies have demonstrated that AR

plays a protective role in EC. AR protein levels have been shown to
decrease as EC progresses from a well-differentiated to a poorly
differentiated tumour [43]. In mammalian cells expressing
exogenous or endogenous AR, MPA exerts substantial agonistic
effects on androgen. AR transcriptional activity was significantly
increased in the COS-1 cell line after transient AR expression and
MPA administration [44]. By upregulating AR signalling, progestin
may also decrease the stimulatory effects of oestrogen signalling
on the endometrium [14, 45]. In this study, we discovered that AR
inhibited the proliferation of EC cells (Fig. 2f, g) and was primarily
responsible for increasing progestin sensitivity in EC cells
(Fig. 2h–l). However, the mechanisms underlying the suppression
of EC cell proliferation by activated AR remain unknown. We first
identified KANK1 as an AR target gene because it contains four
AREs, and each ARE is required for AR-mediated regulation of
KANK1 transcriptional activity. KANK1 has been identified as a
tumour suppressor [46, 47]. The roles of KANK1 in tumours mainly
include affecting tumour cell apoptosis and cell cycle. KANK1 has
been reported to play a role in promoting cell apoptosis in lung
cancer cells by regulating the Bcl-2/Bax signalling pathway,
thereby acting as anti-oncogene in lung cancer [46]. Through
enhanced apoptosis, KANK1 overexpression made cells more
susceptible to cisplatin [48, 49]. Moreover, CircDDX17 inhibits
carcinogenesis and lowers 5-fluorouracil resistance in colorectal
cancer by modulating KANK1 expression [50]. In addition, KANK1
inhibits tumour growth by regulating the cell cycle. In lung cancer,
KANK1 overexpression caused tumour cells to arrest in the G0/G1
phase and significantly inhibited the proliferation of lung cancer
cells [46]. Functionally, overexpression of KANK1 increased the
effectiveness of progestin in inhibiting EC proliferation and TSLP
enhanced progestin sensitivity by upregulating KANK1 expression
(Fig. 4g, l).
One of the primary causes of progestin resistance is believed to

be the downregulation of PR during long-term continuous
progestin therapy [51, 52]. Our previous findings showed that
the PR level might be effectively increased following MPA
withdrawal, resulting in increased progestin sensitivity [32]. In
this study, if TSLP was added externally during intermittent
administration, progestin resistance could be prevented more
effectively (Supplementary Fig. 7), suggesting that treatment with
TSLP plus MPA may be more effective than MPA alone in reducing
the possibility of progestin resistance.

CONCLUSIONS
In summary, we have first demonstrated that TSLP, as an anti-
oncogene in the IVF-originating human embryonic microenviron-
ment, facilitates progestin sensitivity via the BMP4/Smad5/AR/
KANK1 axis. In addition, our findings established a link between
reproduction and cancer, which may provide a new strategy to
overcome progestin resistance and benefit EC therapy.

DATA AVAILABILITY
The datasets used and/or analysed during this study are available from the
corresponding author on reasonable request.
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