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Abstract

Objective: The United States Congress passed the 21st Century Cures Act mandating the
development of Food and Drug Administration guidance on regulatory use of real-world
evidence. The Forum on the Integration of Observational and Randomized Data conducted a
meeting with various stakeholder groups to build consensus around best practices for the use of
real-world data (RWD) to support regulatory science. Our companion paper describes in detail
the context and discussion of the meeting, which includes a recommendation to use a causal
roadmap for study designs using RWD. This article discusses one step of the roadmap: the
specification of a sensitivity analysis for testing robustness to violations of causal model
assumptions. Methods: We present an example of a sensitivity analysis from a RWD study on
the effectiveness of Nifurtimox in treating Chagas disease, and an overview of various methods,
emphasizing practical considerations on their use for regulatory purposes. Results: Sensitivity
analyses must be accompanied by careful design of other aspects of the causal roadmap. Their
prespecification is crucial to avoid wrong conclusions due to researcher degrees of freedom.
Sensitivity analysis methods require auxiliary information to produce meaningful conclusions;
it is important that they have at least two properties: the validity of the conclusions does not rely
on unverifiable assumptions, and the auxiliary information required by the method is learnable
from the corpus of current scientific knowledge.Conclusions: Prespecified and assumption-lean
sensitivity analyses are a crucial tool that can strengthen the validity and trustworthiness of
effectiveness conclusions for regulatory science.

Introduction

Real-world data (RWD), such as administrative claim records, electronic health records, and
large registries, provide unprecedented quantities of data on millions of patients and thousands
of variables in real-world settings. As such, RWD constitute an extraordinary opportunity to
generate practice-based evidence to improve healthcare and health outcomes, so-called real-
world evidence (RWE). Recognizing the importance of RWE for regulatory purposes, the
United States Congress passed the 21st Century Cures Act [1] that mandated the development
of United States Food and Drug Administration (FDA) guidance on regulatory use of RWE to
support regulatory decisions. Despite the many potential advantages, the prospect of incorrect
effect estimates has historically cast doubt on the use of RWE for regulatory science. Indeed, the
principle that “correlation does not imply causation” is a fundamental concept used across
various scientific fields to prevent logical fallacies and erroneous scientific conclusions, which
are rightfully central to most criticisms of using RWD for regulatory science.

However, scientists frequently gain knowledge about cause and effect based on statistical
associations. For instance, a statistical association may be interpreted as a causal relationship
when it is known that there is no unmeasured confounding, and the direction (e.g., time-
ordering) of the causal relationship is already known. One can make such strong assumptions
given external knowledge, for example, that data come from a perfectly executed randomized
study with no loss-to-follow-up and perfect adherence. Broadly speaking, causal interpretation
must be supported by external knowledge of the data-generating process, such as study design or
mechanistic knowledge about the phenomena under investigation. This external knowledge is
often encoded in a causal model, and the set of models and data analysis tools concerned with the
appropriateness of such causal interpretations is known as causal inference (please see our
companion paper [2] on the causal roadmap for a more detailed discussion on causal models
and causal inference).
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Positing causal models with RWD involves making non-
testable assumptions, such as assuming the absence of unmeasured
confounding variables, time-ordering between the variables, no
adjustment for colliders, monotonicity for instrumental variables,
etc. Absence of unmeasured confounding is an important
assumption that must primarily be addressed at the causal model
stage by making every effort to posit a causal model that
corresponds to the state-of-the-art in the substantive field and by
making every effort to measure all confounders dictated by the
model. For instance, RWD analyses seeking to establish the
effectiveness of COVID-19 vaccines for the prevention of Post-
Acute Sequelae of COVID (PASC) require understanding and
measuring all the patient characteristics that lead patients to get
vaccinated in the real world, as well as whether they are likely to
affect the risk of developing PASC. However, despite best efforts,
there may be situations where the causal model is incorrect, or
where some confounders are unmeasurable with current technol-
ogy or available data. For instance, in an analysis based on
Electronic Health Records, certain important socioeconomic
factors that may confound the vaccination-PASC relation may
be unmeasured. In such cases, the statistical parameter targeted by
the analysis may not have a causal interpretation. The use of
RWD for regulatory science requires maximum efforts to ensure
dependable causal inferences, even when the assumptions of the
causal model are incorrect. In the context of plausible violations to
the assumptions of the causal model, or the inability to measure
some of the confounders dictated by the model, sensitivity analyses
are a valuable tool that can be used to make more dependable
causal inferences from RWD.

While we often cannot validate an untestable assumption, we
can often test how sensitive our scientific conclusions are to
violations of our assumptions. To this end, we use a sensitivity
parameter which encodes the severity of violations to the
assumptions of the model, with the goal of determining if the
maximum sensible value of the sensitivity parameter (which
should be prespecified, as discussed below) is large enough to
invalidate the scientific conclusions derived from adjusted
statistical estimates. This simple but powerful idea has a long-
standing history in epidemiological sciences and is currently part
of the International Council for Harmonization E9 Guidance on
Statistical Principles for Clinical Trial [3,4]. One of the most well-
known examples is its application in 1959 by Cornfield et al. [5]
who demonstrated that if an unmeasured confounder can explain
the observed association between smoking and lung cancer, it
would need to cause a nine-fold increase in the probability of
smoking. Multiple attempts were made to find such a strong
confounder, but all such conjectured confounders (e.g., genetic,
hormonal) had an effect on smoking that was much lower than the
nine-fold increase necessary to invalidate causal conclusions. As a
result, Cornfield et al. concluded that smoking causes lung cancer.
This analysis played a pivotal role in establishing a public
consensus about the causal relationship between smoking and lung
cancer [6]. Others arrived at qualitatively similar conclusions using
alternative sensitivity analyses [7].

The smoking and lung cancer example is a “success” story in the
sense that it exemplifies a case where sensitivity analyses prove that
an observed association is causal. Perhaps more importantly,
sensitivity analyses can be used in the opposite direction to unveil
cases where unmeasured confounding could easily explain away an
observed association. An example is the effect of hormone
replacement therapy (HRT) on cardiovascular disease (CVD),
where multiple observational studies showed that HRT reduced

the risk of CVD [8,9], but subsequent randomized trials
demonstrated that in fact HRT increases the risk of CVD [10].
If the original observational studies had conducted a sensitivity
analysis, they would have found that an unmeasured confounder
with a weak association with the exposure (odds ratio 1.13) would
have been sufficient to explain away the observed protective
association [11], although it is worth noting that some controversy
remains about the effect of HRT [12].

Before we proceed, it is important to clarify that we refer to
sensitivity analyses as methodologies that aid in testing the extent
to which varying violations of causal modeling assumptions would
lead to different conclusions. This kind of sensitivity analysis must
be distinguished from analyses that seek to test the extent to which
statistical modeling assumptions would lead to different con-
clusions. Statistical and causal sensitivity analyses are fundamen-
tally different in that the former seeks to assess the validity of
testable assumptions, whereas the latter seeks to assess the validity
of untestable assumptions. For instance, goodness of fit of a logistic
regression model may be tested by assessing predictive accuracy
after adding additional terms or comparing to other regression
models. In contrast, it is impossible to learn from data whether we
have measured all the relevant confounders, or whether some of
the variables that we are adjusting for are not confounders but
are colliders and therefore induce bias. Causal modeling
assumptions must be therefore supported based on background
substantive information and, when doubted, must be tested with
an appropriate sensitivity analysis.

The objective of sensitivity analysis may be simple, but the
methods used to express violations ofmodel assumptions, to define
sensitivity parameters, and to test their magnitude can be complex.
In this article, we provide a brief review of various methods
for sensitivity analysis and demonstrate their usefulness in using
RWD to establish causality to support regulatory submissions.
We begin with a case study that presents an observational analysis
of the effectiveness of Nifurtimox (NFX), a medication for
the treatment of Chagas disease. We then proceed with a review of
the most common methods for sensitivity analysis and conclude
with recommendations for their use in supporting regulatory
submissions.

Case study: The effectiveness of Nifurtimox in the
treatment of the Chagas disease

Background on the Chagas disease

American trypanosomiasis, also called Chagas disease, is caused by
the parasite Trypanosoma cruzi., which is transmitted by an insect
vector. The disease affects around 8 to 10 million people in the
endemic zones of Latin America, from the South of the United
States of America(USA) to the North of Argentina. Although the
disease was traditionally restricted to Latin America, a growing
number of cases have been reported in the USA. Today, the disease
is classified as one of the leading neglected tropical diseases in the
USA [13], with up to 350,000 persons infected. T. cruzi is
transmitted by the bite of several species of hematophagous bugs.
The parasites are excreted in the feces of the bugs and penetrate
human hosts through the mucosa or through scratches in the skin.
After localized multiplication, the parasite is then dispersed to
target organs (principally the intestinal or cardiac nerve plexus)
through invasion of the bloodstream. The acute phase following
infection lasts 4-6 weeks and is generally asymptomatic but
may lead to fever, malaise, myalgia, and headaches. In more than
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one-third of chronically infected individuals, clinical disease
reappears after a period of latency lasting between 10 and 30 years.
The chronic stage of the disease manifests as irreversible lesions
mainly affecting the cardiac and digestive systems. The chronic
form is also associated with a risk of sudden death. Diagnosis is
made following detection of trypanosomes in the blood in the acute
phase or through serological testing which detects antibodies made
to fight the trypanosome infection [14].

Nifurtimox is one of the drugs currently used in endemic areas
of Latin America to treat the Chagas disease. Despite the public
importance of the disease, Nifurtimox is currently not approved by
the FDA for adults, partly because few research studies exist about
its efficacy. Nifurtimox was first approved in the USA for the
treatment of Chagas disease in pediatric patients on the basis of the
results of a randomized study that established the effect of the drug
to induce negative seroreversion or seroreduction >= 20% one
year after treatment [15]. The long incubation periods of the
disease (up to 30 years) mean that the cost of a randomized study to
assess the effectiveness of Nifurtimox in the full long-term span of
the disease is prohibitive.

Data source

Few studies, randomized or otherwise, exist that follow groups of
patients over such long periods of time and provide a proper long-
term account of the clinical efficacy of treatment with Nifurtimox.
One such study, conducted by Fabbro et al. [16], followed a group
of 404 patients recruited between 1976 and 1999. Data from this
study had the following problems which made them not
immediately usable for assessing the effectiveness of Nifurtimox:

1. Treatment was assigned mostly based on availability,
patients’ willingness to be treated, often considering the baseline
health status of the patient. Consequently, a naive analysis of the
data that does not adjust for these confounders will result in biased
inference.

2. Since some patients were lost to follow-up during the study,
outcome data are subject to informative missingness. If the reasons
why patients were lost to follow-up during the study are related to
the outcome of interest (e.g., patients lost to follow-up were
because of their health status), ignoring that information will also
result in biased inference.

The outcome of interest in this study is negative seroconversion
30 years after treatment (henceforth referred to as seroreversion),
meaning that no evidence of presence of the parasite remains in
serological blood tests. Due to the long study period, there is
substantial loss-to-follow-up. Table 1 presents the distribution of
the outcome across treatment groups in the study.

The potential for bias is clear from this table. With over 90% of
observations lost to follow-up in the control group, it may initially

seem impossible to use this data to assess the effectiveness of NFX
on 30-year seroreversion without bias.

To overcome the initial barrier of large loss-to-follow-up rates,
it is possible to consider external information, such as the small
rate of seroreversion when patients are untreated (henceforth
referred to as spontaneous seroreversion). For instance, two studies in
children report a rate of about 5% [17,18], while a meta-analysis
of studies in adults reports a rate as low as 2% [19]. The significance
of these low rates becomes clear when compared to the most
conservative imputation strategy for the missing NFX patients.
If all 36 lost to follow-up NFX patients did not serorevert, the
resulting NFX seroreversion rate would be 16 out of 55, or 29%.
This is considerably higher than the externally supported rate of
5% for spontaneous seroreversion. However, even if the rate of
spontaneous seroreversion is as high as 10, 15%, or 20%, the data still
support the hypothesis that NFX induces seroreversion in Chagas
patients.

In what follows we use this dataset as an illustrative example for
how to conduct a sensitivity analysis, keeping in mind that
regulatory decision-making also relies on multiple additional
issues such as whether the data are “fit-for-purpose [20],”which we
do not address here. The analysis is based on using the rate of
spontaneous seroreversion as a sensitivity parameter, where the
conclusions of effectiveness of NFX are assessed in light of various
plausible values of this sensitivity parameter.

Nonparametric methodology for sensitivity analysis using
rates of seroreversion as a sensitivity parameter

The above ideas may be formalized in a rigorous statistical
procedure for sensitivity analysis as follows. First, consider a target
estimand of interest defined as the average treatment effect on the
treated, ψc = E[Y(1)−Y(0)|A=1], where A= 1 denotes treatment
with NFX and A= 0 denotes control, Y(1) denotes the potential
30-year seroreversion status of a patient if, possibly contrary to fact,
they were treated with NFX, Y(0) denotes the potential 30-year
seroreversion status of a patient if, possibly contrary to fact, they
were untreated, and E[Y(1)−Y(0)|A=1] denotes taking the
expectation (mean) of the difference between potential outcomes
in the population of treated patients. The parameter ψc is the target
causal estimand, interpreted as the difference in outcome rates
among treated patients in hypothetical worlds where NFX was
given to all vs no Chagas patients. If we knew this number,
we would know whether NFX induces higher rates of seroreversion in
the patients who are treated with it. Without further assumptions, this
quantity is not estimable since we cannot possibly observe a patient’s
outcome under treatment and under no treatment.

In addition to the data on treatment, seroreversion, and loss-to-
follow-up, Fabbro et al. collected multiple important baseline
variables on the patients in the cohort, including age, sex, initial
serology titers, as well as the presence of Chagas-related
abnormalities in the electrocardiogram. We use the letter W to
denote a vector containing these variables and use C= 1 to indicate
that a patient had complete follow-up and the study endpoint was
observed, and C= 0 to denote that a patient was lost to follow-up
and the endpoint was unobserved. Furthermore, we perform the
conservative imputation mentioned above, such that patients
treated withNFXwho are lost to follow-up are assumed to not have
seroconverted (death and other potential long-term side effects are
not a concern for NFX [21]). This allows us to conservatively
approximate E[Y(1)|A=1] as E[Y|A=1] – the observed outcome
rate among the treated. For approximating E[Y(0)|A=1], if the

Table 1. Number of patients in the treated and control group according to their
outcome and censoring status.

NFX Control

Seroreversion 16 1

No seroreversion 3 27

Lost to follow-up 36 321

Total 55 349
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variablesW contain all common causes of treatment, loss-to-
follow-up, and outcome, then it can be proved mathematically that

E Y 0ð ÞjA ¼ 1½ � ¼ E E Y jC ¼ 1;A ¼ 0;Wð ÞjA ¼ 1½ �;
where the right-hand side of the above expression can be estimated
by running a regression of the outcome on baseline variables
among observed controls and using that regression to predict the
outcomes that would have been observed for treated patients had
they not been treated. This is accomplished by averaging the
predicted outcomes over the empirical distribution of W among
the treated. Estimators with better performance are also available,
we refer the reader to our companion article published in this
edition of the journal for a discussion on optimal estimation. This
yields a target statistical estimand equal to

ψ= E[Y|A = 1]− E[E(Y|C= 1, A= 0,W)|A= 1],

which, contrary to the causal estimand ψc, is a quantity that can be
estimated from data. The fundamental problem is that the
assumptions required for establishing the equality ψc= ψ, namely
that W contains all common causes of treatment, loss-to-follow-
up, and outcome, is unlikely to hold in this study. We must
therefore study the so-called causal gap, defined as the difference
between the causal target and the statistical target, i.e., ψ − ψ c.
In the supplementary materials, we show that this causal gap may
be bounded as ψ − ψc≤ E[Y(0)|A=1]. The right-hand side of this
inequality is precisely the probability of spontaneous seroreversion
that we would have observed for treated patients had they not been
treated.

Consider now the null hypothesis of no treatment effect of
Nifurtimox, i.e., ψc≤ 0. According to the above discussion, this
hypothesis is true if the hypothesis ψ≤ E[Y(0)|A=1] is true. While
the hypothesis ψc≤ 0 cannot generally be tested, the hypothesis
ψ≤ E[Y(0)|A=1] can be tested for varying user-given conjectured
levels of the probability of spontaneous seroreversion. If this
hypothesis is rejected even for the largest feasible values of the
probability of spontaneous seroreversion, then we can be confident
that the causal hypothesis of no treatment of NFX may also be
rejected.

The probability of spontaneous seroreversion is a sensitivity
parameter, meaning it is a parameter that is useful for sensitivity
analyses. We do not know its true value, but we can make
conjectures about plausible values based on our knowledge of the
subject matter. It is important that pre-alignment and prespeci-
fication of the range of plausible values occurs prior to the conduct
of the analyses, in order to avoid researcher degrees of freedom [3]
and other possible biases.

Results of sensitivity analysis for the effect of Nifurtimox
on the Chagas disease

We analyzed the data of Fabbro et al. using the above sensitivity
analysis. The statistical significance of the hypothesis test is given
in Figure 1 as a function of conjectured values for the probability of
spontaneous seroreversion. This figure allows us to conclude that,
if we believe that the probability of spontaneous seroreversion
among the treated is smaller than 0.19, we can reject the hypothesis
of no treatment effect of Nifurtimox with a with a two-sided type I
error rate of at most 0.05. All the epidemiologic studies as well as
biological knowledge about the Chagas disease suggest that the rate
of spontaneous seroreversion is smaller than 5%.

Additional technical details about this sensitivity analysis as
well as the methods used to estimate the causal parameter ψ are
available in the supplementary materials.

Current landscape and existing methods for sensitivity
analysis

In this section, we review some of the most common methods for
sensitivity analysis and provide comments on their strengths and
weaknesses. This review is not exhaustive, and the reader is
referred to Liu et al. [22] and Richardson et al. [23] for more
extensive reviews.

Semiparametric sensitivity analysis

The assumption of no unmeasured confounders may be stated
mathematically in multiple ways. One of them is the assumption of
independence between the potential outcomes Y(a) and the
exposure A of interest (often conditional on observed confounders
W). The main idea behind semiparametric sensitivity analyses is to
posit a model relating to the potential outcomes to the exposure of
interest [24–26]. For instance, one may posit that the probability of
exposure A = 1 conditional on potential outcome Y(a) (and
possibly covariates W) follows a main-terms logistic regression
model. The causal effect ofA on Y is then identifiable except for the
coefficient in front of Y(a) in the above logistic regression. This
coefficient, interpreted as the log-odds ratio between Y(a) and A,
can be used as a sensitivity parameter that quantifies themagnitude
of unmeasured confounding. Analysis may therefore proceed by
estimating the causal effect for multiple conjectured values of the
sensitivity parameter and judging the plausibility of each such
value based on subject-matter expert knowledge.

A disadvantage of this approach is that the sensitivity analysis
itself requires positing untestable assumptions about a model
relating to the exposure and the potential outcomes. It is unclear
whether misspecification of this model carries serious implications
in terms of bias, but it would generally be preferable to rely on
sensitivity analyses that do not make extra assumptions. Relatedly,
the sensitivity parameter must be informed by subject-matter
expert knowledge, but it is defined in a scale that is unintelligible
and refers to a convenient mathematical construction (e.g., an odds

Figure 1. Sensitivity analysis for the effect of Nifurtimox in the treatment of the
Chagas disease.
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ratio in a logistic regression between Y(a) and A) rather than a
fundamental property of nature. This makes it hard for subject-
matter experts to judge on the plausibility of specific values of the
sensitivity parameter.

As an example of this approach, Franks et al. [26] conduct a
sensitivity analysis on the effect of antihypertensives on diastolic
blood pressure (DBP) using the National Health and Nutrition
Examination Survey data. They conclude that, if one is willing to
assume that the adjusted odds of receiving antihypertensives in a
logistic regression model increases by 1.01 for every additional
mmHg in hypothetical counterfactual DBP outcomes under
treatment or control, then an otherwise protective but non-
significant effect becomes significant. This example illustrates
the difficulty in assessing the plausibility of the sensitivity
parameter values. Is a logistic regression adjusted odds ratio
between counterfactual DBP outcomes and antihypertensives
of 1.01 plausible or implausible? The answer to that question
depends non-trivially on the variables included in the model as
well as on the correctness of the model, which is potentially as
difficult to assess as the original “no unmeasured confounder”
assumption.

Nonparametric sensitivity analysis

In contrast to semiparametric sensitivity analyses, nonparametric
analyses make no assumptions on the functional form of the
relations between variables. This type of sensitivity analysis focuses
directly on studying the causal gap with a goal of establishing
bounds on it that may be used as sensitivity parameters.

The analysis of the effectiveness of Nifurtimox in the
treatment of the Chagas disease presented above is an example
of a nonparametric sensitivity analysis. A more general version of
this idea has been developed [19,27], where the goal is to
construct bounds on the causal gap using sensitivity parameters
that have immediate substantive interpretations, so that the
plausibility of their values can be easily judged using a-priori
subject-matter knowledge (e.g., the probability of spontaneous
seroreversion).

A second example of a nonparametric sensitivity analysis uses
E-values [28,29] to posit the existence of an unmeasured
confounder U and creates bounds on the causal gap in terms of
conjectured magnitudes of the U→ A and U→ Y relations on a
risk ratio scale. These risk ratios are then used as sensitivity
parameters. This approach generalizes the sensitivity analysis of
Cornfield et a.l [5] in the sense that it seeks to find the minimum
effect of an unmeasured confounder such that the observed effect
would be completely explained away. As an example of the use of
E-values, Bosch et al. [30] recently studied the effectiveness of
fludrocortisone and hydrocortisone on death or discharge to
hospice in the treatment of patients with septic shock. Their
analyses adjusting for measured confounders found a significant
absolute risk difference of −3.7% (95% CI −4.2% – −3.1%)
comparing hydrocortisone-fludrocortisone vs hydrocortisone
alone. Their sensitivity analysis using E-values concluded that
an unmeasured confounder that increases the likelihood of
treatment and outcome by 37% would be sufficient to explain
away the significant effect found in the analyses.

Importantly, E-values cannot accommodate complex high-
dimensional confounders. Furthermore, some E-value analyses
make strong assumptions, such as assuming that the risk ratio
between the unmeasured confounder and the exposure is equal to
the risk ratio between the unmeasured confounder and the

outcome, as well as the assumption that the prevalence of the
uncontrolled confounder among the exposed is 100% [31].
Multiple other methods exist that rely on similar ideas but make
parametric assumptions on the U→ A and U→ Y relations to
incorporate complex confounders [32–34], although methods
relaxing these assumptions also exist [35–37].

Identification Bounds

Identification bounds are not formally a method for sensitivity
analysis in the sense that they do not rely on assessing plausible
values for a sensitivity parameter. However, they serve the same
purpose of providing information about causal relationships in the
presence of unmeasured confounders. The main idea behind
identification bounds is to estimate an interval (different from a
confidence interval) that bounds the causal effect of a treatment,
where this interval is guaranteed to contain the causal effect under
no assumptions on the extent of unmeasured confounding.

For example, Bhattacharya et al. [38] used identification bounds
to study the effect of right heart catheterization (RHC) on 30-day
mortality among ICU patients. There is considerable debate in the
clinical literature regarding the use of RHC as a diagnostic tool, and
its use has been recommended only when there is uncertainty about
the best treatment [39]. Therefore, unmeasured confounding is a
likely threat to the conclusions of observational analyses of effects of
RHC.Using two different types of analyses that allow for any kind of
unmeasured confounding, Bhattacharya et al. found that RHC had
either a null or a protective effect on 30-daymortality, whereas prior
studies that assumed no unmeasured confounders had found
RHC to increase 30-day mortality [40]. Although the analyses of
Bhattacharya et al. rely on an instrumental variable assumption,
multiple identification bounds in the literature do not require this or
any other assumption [41].

Identification bounds are most commonly used in the
econometrics literature, but they have also been used to assess
the comparative effectiveness of treatments in RWD, as illustrated
by the above example. Because it relies on few assumptions and
has an ambitious goal, this methodology sometimes results in
wide bounds that may be uninformative. Manski [41] and
Molinari [42] provide a comprehensive review of existing methods
for identification bounds.

Negative controls

Additional methods such as negative control treatments and
outcomes may be used to rule out the possibility that observed
adjusted associations are due to unobserved confounding [43]. For
instance, Dickerman et al. [44] recently used RWD to assess the
comparative effectiveness of COVID-19 vaccines in a real-world
population of US veterans. It is thought that COVID-19 vaccines
cannot possibly influence infection status in the 10-day period
following the vaccination. Thus, infection status at 10 days
post-vaccination may be used as a negative control outcome.
Specifically, if a procedure purported to estimate causal effects
yields a non-null effect on this outcome, then that procedure must
be ruled out as giving biased causal estimates. A review by Shi
et al. [45] provides further examples of successful use of negative
controls in applied research. This kind of ad-hoc negative control
does not guarantee that an association may be interpreted causally
but can be used to rule out non-causal associations, although recent
efforts have been made in the statistics literature to formalize the
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use of negative controls for the identification of causal parameters
in the presence of unmeasured confounding [46,47].

Table 2 summarizes the assumptions, advantages, and
disadvantages of the above types of sensitivity analysis.

Sensitivity analysis considerations when using RWD for
regulatory science

Prespecification

Prespecification of a study refers to the publication in complete
detail of the study design and analysis plan before all data are
collected and analyses are conducted [48]. As with all aspects of a
data analysis, sensitivity analyses must be fully prespecified to
appropriately control type I error and avoid biases due to
researcher degrees of freedom [49]. FDA guidance does allow for
choices to be made using blinded data with prespecification of the
plan after such examination [50]. Prespecification of the analysis
must include the range of plausible values for the sensitivity
parameter, which may be based on prior literature or consensus in
the substantive field. For instance, a prespecified analysis plan for
the case study of the effect of Nifurtimox on the Chagas disease
may have conservatively prespecified 10% as the maximum
possible rate of spontaneous seroreversion among the treated,
based on prior literature that suggests that this rate is of at most
5% [17–19].

The need for prespecification means that it is important that
the sensitivity parameters used have an interpretation that
corresponds to interpretable phenomena rather than convenient
mathematical formalizations, as in our illustration on the effect of
NFX on the Chagas disease. This ensures that prespecified
plausible values may be obtained through consultation with
experts or the literature. The need for prespecification makes it
harder to use sensitivity parameters interpreted as the coefficient
relating the exposureA and the potential outcome Y(a) in a logistic
or linear regression model. Likewise, analyses that rely on a
sensitivity parameter interpreted in terms of the strength of the
associations U→ A and U→ Y will usually require that the
unmeasured confounder U is specified and described in terms of
real-world phenomena, even if it is not possible to measure it.
Arbitrary unspecified confounders will make it difficult for subject-
matter experts to obtain prior information that can inform
plausible values for the associations U→ A and U→ Y.

Sensitivity analyses with assumptions

Some methods for sensitivity analysis use statistical models to
obtain mathematical expressions of violations of the assumptions
of the model. For example, a strand of the literature makes the
assumption that the probability of treatment A within strata of the
potential outcome Y(a) (and possibly measured confounders)
follows a logistic regressionmodel [24–26]. Othermethods directly
assume statistical models that capture the dependence between the
outcome Y and a hypothetical unmeasured confounder U, for
example assuming that they are linearly related [34]. Like all
statistical models, these models are subject to misspecification.
For instance, it could be the case that the relation between the
confounder U and the outcome Y is quadratic, so that a linear
approximation will fail to account for unmeasured confounding.
Unlike statistical models applied to real data, models for
unobserved variables such as Y(a) and U are not testable.
Therefore, while using sensitivity analyses based on models is
certainly better than not performing a sensitivity analysis at all, it is
preferable to use sensitivity analyses that make no assumptions
about the mathematical nature of the unmeasured confounding.

Summary and conclusions

Sensitivity analysis is an important tool that can help researchers
test whether causal conclusions obtained from analyses of
observational data are robust to violations of assumptions of the
causal model. The routine use of sensitivity analyses with RWD
increases the trustworthiness of effectiveness conclusions for
regulatory science. Sensitivity analyses are most likely to be useful
and informative when other aspects of the study (described in our
companion paper on the causal roadmap) are also carefully
designed. That is, sensitivity analyses on their own are not a
panacea and cannot save a poorly designed and conducted analysis
of RWD. As with other study aspects, prespecification of sensitivity
analyses for RWD in regulatory settings is crucial to avoid wrong
conclusions due to researcher degrees of freedom [51]. Most
sensitivity analyses require auxiliary scientific information
(e.g., the probability of spontaneous seroreversion in the Chagas
disease example discussed) to produce meaningful conclusions,
although some methods such as those based on identification
bounds can sometimes produce meaningful conclusions without
such knowledge.

Table 2. Types of sensitivity analyses described and their advantages and disadvantages

Type of sensitivity
analysis Disadvantages Advantages Example

Semiparametric • Requires arbitrary models for unmeasured
variables.

• Requires positing plausible values for the
unintelligible coefficients of the above
model.

• Mathematical convenience. • Franks et al. [26] –
antihypertensives and
diastolic blood pressure.

Nonparametric • Typically, none, although some methods
such as instances of the E-value might use
implausible assumptions [31].

• Requires positing plausible values for intelligible
scientific quantities (e.g., spontaneous
probability of Chagas seroreversion).

• Nifurtimox on Chagas
disease, discussed in this
manuscript.

Negative controls • Does not conclusively guarantee that
associations are causal.

• Requires positing an outcome with a null
treatment effect, which is often feasible.

• Dickerman et al. [44] –
COVID vaccines

Identification
bounds

• Bounds are often too wide to be informative. • Operates with few or no assumptions. • Bhattacharya et al. [38] –
right heart catheterization
and 30-day mortality
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In this paper, we focused on an illustration of sensitivity
analyses for the assumption of unmeasured confounding, but
causal models often entail other important assumptions which
may also be subject to sensitivity analysis.

There is a vast literature on sensitivity analysis for causal
inference with many fields contributing distinct approaches and
tools. For instance, the computer science and machine learning
community has developed software tools such as PyWhy [52] that
help scientists capture causal assumptions and apply sensitivity
analyses and other refutations. Furthermore, there are numerous
developed and emerging methods that rely on different assump-
tions appropriate to a variety of scenarios, such as the identification
of secondary small-scale or continuous experiments to infer or
validate causal assumptions (i.e., adaptive, active sampling, or
reinforcement learning) [53,54] and explorations of large language
models as a source of domain knowledge for semi-automated
critiquing and refinement of researchers’ causal assumptions [55].
Such tools and emerging methods and their requirements should
be considered and assessed carefully before use in regulatory
science. In all cases, it is important to specify sensitivity analysis
that have at least two important properties: (i) their conclusions do
not rely on further untestable assumptions, and (ii) the sensitivity
parameter has a clear scientific interpretation so that prespecifi-
cation of a plausible range of values is possible from available
subject-matter knowledge.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2023.688.
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