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and Waleria Hryniewicz

National Institute of Public Health, Chełmska 30/34, 00-725 Warsaw, Poland

Received 18 November 2004/Returned for modification 24 December 2004/Accepted 27 January 2005

We have analyzed the susceptibility to ciprofloxacin of 697 pneumococcal isolates collected in 1998–2002 in
Poland from patients with respiratory tract diseases. Thirty-one ciprofloxacin-nonsusceptible isolates (MICs,
>4 �g/ml) were identified, of which two were resistant to levofloxacin (MIC, 8 �g/ml). Serotyping, pulsed-field
gel electrophoresis, multilocus sequence typing, and the analysis of resistance determinants showed their great
genetic diversity.

The constant increase in resistance of Streptococcus pneu-
moniae to �-lactams, macrolides, and tetracyclines has evoked
a need for alternative options in the treatment of pneumococ-
cal infections. New fluoroquinolones, such as levofloxacin and
moxifloxacin, are now considered to play this role in the case of
infections in adults. However, the first pneumococci resistant
to these compounds have appeared in some countries (5, 8, 9,
17, 19, 21, 32), and therapeutic failures have been reported
(22). Mechanisms of quinolone resistance in S. pneumoniae
include increased activity of the membrane pump PmrA (13)
and modifications of the cellular drug targets topoisomerase
IV (ParC/ParE) and DNA gyrase (GyrA/GyrB) (11, 18, 28,
29), located in their so-called quinolone-resistance-determin-
ing regions (QRDRs) (28, 29). Selection of these mechanisms
is partially exerted by the common use of an older quinolone,
ciprofloxacin, which is not recommended as an antipneumo-
coccal agent. Each of the mechanisms alone confers low-level
ciprofloxacin nonsusceptibility and increases the risk of acqui-
sition of further changes (14). The accumulation of mutations
in both ParC/ParE and GyrA/GyrB (3, 7, 18, 30, 32) results in
high-level nonsusceptibility to ciprofloxacin and resistance to
the newer compounds. Therefore, ciprofloxacin nonsuscepti-
bility is an important measure of the actual and potential
quinolone resistance of pneumococci (33).

The situation concerning resistance to quinolones in S. pneu-
moniae in Central and Eastern Europe has not been investi-
gated yet. The aim of our study was to evaluate the frequency
of ciprofloxacin nonsusceptibility in S. pneumoniae in Poland
and to reveal the genetic relatedness among nonsusceptible
isolates.

(This work was presented at RGPI-2, 10 to 12 December,
2004, Berlin, Germany.)

Six-hundred ninety-seven S. pneumoniae isolates were ob-
tained from individual patients with lower respiratory tract
diseases between 1998 and 2002 in 40 medical centers in 26
cities. The isolates were derived from sputum (562 isolates,

80.6%), bronchoalveolar lavage (75 isolates, 10.8%), and trans-
tracheal aspirate (60 isolates, 8.6%). MICs of ciprofloxacin
(Bayer AG, Leverkusen, Germany) were evaluated by the Na-
tional Committee for Clinical Laboratory Standards microdi-
lution method (26); due to the lack of an accepted breakpoint,
a pneumococcal isolate was considered nonsusceptible to cip-
rofloxacin when its MIC was �4 �g/ml (1, 8, 17). Such isolates
were tested as described above with levofloxacin (Aventis
Pharma, Romainville, France), moxifloxacin (Bayer AG, Le-
verkusen, Germany), penicillin (Sigma Chemical Company, St.
Louis, Mo.), and erythromycin (Fluka, Buchs, Switzerland),
using the National Committee for Clinical Laboratory Stan-
dards-approved breakpoints (26). PCR amplification and se-
quencing of QRDRs of gyrA, gyrB, parC, and parE genes was
performed as described by Pan et al. (29). The reserpine-
mediated inhibition of quinolone efflux was performed accord-
ing to the method of Broskey et al. (4). Serotypes of the
isolates were determined by the capsular swelling method at
the Statens Serum Institute (Copenhagen, Denmark). Pulsed-
field gel electrophoresis (PFGE) typing was performed as de-
scribed by Lefèvre et al. (23); isolates were considered indis-
tinguishable when they shared PFGE patterns and were
considered related when they showed a difference of one to
three bands. Multilocus sequence typing (MLST) was per-
formed as proposed by Enright and Spratt (10); the Internet-
accessible database (http://www.mlst.net) was used to assign
numbers to alleles and sequence types (STs).

Thirty-one isolates, i.e., 4.4% of the all 697 isolates studied
(Table 1), appeared nonsusceptible to ciprofloxacin, and they
originated from 12 towns uniformly distributed in the country.
Among these isolates, five were penicillin nonsusceptible, two
were erythromycin resistant and two (BY-2 and BY-3; 0.3%)
were resistant to levofloxacin (MIC, 8 �g/ml) and intermediate
to moxifloxacin (MIC, 2 �g/ml), which correlated with their
high-level ciprofloxacin nonsusceptibility (MICs, �32 �g/ml).
Both quinolone-resistant isolates were penicillin and erythro-
mycin susceptible. No significant difference in patients’ ages
between the ciprofloxacin-nonsusceptible and -susceptible
groups was found (56.7 � 19.6 and 52.8 � 21.2 years, respec-
tively; P � 0.3). The prevalence of ciprofloxacin nonsuscepti-
bility in S. pneumoniae is generally low worldwide; e.g., in the
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United States, it remained within the range of 1.2 to 1.6%
during 1994-2000 (6). However, in some countries, such as
Hong Kong, Ireland, and Spain, it has reached levels of 17.8%,
15.2%, and 5%, respectively (12, 15, 17). In Canada, the fre-
quency of ciprofloxacin nonsusceptibility increased from 0% in
1993 to 1.7% in 1997-1998 following the increase in quinolone
consumption (8). Therefore, while the observed rate of resis-
tance to newer quinolones remains low in Poland (0.3%), the
ciprofloxacin nonsusceptibility seems to be significant. Cipro-
floxacin was introduced into the country in 1991; in 2002, its
consumption in ambulatory care in Poland amounted to 0.5
defined daily doses/1,000 inhabitants/day, while in Spain it was
2.3-fold higher (16).

The reserpine-inhibited efflux was active in 19 ciprofloxacin-
nonsusceptible isolates and absent in 10 isolates (Table 1). In
11 isolates, the efflux was the sole determinant of nonsuscep-
tibility. Alterations in QRDRs of ParC/ParE or GyrA/GyrB
were identified for 18 isolates, and they included predomi-
nantly single ParC mutations (15 isolates) at mutational hot
spot Ser79 or Asp83 (29). Among them, the Ser79Phe substi-
tution was the most common (10 isolates). A single isolate
possessed the Pro454Ser substitution in ParE, which has been
described before for clinical isolates (7, 9) and laboratory mu-
tants (25). The role of some of the other observed substitutions
is most probably negligible (3, 20, 31). The two levofloxacin-
resistant isolates, in addition to the ParC mutation Asp83Asn,
had the hot spot alteration Ser81Phe in GyrA (2). The pro-
portions of frequency of the mechanisms of ciprofloxacin non-
susceptibility vary among countries; however, the alterations
only in ParC/ParE seem to dominate (3, 4, 6, 11, 29, 30),
reflecting the fact that ParC/ParE is a primary target for cip-
rofloxacin in pneumococcus (28, 29).

Eighteen serotypes were observed among the ciprofloxacin-
nonsusceptible pneumococci, with the most common, 23F, be-
ing represented by five isolates (Table 1). Twenty-eight PFGE
patterns were identified, and these could be classified into 25
distinct types. Three of the types (G, H, and Q) were differ-
entiated further into two subtypes each, and one of these
contained the levofloxacin-resistant isolates (type G). The re-
sults indicated the remarkable clonal diversity of ciprofloxacin-
nonsusceptible S. pneumoniae in Poland, and suggested that
they probably arose from multiple independent selection
events. Such variability seems to be typical for the organism
(24, 27), except in some countries, e.g., Spain, where clones
Spain9V-3 and Spain23F-1 constitute 30% of ciprofloxacin-non-
susceptible pneumococci (1). Sixteen isolates, representing se-
rotypes associated with the multiresistant international clones
(6A, 6B, 9V, 14, 15A, 19A, 19F, and 23F), and the two levo-
floxacin-resistant isolates were subjected to MLST (Table 1).
In general, the isolates were unrelated to the international
clones; however, two and one isolates represented Spain9V-3
(ST156) and Spain23F-1 (ST81) clones, respectively. This ob-
servation is noteworthy, since the effective spread of such
clones may quickly increase the rate of quinolone nonsuscep-
tibility in a local pneumococcal population, as shown in Hong
Kong (17). The levofloxacin-resistant isolates belonged to
ST191, which was observed before in some European and
South American countries (http://www.mlst.net).

In summary, the current frequency of ciprofloxacin-nonsus-
ceptible pneumococci in Poland, although not alarming, is

remarkable. The circulation of strains that are prone to de-
velop resistance also to newer quinolones may compromise
this therapeutic option in the future and undoubtedly requires
permanent epidemiological surveillance.
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