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BACKGROUND: Melanoma brain metastases (MBM) continue to be a significant clinical problem with limited treatment options.
Highly invasivemelanoma cells migrate along the vasculature and perivascular cells may contribute to residual disease and recurrence.
PTEN loss and hyperactivation of AKT occur in MBM; however, a role for PTEN/AKT in perivascular invasion has not been described.
METHODS:We used in vivo intracranial injections of murine melanoma and bulk RNA sequencing of melanoma cells co-cultured with
brain endothelial cells (brECs) to investigate brain colonisation and perivascular invasion.
RESULTS: We found that PTEN-null melanoma cells were highly efficient at colonising the perivascular niche relative to PTEN-
expressing counterparts. PTEN re-expression (PTEN-RE) in melanoma cells significantly reduced brain colonisation and migration along
the vasculature. We hypothesised this phenotype was mediated through vascular-induced TGFβ secretion, which drives AKT
phosphorylation. Disabling TGFβ signalling in melanoma cells reduced colonisation and perivascular invasion; however, the
introduction of constitutively active myristolated-AKT (myrAKT) restored overall tumour size but not perivascular invasion.
CONCLUSIONS: PTEN loss facilitates perivascular brain colonisation and invasion of melanoma. TGFβ-AKT signalling partially
contributes to this phenotype, but further studies are needed to determine the complementary mechanisms that enable melanoma
cells to both survive and spread along the brain vasculature.

British Journal of Cancer (2024) 130:555–567; https://doi.org/10.1038/s41416-023-02530-5

BACKGROUND
Melanoma has an unusually high frequency of metastasise to the
brain; among stage IV patients, 40–50% will develop clinically
detectable intracranial disease, while on autopsy, brain metastases
can be detected in over 70% of patients [1]. In addition, MBM
carries a poor prognosis with high morbidity and mortality [2, 3].
Despite the findings that systemic therapies, particularly targeted
therapies consisting of BRAF/MEK inhibitors and immunotherapy
with checkpoint blockade, have drastically improved patient
outcomes, these treatments have less efficacy in the brain. For
example, results from the COMBI-MB phase 2 trial for dabrafenib
plus trametinib demonstrated intracranial responses in patients
with BRAF-mutant melanoma and brain metastases; however, the
median duration of intracranial control was 6.5 months compared
to extracranial responses of 10.2 months. Tumour progression was
also higher in patients with intracranial or intracranial/extracranial
disease (47% and 25%, respectively) compared to patients with
only extracranial disease progression (9%) [4]. For immunotherapy
combining nivolumab plus ipilimumab, there was comparable
efficacy between extracranial and asymptomatic MBM, but lower
efficacy in symptomatic MBM as described in CheckMate-204 [5].
Furthermore, the addition of locoregional therapy (stereotactic
radiosurgery, conventional radiotherapy, and surgery) can further
improve outcomes when combined with systemic therapies [6].

However, while locoregional therapies are effective at treating
MBM, they cannot prevent the reoccurrence of new intracranial
lesions. In addition, multiple lesions in the brain are associated
with worse survival in several studies [7–9]. Thus, understanding
the mechanisms of melanoma dispersal and survival within the
brain is an important clinical challenge.
Melanoma, with its neural-crest lineage origins and high

plasticity, is suggested to revert to developmental programmes
that recapitulate invasion along the vasculature [10, 11]. Indeed,
MBM are strongly associated with an angiotropic/ perivascular
invasive phenotype in human samples [12–15]. In cutaneous
melanoma, angiotropism (also called vascular co-option) is
associated with poor survival and an increased risk of metastasis
[16, 17]. In addition, in murine models, melanoma cells proliferate
along the microvasculature and only occasionally induce angio-
genesis after large macrometastases have formed; melanoma cells
can also be found within a perivascular niche during dormancy
[18]. Targeting the molecular mechanisms that facilitate cancer
cell:endothelial cell (EC) interactions in the brain could therefore
be applied as a therapeutic modality [12, 18–21].
Despite pre-clinical and clinical descriptions of perivascular

invasion in MBM, few molecular mechanisms have been
elucidated [22]. One mechanism of vascular co-option that has
been studied in lung and breast cancer metastasis to the brain
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includes the upregulation of serpins to protect from FasL-
mediated cell killing alongside an upregulation of the adhesion
molecule L1CAM [23]. It has also been shown that PTEN is often
lowly expressed or mutated across a variety of brain metastatic
cancers [24]. In melanoma, PTEN is one of the most commonly
mutated members of the PI3K pathway (14% of TCGA melanoma
tumours) and often co-occurs with BRAF mutations [25, 26]. In
murine models, PTEN loss cooperates with BRAF to promote
tumorgenicity [27]. In addition, AKT1 overexpression combined
with PTEN silencing leads to MBM in 80% of tumour-bearing mice
[28]. These findings align with human studies describing loss of
PTEN expression in association with decreased overall survival and
time to brain metastasis formation in stage IIB/C BRAF-mutant
melanoma [29]. In addition, higher levels of activated AKT and
lower PTEN expression is found in MBM compared to extracranial
(lung and liver) metastases [30–32].
Given previous evidence that loss of PTEN likely plays a post-

extravasation role in brain metastases [24], we used intracranial
injection models to examine brain colonisation and perivascular
invasion in the post-colonisation stages of metastases. We found
that PTEN-null melanoma cells were highly invasive along the
brain perivascular niche compared to PTEN-expressing counter-
parts. Bulk RNA sequencing of melanoma cells differing in PTEN
status co-cultured with brECs revealed upregulation of TGFβ and
PI3K activation in PTEN-null melanoma cells. Finally, we used gain/
loss of function studies to demonstrate that PTEN is an important
brake on both brain colonisation and perivascular invasion,
whereas AKT has a more prominent role for overall tumour size
rather than perivascular motility.

METHODS
Cell culture
D4M.3A and SM1WT1 cells were cultured in DMEM/F-12 (#11330032,
Gibco, USA) supplemented with 5% foetal bovine serum (FBS) (#16000-044,
Gibco). D4M.3A were acquired from Drs. Constance Brinkerhoff and David
Mullins [33] and SM1WT1 cells were a gift from Dr. Tobias Bald. Brain
endothelial cells (b.End3) and mouse embryonic fibroblasts (MEFs) were
acquired from ATCC and cultured in 4.5 g/L D-glucose DMEM (#11965092,
Gibco) supplemented with 10% FBS. Mouse dermal ECs (MDEC) were
isolated by our lab [34] and cultured in 1 g/L D-glucose DMEM (#11885-
084, Gibco) supplemented with 10% FBS, 10% Nu-Serum IV (BD, USA),
5 ng/mL bFGF (Peprotech, USA), 10 ng/mL VEGFA (Peprotech), and 20 USP
units/mL heparin (Sigma, USA). All media were supplemented with
antimycotic/antibiotic (Gibco) and plasmocin (InvivoGen, USA). Cell lines
were periodically tested for mycoplasma. ECs and MEFs were cultured on
0.5% gelatin-coated plates. For co-culture experiments, ECs and MEFs were
allowed to adhere for 2 days prior to seeding with melanoma cells. FACS
was carried out using the ARIA Fusion Cell Sorter to re-separate melanoma
cells from ECs or MEFs. For TGFβ treatments, cells were incubated in low
serum (0.5% FBS in DMEM/F-12) with 10 ng/mL TGFβ2 (Peprotech).

Generation of cells with expression of PTEN or myrAKT
For expression of PTEN or myrAKT, target genes were cloned into the pLV-
mCherry vector (#36084, Addgene, USA) to obtain the pLV-Pten-p2A-
mCherry or pLV-myrAKT-p2A-mCherry plasmid, respectively. The mouse Pten
gene was amplified using primers (forward: 5’-gcgtctagagccaccATGACAGC-
CATCATCAAAGAGATCG-3’; reverse: 5’-gcgggatccaggaccggggttttcttccacgtctc
ctgcttgctttaacagagagaagttcgtggcctcgagaccggtGACTTTTGTAATTTGTGAATG
CTGA-3’) andmousemyrAKT gene was amplified using primers (forward: 5’-g
cgacgcgtgccaccATGGGGAGCAGCAAG-3’; reverse: 5’-gcgggatccaggaccgggg
ttttcttccacgtctcctgcttgctttaacagagagaagttcgtggcctcgagaccggtAGCGTAGTCT
GGGACGTCGTA-3’). Plasmids (pLV-Pten-p2A-mCherry or pLV-myrAKT-p2A-
mCherry, psPAX2, pMD2.6) were co-transfected into HEK293T cells using
lipofectamine 3000 (L3000001, Thermo Fisher, USA). D4M.3A cells were
infected with virus and FACS selected for mCherry+ cells.

Generation of CRISPR knockout (KO) cell lines
To generate D4M.3A TGFβR2 KO and SM1WT1 PTEN KO cells, target guides
were designed using the Broad Institute Genetic Perturbation Platform’s

sgRNA design tool (https://portals.broadinstitute.org/gppx/crispick/public).
The following sgRNA sequences were used: AAAAAGTCCGCGATTACGTC
and AAAACGGCTCGATCGGTGAT for Non-targeting; CCTCCAATTCAGGACC-
CACG and GGTTTGATAAGTTCTAGCTG for PTEN; and ACCTGCAGGAG-
TACCTCACG for TGFβR2. These guides were cloned into the lentiCRISPRV2
plasmid (#52961, Addgene) as described previously [35]. Cloned lenti-
CRISPRV2 was co-transfected into HEK293T cells with VSVG and delta8.9
plasmids using X-tremeGene HP DNA transfection reagent (Sigma).
D4M.3A and SM1WT1 cells were incubated with lentivirus and 8 µg/mL
polybrene. Two days post-infection, cells were puromycin-selected (2 or
6 µg/mL, respectively) prior to western confirmation of KO. Limiting
dilution assays were used to select for clonal populations.

Crystal violet (CV) assay
Cells were seeded at 2000 cells/well in a 96-well plate. On days 0–3, plates
were stained with 0.5% CV for 20min, washed 3× with tap water, dried,
and solubilized with methanol. Optical density at 570 nm was measured
with a plate reader.

EdU assay
Melanoma cells were seeded at 100,000 cells/well in a 6-well plate
overnight and incubated with 10 µM EdU for 2 h prior to staining with the
Click-It Plus EdU Alexa Fluor-647 kit (C10634, Thermo Scientific, USA) and
analysed with the Accuri C6 flow cytometer and FlowJo.

Adhesion assay
Melanoma cells were seeded at 100,000 cells/well in a 6-well plate
containing a confluent monolayer of brECs or MEFs. Cells were washed
with PBS to remove unadhered cells, fixed with 4% paraformaldehyde, and
DAPI stained. Images were taken using the Nikon Eclipse Ti-E inverted
microscope/NIS-Elements software and adhered cells were counted in
ImageJ.

Immunoblotting
Protein extraction and western blotting were carried out using standard
methods. Primary antibodies included GAPDH (1:2500, #5174, Cell
Signaling, USA), pAKT (1:1000, #4060, Cell Signaling), AKT (1:1000, #4691,
Cell Signaling), PTEN (1:1000, #9188, Cell Signaling), TGFβR2 (1:500, #79424,
Cell Signaling). Secondary antibody: HRP-conjugated peroxidase goat anti-
rabbit IgG (1:10,000, #PI-1000, Vector Laboratories, USA).

Luminex
To detect protein levels of TGFβ, supernatant was collected from mono-
cultured and co-cultured cells, concentrated 50X using Microsep Advance
Centrifugal Filters (MCP010C41, Pall Laboratory, USA), and run on a
Luminex panel containing active TGFβ1-3 (Millipore, USA).

Flow cytometry
Cells were fixed using 4% paraformaldehyde for 15min at room
temperature (RT) and permeabilized with 90% methanol on ice for
10min. Primary antibody for pAKT (1:200, #4060, Cell Signaling) was
incubated for 1 h at RT, followed by goat anti-rabbit IgG Alexa Fluor-488
secondary antibody (1:100, #A11034, Invitrogen, USA) for 30min at RT.
Cells were analysed using the Accuri C6 flow cytometer and FlowJo.

Real-time quantitative PCR
RNA extraction was performed using a Quick-RNA Microprep or Miniprep
Kit (Zymo Research R1050 or R1055, Zymo Research, USA). cDNA was
synthesised using iScript cDNA Synthesis Kit (1708891EDU, Bio-Rad, USA),
and qPCR reactions were completed using QuantStudio 12K Flex Real-time
PCR System. Primers used included: Tgfβ1 (forward: 5’-GATACGCCT-
GAGTGGCTGTCTT-3’; reverse: 5’-GCCCTGTATTCCGTCTCCTTG-3’); Tgfβ2 (for-
ward: 5’-GACCTTCTCGTCTCGTCCCT-3’, reverse: 5’-TGGAGTTCAGTGTGTCAG
GC-3’); Tgfβ3 (forward: 5’-GAGTGGCTGTTGAGGAGAGAGTC-3’, reverse: 5’-
CATTGGGCTGAAAGGTGTGAC-3’); Vegfa (forward: 5’-GCAGCGACAAGGCAG
ACTAT-3’, reverse: 5’-AAATCCCAGAGCACAGACTCC-3’); Vegfb (forward: 5’-C
CCAGAGCTGCCATCTAACAA-3’, reverse: 5’-GAGACAGCCAGCCAGAAGATG-
3’); Fgf2 (forward: 5’-CGTCAAACTACAACTCCAAGCAG-3’, reverse: 5’-CAGCC
GTCCATCTTCCTTCA-3’); Plgf (forward: 5’-CGACTCGTCCCTGCTGAATG-3’,
reverse: 5’-ATCCGTGGCTGGCTTCTTTC-3’); Pdgfb (forward: 5’-TCCTTCCTCTC
TGCTGCTACCT-3’, reverse: 5’-GCTCAGCATTTCATACAGTTCCTC-3’).
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Bulk RNA sequencing and analysis
RNA was harvested with Quick-RNA Microprep (Zymo Research R1050) and
sent to Novogene for bulk RNA sequencing and analysis. In brief, 1 µg RNA/
sample was used as input material, library was prepped using NEB Next
Ultra RNA Library prep for Illumina (NEB, USA), and purified PCR products
(AMPure XP system) were assessed for quality on the Agilent Bioanlyzer
2100 system. Index-coded samples were clustered on a cBot Cluster
Generation System using PE Cluster Kit cBot-HS (Illumina, USA). Raw reads
were processed through fastp and clean reads were obtained by removing
adapter, poly-N sequences, and reads with low quality. All downstream
analyses were based on clean data with high quality.
Paired-end clean reads were aligned to the reference genome (NCBI/

UCSC/Ensembl) using the Spliced Transcripts Alignment to a Reference
(STAR v2.5) software. STAR used the method of Maximal Mappable Prefix
(MMP) to generate a precise mapping result for junction reads. For
principal component analysis, samples were clustered using expression
level FPKM to see the correlation using hierarchical clustering distance
method with the function of heatmap, SOM (Self-organisation mapping)
and kmeans using silhouette coefficient to adapt the optimal classification
with default parameter in R. Differential expression analysis was performed
using the DESeq2 R package (2_1.6.3). The resulting P values were adjusted
using Benjamini and Hochberg’s approach for controlling the false
discovery rate (FDR). Genes with an adjusted P value < 0.05 found by
DESeq2 were assigned as differentially expressed. For KEGG enrichment
analysis, R package clusterProfiler was used to test the statistical
enrichment of differential expression genes in KEGG pathways (http://
www.genome.jp/kegg/). Gene length bias was corrected and adjusted P
values < 0.05 were considered significant enrichment.
Additional analysis was performed by the UVA Bioinformatics Core. In

brief, in-house developed programmes were used for adaptor identifica-
tion, and any contamination of adaptor sequence was removed with
cutadapt (https://cutadapt.readthedocs.io/en/stable/). Reads were mapped
to the genome with STAR. DESeq2 was used to perform differential gene
expression and low-expression genes (few replicates/low counts) were
excluded. Differentially expressed genes were ranked based on log2fold
change and FDR-corrected P values. The ranked file was used to perform
pathway analysis using GSEA software. The enriched pathways were
selected based on enrichment scores as well as normalised enrichment
scores.

Animal studies
All experiments were performed in accordance with the University of Virginia
guidelines for animal handling and care. Cdh5-CreERT2 mice were generated
by Ralf Adams (Max Planck Institute for Molecular Biomedicine). Ai6 ZsGreen
(#007906) and Pdgfrb-P2A-CreERT2 (#030201) were purchased from The
Jackson Laboratory. Cdh5-CreERT2 and Ai6 ZsGreen mice were crossed to
generate Cdh5-CreERT2; ZSGreenl/s/lmice (herein called ECiZSGreen). Pdgfrb-P2A-
CreERT2 and Ai6 ZsGreen mice were crossed to generate Pdgfrb-P2A-CreERT2;
ZSGreenl/s/l mice (herein called PDGFRβiZSGreen). All mice were on a C57BL/6
background. To reduce confounding factors, mice were fed a standard diet
and co-housed with mice of the same cohort. Littermates were used when
possible and males and females were randomised in equal proportions
between control and experimental groups. Intraperitoneal injection of
75mg/kg tamoxifen was performed three times over the course of 7 days in
mice ages 4–10 weeks to induce expression of the Cre-controlled ZSGreen
reporter; experiments were performed at least one week after induction.
Stereotaxic intracranial injection or organotypic brain slice culture experi-
ments were carried out with mice 7–16 weeks old. Studies were not blinded
and animals were excluded from quantitative analysis when no bulk tumour
was detected. A power analysis using preliminary data of bulk tumour size of
PTEN-null vs. PTEN-RE mice was used to determine an estimated sample size
of n= 6mice for intracranial experiments (alpha probability value= 0.05 and
power value= 0.8).

Stereotaxic intracranial injection
Using stereotaxic coordinates, 5000 mCherry-labelled melanoma cells/3 µL
of HBSS was injected intracranially into the right striatum of induced
ECiZSGreen or PDGFRβiZSGreen mice. For Empty vs. PTEN-RE experiment,
25,000 cells/3 µL of HBSS was used to allow for sufficient colonisation. Mice
were euthanized and brains were harvested two weeks post-injection.
Brain tissue was fixed in 4% paraformaldehyde overnight, followed by
soaking in 30% sucrose for 48 h at 4 °C prior to embedding in O.C.T
compound (Fisher Scientific, USA). A Leica microtome was used to cut
40 µm sections, which were mounted with Vectashield (H-1700-10, Vector

Labs, USA). Images were taken using the Nikon Eclipse Ti-E inverted
microscope/NIS-Elements software. Image analysis was performed using
ImageJ; each data point represents the mean of n= 3 sections from one
mouse. An area ROI was drawn around the mCherry+ bulk tumour, the
number of PVTCs (colocalized mCherry and ZSGreen clusters outside the
area ROI), and the farthest distance of a PVTC from the edge of the area
ROI (invasive front) was measured. For analysis between two groups, the
Mann–Whitney t-test was used because not all groups passed a normal
distribution assumption. For the analysis of three groups, one-way ANOVA
with Tukey’s multiple comparisons test was used for bulk tumour size and
no. of PVTCs, which had a normal distribution for all groups, whereas the
Kruskal–Wallis test was used for distance measurements as these groups
did not have a normal distribution.

3D confocal images
Brain tissues from intracranially-injected mice were harvested as described
above and sectioned at 100 µm. Floating brain sections were washed in
PBST (PBS+ 0.2% Triton X-100) and incubated in blocking solution
(PBS+ 0.3% Triton X-100+ 5% normal goat serum + 5% BSA) for 1 h
with shaking at RT. Sections were incubated with CD31 (1:100, BD 550274)
or PDGFRβ (1:100, #14-1402-81, eBioscience, USA) primary antibodies with
orbital shaking overnight at 4 °C, washed with PBST, and then incubated
with goat anti-rat IgG Alexa Fluor-647 (1:500, #A21247, Invitrogen) for 1.5 h
shaking at RT. Sections were washed with PBST and mounted with
Vectashield, imaged with the ZEISS LSM 900 with Airyscan 2 microscope
and 3D images were generated using Imaris software.

Organotypic brain slice culture
Brains from induced ECiZSGreen mice were dissected into 250 µm slices in
HBSS using a tissue slicer (Stoelting). Brain slices were then cultured on
Millicell cell culture inserts (PICM0RG50, Millipore, USA) in culture media for
1 h at 37 °C and 5% CO2 prior to seeding of mCherry+ melanoma cells
(5000 cells/2 µL HBSS). Melanoma cells were incubated on brain slices for
48 h before time-lapse imaging was taken using the ZEISS LSM 900 with
Airyscan 2 microscope. Confocal z-stack images were taken over a 3 h
period with 20 min intervals. Velocities were measured for individual
migratory perivascular melanoma cells using the ImageJ cell tracker plugin.

Statistics
All statistical analyses were performed using GraphPad Prism software, and
P values less than 0.05 were considered significant. Quantitative data
represents the mean ± SD from at least n= 3 or more samples per data
point. For analysis between two groups, the Mann–Whitney t-test was used
because not all groups passed a normal distribution assumption. For the
analysis of three groups, one-way ANOVA was used if the sample had a
normal distribution, whereas the Kruskal–Wallis test was used for when
there was not a normal distribution. Additional experimental details
(number of animals or experimental replicates) are provided in the figure
legends.

RESULTS
Melanoma cells deficient in PTEN invade along blood vessels
in the brain microenvironment
It was previously shown that angiotropism/perivascular invasion is
a common feature in patients with MBM; however, the mechan-
isms that guide melanoma cells motility along the surface of the
vasculature are not well-understood [12–15, 22]. Thus, to model
the behaviour of melanoma cells in the brain post-colonisation,
we used intracranial injections of two murine melanoma cell lines
derived from genetically engineered mice differing in their Pten
status (BRafCA,PtenloxP,Tyr::CreERT2= D4M.3A and BRafCA,Tyr::-
CreERT2= SM1WT1 [33, 36]). For these studies, we used mice
where the endothelium is genetically labelled with ZSGreen by
crossing Cdh5Cre mice with Ai6 reporter mice, whereas melanoma
cells were labelled with mCherry [37–39]. The results showed that
while both melanoma lines could readily colonise the brain, there
was a striking difference in perivascular invasion; namely, D4M.3A
cells showed a 5-fold increase in perivascular tumour clusters
(PVTCs) compared to SM1WT1. Furthermore, these PVTCs travelled
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approximately 3-fold further when measured at a distance from
the invasive front, whereas the bulk tumour area was not
significantly different (Fig. 1a–e). To more closely examine the
position of these PVTCs, we used 3D confocal imaging of 100 µm
sections of D4M.3A intracranially injected brains with PDGFRβ
staining to mark pericytes (Fig. 1f). Using this model, we found
that approximately 50% of PVTCs directly contacted the
vasculature without PDGFRβ+ pericytes being present. However,
given that D4M.3A melanoma cells express their own PDGFRβ,
we additionally quantified PVTCs with displaced pericytes using
D4M.3A cells injected into genetically inducible PDGFRβiZSGreen

mice and stained for CD31 to label the vasculature (Fig. 1g). In
this case, we found approximately 40% of PVTCs without
pericytes being present (Fig. 1h). Thus, these complementary
models demonstrated that melanoma cells can undergo
pericyte-like spreading and suggest that murine melanoma cell
lines, differing in PTEN status, can be used as a model to further
dissect the molecular mechanisms that mediate perivascular
invasion in the brain in the post-colonisation phase of brain
metastasis.

Perivascular invasive melanoma upregulates transcriptional
programmes important for adhesion, migration, and survival
Next, we sought to identify pathways that might contribute to the
perivascular invasive phenotype by these different melanoma
cells. We co-cultured D4M.3A or SM1WT1 cells with murine brECs
and used FACS to re-isolate melanoma cells from brECs (Fig. 2a).
After bulk RNA sequencing, we found that all three cell lines
clustered away from one another by principal component analysis
(PCA) suggesting they have distinct transcriptomic identities (and
as an indicator of cell purity after FACS). In addition, brECs before
and after co-culture were almost indistinguishable from one
another, whereas there was a clear separation between the
melanoma mono-culture versus co-culture clusters (Fig. 2b). These
data suggest that melanoma cells, after contacting brECs, undergo
large-scale changes in gene expression, whereas EC gene
expression is relatively stable. This was further supported by
examining the number of differentially expressed genes found
upon co-culture; melanoma cells differentially expressed 10×
more genes than brECs after co-culture (~4000 vs 400). In addition,
while 1891 differentially expressed genes were shared agnostic to
melanoma cell line identity, there were an additional 2187 genes
that were only differentially expressed in D4M.3A and 2007 genes
differentially expressed only in SM1WT1 after co-culture with
brECs. For brECs, 74 genes were differentially expressed regardless
of melanoma identity, whereas 284 genes were changed only
after D4M.3A co-culture and 400 genes after SM1WT1 co-culture
(Fig. 2c, d). These data suggest there are both common and
distinct features found between PTEN-null and PTEN-expressing
melanoma cells upon contact with the brain endothelium.
Next, we used pathway enrichment analysis to carry out an

unbiased screen of gene/pathway changes that occur in these
different melanoma cells in contact with brECs. To examine
potential functions of the differentially expressed genes, we
examined KEGG enrichment scores and found pathways involved
in cell adhesion/migration (axon guidance, ECM-receptor interac-
tion, RAP1) to be commonly enriched in both PTEN-null and PTEN-
intact melanoma cells upon co-culture. However, D4M.3A also
upregulated pathways involved in high energetic states (PI3K/AKT
signalling, ribosomal biogenesis), whereas SM1WT1 cells co-
cultured with brECs were enriched for pathways indicative of
cellular stress and inflammation (apoptosis, TNF signalling, AGE-
RAGE signalling, fluid shear stress) (Fig. 2e, f). Taken together,
these data suggest that melanoma cells of differing PTEN status
differentially activate specific pathways once in contact with
brECs. Of interest was the hyperactivation of PI3K/AKT, specific to
D4M.3A, suggesting that brECs might produce factors that
selectively activate this pathway.

PTEN re-expression reduces perivascular invasion along the
brain vasculature in vivo
To further characterise the role of PTEN in perivascular survival
and invasion while minimising intrinsic cell line variability, D4M.3A
PTEN-RE (re-expression) cells were generated and compared to
empty vector controls; as expected, PTEN-RE resulted in a
reduction of pAKT in D4M.3A cells to levels comparable in PTEN-
expressing SM1WT1 (Fig. 3a). Since vascular co-option and
angiogenesis have been described as two alternative mechanisms
of tumour vascularisation, we characterised the expression of
several pro-angiogenic factors in our empty vector controls versus
PTEN-RE melanoma cells [34]. We found that PTEN-RE cells
expressed higher mRNAs for pro-angiogenic factors such as Fgf2
and Pdgfb, but not Vegfa/b or Plgf (Fig. 3b), suggesting that PTEN-
RE cells may be predisposed to a more angiogenic phenotype.
Furthermore, we characterised the rate of proliferation in vitro and
found no significant differences when comparing empty vector
and PTEN-RE lines (Fig. 3c). However, PTEN-RE lines demonstrated
a significantly impaired ability to colonise the brain in vivo; indeed,
no bulk tumours formed when 5000 cells were engrafted in the
brain of 4/6 mice, suggesting that D4M.3A melanoma cells
strongly depend on PTEN to establish in the brain microenviron-
ment. To increase the likelihood of tumour establishment using
PTEN-RE melanoma cells, the seeding density of injected cells was
increased to 25,000. Here, we found that PTEN-RE reduced the
number of PVTCs by 4-fold and reduced the distance travelled
from the invasive front by 2.5-fold when compared to empty
vector controls (Fig. 3d–f). These differences in the number of
PVTCs and distance from the invasive front were similar to those
found in D4M.3A versus SM1WT1 tumours. However, since PTEN-
RE also had a 12-fold reduction in bulk tumour area (Fig. 3g) and
the reduction in PVTCs observed in PTEN-RE mice could be a
function of reduced overall colonisation, we carried out a
Pearson’s correlation to compare overall tumour area versus
number of PVTCs. The results showed a relatively weak association
between tumour area and the ability to form PVTCs when multiple
tumours were plotted, suggesting that the ability to form PVTCs is
not solely a function of bulk tumour size (r= 0.08637) (Fig. 3h).
Surprisingly, deleting PTEN in SM1WT1 cells did not promote
perivascular invasion in vivo, suggesting that while reconstituting
PTEN function in PTEN-null melanoma impairs perivascular
invasion, loss of PTEN alone is not a sufficient driver of this mode
of invasion in the brain (Supplementary Fig. S1). It is possible,
therefore, that PTEN loss cooperates with additional factors
expressed by D4M.3A cells to drive perivascular invasion in the
brain.

Pten re-expression reduces melanoma adhesion to brECs and
inhibits migration on ex vivo brain slices
Next, we functionally characterised Empty versus PTEN-RE
melanoma cells co-cultured with brECs in vitro. We found that,
as expected, PTEN-RE cells have a significantly lower expression of
pAKT measured using FACS (Fig. 4a, b). Interestingly, PTEN-RE cells
also showed a 30% reduction in adhesion to brECs, suggesting a
role for melanoma PTEN in mediating adhesion to the vasculature.
Furthermore, since no difference in adhesion was observed
between Empty and PTEN-RE cells plated on mouse embryonic
fibroblasts (MEFs), this is likely a vascular-selective rather than
global loss of adhesion (Fig. 4c, d). Since these were monolayers of
ECs that do not resemble the 3D tube-like structures of brain
vessels in vivo, we used an ex vivo brain slice culture model to
carry out real-time tracking of individual melanoma cells along the
vasculature. The results showed that PTEN-RE cells migrated 20%
slower along the vasculature when compared to empty vector
controls (Fig. 4e, f). Taken together, impaired initial adhesion to
the vasculature and reduced migration upon PTEN-RE may
account for the fewer numbers of PVTCs observed in our in vivo
intracranial model of MBM perivascular invasion.
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TGFβ is upregulated in brEC:melanoma co-cultures
To identify potential vascular-induced factors that may contribute
to pAKT signalling when melanoma cells are juxtaposed to the
brain vasculature, we returned to our bulk RNA sequencing data

using melanoma cells co-cultured with brECs. Using Gene Set
Enrichment Scores (GSEA) from D4M.3A cells co-cultured with
brECs versus SM1WT1 cells co-cultured with brECs, we found an
enrichment of several pathways including complement,
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MTORC1 signalling, apical junction, protein secretion, UV response
down, KRAS signalling up, epithelial-mesenchymal transition
(EMT), and interferon (IFNα) response (Fig. 5a). Since EMT is a
well-known transcriptional programme that is typically activated
in highly motile cell types, we next examined candidate EMT gene
expression under these same two conditions and found that
D4M.3A cells, when co-cultured with brECs, showed elevated

expression of several TGFβ pathway effectors, such as Eng and
Tgfb1i1, as well as enrichment of TGFβ-regulated genes including
Acta2, Itgb1, and Col1a1 when compared to SM1WT1 (Fig. 5b).
Of particular interest was the expression of Tgfb ligands since

Tgfb is a well-known driver of EMT [40]. Thus, we used qPCR to
validate the bulk RNA sequencing data focusing on Tgfb ligands.
We found an approximately 5-fold increase in Tgfb2 and Tgfb3
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transcripts in D4M.3A cells upon contact with the vasculature,
whereas Tgfb1 and Tgfb3 were elevated in SM1WT1 (Fig. 5c, d). At
the protein level, there was an approximately three-fold increase
in TGFβ2 protein in the supernatant of co-cultured D4M.3A cells
and a 2- to 3-fold increase in TGFβ1 and TGFβ3 protein
concentrations of co-cultured SM1WT1 cells compared to mono-
culture controls (Fig. 5e, f). The upregulation of Tgfb appears to be
vascular-selective because it was similarly found upon co-culture
with an additional EC line (MDEC) but not upon co-culture with
MEFs (Supplementary Fig. S2a, b). In addition, Tgfb transcripts
were not upregulated upon exposure to brEC conditioned media
(CM) or brEC extracellular matrix (ECM); these data indicate that
upregulation of Tgfb in melanoma cells is predominantly mediated
by direct contact with ECs, though not necessarily specific to brEC
(Supplementary Fig. S2c, d).
Since previous studies have shown that TGFβ can phosphor-

ylate AKT in divergent cell types and promote protein synthesis,
survival, and invasion [40–43], we treated melanoma cells of
differing PTEN status with TGFβ and assayed pAKT by western
blotting. The results showed that only melanoma cells lacking
PTEN were able to upregulate pAKT in response to TGFβ and this
effect was diminished by PTEN-RE (Fig. 5g, h). Taken together,
these data suggest that TGFβ is induced in the brain tumour
perivascular niche, which can then lead to activation of pAKT in
PTEN-null melanoma cells.

TGFβ signalling contributes to brain colonisation and
perivascular invasion
Finally, to determine whether TGFβ-dependent pAKT signalling is
a driver of brain colonisation and perivascular invasion, we
deleted TGFβR2 (TGFβR2 KO) in PTEN-null melanoma cells. TGFβ
signalling requires heterodimerization with TGFβR1 to propagate
intracellular signalling; thus, deleting TGFβR2 results in a
completely disabled TGFβ signalling cascade downstream of all
three TGFβ isoforms [40]. Although the stimulation of pAKT was
modest since D4M.3A cells lack PTEN and therefore have high
constitutive pAKT levels, after deleting the receptor, TGFβR2 KO
cells no longer upregulated pAKT when challenged with TGFβ
(Fig. 6a). Using the intracranial model, we found an approximate
two-fold reduction in the numbers of PVTCs and distance travelled
from the invasive front in TGFβR2 KO cells compared to NT cells.
To test whether this TGFβ-dependent loss of perivascular invasion
was mediated through AKT, we introduced myrAKT to allow for
constitutively active AKT in TGFβR2 KO cells. Interestingly, myrAKT
did not restore the number of PVTCs or distance travelled from the
invasive front. However, the addition of myrAKT rescued the
overall brain colonisation of TGFβR2 knockout cells to levels
comparable to NT controls (Fig. 6b–e). Taken together, these data
suggest that in PTEN-null melanoma, a TGFβ-AKT axis promotes
melanoma brain colonisation, while AKT-independent mechan-
isms involving perivascular niche TGFβ signalling contribute to
perivascular invasion (Fig. 6f).

DISCUSSION
Cancer cell retention within a perivascular niche post-
extravasation was previously described as an important require-
ment for metastatic colonisation [12, 18, 20]. This may be of
particular importance for MBM, which are commonly found as
either solitary cells or clusters of cells juxtaposed to the
vasculature in human samples [12–15]; these perivascular
melanoma cells are typically highly motile and invasive
[15, 18, 44–46]. However, only a few molecular mechanisms that
control perivascular invasion in MBM are known [22]. In our work,
we have used gain/loss of function studies in a murine intracranial
model to investigate how vascular-derived brain microenviron-
ment factors may cooperate with tumour genetic alterations in
established brain metastases. Herein, we have found that ectopic

PTEN expression in PTEN-null melanoma robustly reduces
melanoma brain colonisation and perivascular invasion. In
addition, PTEN-null melanoma cells are enriched in the activation
of survival pathways compared to PTEN-expressing counterparts
when co-cultured with brECs; furthermore, PTEN-RE cells showed a
vascular-selective loss of adhesion and migration along brECs.
These data suggest that PTEN expression in melanoma cells
impacts how they interact with and invade upon ECs in the brain
perivascular niche.
PTEN is a commonly lost tumour suppressor gene in many

cancers; notably, PTEN loss is associated with MBM, resistance to
therapeutics, and worse overall survival [29, 32, 47]. In addition to
genomic alterations, PTEN expression can be downregulated by
epigenetic and post-transcriptional modifiers (e.g., methylation or
miRNAs). For example, in the brain it was previously found that
astrocytes secrete exosomal miRNA to induce PTEN loss [24].
While our studies demonstrate that loss of PTEN alone is probably
not sufficient to promote perivascular invasion, the importance of
PTEN loss in MBM warranted investigating how PTEN-null
melanoma cells acquire additional features that enable them to
invade along the vasculature. Given that previous studies in
melanoma have shown that PTEN silencing and AKT activation
have distinct outcomes that can synergise to promote MBM [28],
we were interested in vascular-mediated factors that might
activate AKT in the context of PTEN loss. TGFβ was a good
candidate given its ability to induce EMT and upregulate AKT-
mTOR signalling to promote increased cell size and invasion
[41, 48]. In our studies, we found that melanoma:EC contact
promotes upregulation of TGFβ regardless of PTEN status;
however, there was a differential response to TGFβ-induced
activation of pAKT depending on PTEN status in MBM.
PTEN-null melanoma upregulated pAKT in the presence of

TGFβ, and disabling melanoma response to TGFβ by knocking out
TGFβR2 reduced brain colonisation and perivascular invasion.
However, we found that myrAKT primarily contributed to tumour
size and not numbers of or migration of PVTCs. This was surprising
given recent reports describing the importance of AKT activation
in co-opting the vasculature in early MBM [49]; however, later
stages of perivascular invasion may utilise different mechanisms
and suggest the possibility of AKT-independent mechanisms that
can be explored. For example, one possible area of investigation
includes the AKT-independent activation of mTOR [50]. In
addition, while it is postulated that PTEN functions in melanogen-
esis through its lipid phosphatase activities and inhibition of PI3K
signalling, PTEN may also activate important adhesion compo-
nents such as focal adhesion kinase (FAK) through its protein
phosphatase activity [51–53]. Additional factors that could
function in this context could be small GTPase proteins such as
RHO, RAC, and CDC42, which have also been implicated in
glioblastoma invasion, and can cross-talk with PI3K and TGFβ
[40, 54, 55]. Finally, serpins that can inhibit plasminogen activator
promote survival and vascular co-option in brain metastases [23].
While serpine1 (PAI-1) was not one of the upregulated isoforms
described in the breast and lung cancer brain metastases models
by Valiente et al., this serpin can selectively inhibit plasminogen
activator and is a well-known downstream factor of TGFβ that may
also be modified by PTEN [39, 56], thus making it another
intriguing mechanism for further investigation.
One technical limitation of our studies was that TGFβR2 may

not be entirely deleted in the melanoma lines we generated
resulting in a lowly expressed truncated protein with residual
function; thus, it is possible that we did not eliminate the
complete response to TGFβ signalling in melanoma cells. Another
limitation of our studies includes the possibility that the
mechanism(s) investigated in this context are not specific to the
brain microenvironment; moreover, our intracranial model does
not allow for the study of early metastatic processes prior to
extravasation into the brain microenvironment. In addition, we
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(c) and (e), and a Kruskal–Wallis test for (d).
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found that PTEN-null melanoma also upregulates TGFβ upon
contact with dermal ECs, suggesting there may be high levels of
TGFβ within the perivascular niche of primary tumours found in
the dermis, where vascular co-option may also be present. While
TGFβ-mediated vascular co-option in primary melanoma has yet
to be explored, there are studies that have demonstrated the
importance of TGFβ signalling during vascular co-option at
extracranial sites; in particular, TGFβ1-RUNX1 signalling mediates
vascular co-option in colorectal cancer liver metastases. In this
context, cancer cells with vascular co-option potential expressed
high levels of TGFβR2 and RUNX1 and were able to induce
upregulation of TGFβ1 secretion by hepatocytes [57, 58]. Thus,
TGFβ can contribute to vascular co-option in various cancers,
although how it participates during cellular cross-talk between
cancer cells and the vasculature may vary based on additional
microenvironmental cues.
In summary, we have described a new role for PTEN and TGFβ

in perivascular invasion by MBM, though further studies are
needed to dissect how these complex signalling networks
ultimately drive adhesion to and movement along the vascu-
lature. For example, despite lack of expression of L1CAM, one of
the most well-studied adhesion molecules in vessel co-option of
various cancers [20], D4M.3A cells are still highly proficient at
perivascular invasion suggesting that alternative pathways to co-
opt the vasculature exist (unpublished observation). Through a
better understanding of how melanoma:EC interactions drive
perivascular spreading in the brain, one could uncover new
treatment modalities that prevent MBM progression and
recurrence.
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