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Abstract——Extracellular vesicles (EVs) have emerged
as an attractive liquid biopsy approach in the diagnosis
and prognosis of multiple diseases and disorders. The
feasibility of enriching specific subpopulations of EVs
frombiofluids based on their unique surfacemarkers has
opened novel opportunities to gain molecular insight
from various tissues and organs, including the brain.
Over the past decade, EVs in bodily fluids have been ex-
tensively studied for biomarkers associated with various
neurological disorders, such as Alzheimer’s disease, Par-
kinson’s disease, schizophrenia, bipolar disorder, major
depressive disorders, substance use disorders, human
immunodeficiency virus–associated neurocognitive dis-
order, and cancer/treatment-induced neurodegenera-
tion. These studies have focused on the isolation and
cargo characterization of either total EVs or brain cells,
such as neuron-, astrocyte-, microglia-, oligodendrocyte-,
pericyte-, and endothelial-derived EVs from biofluids to
achieve early diagnosis and molecular characterization
and to predict the treatment and intervention outcomes.
The findings of these studies have demonstrated that EVs
could serve as a repetitive and less invasive source of
valuable molecular information for these neurological
disorders, supplementing existing costly neuroimaging
techniques and relatively invasivemeasures, like lumbar

puncture. However, the initial excitement surrounding
blood-based biomarkers for brain-related diseases has
been tempered by challenges, such as lack of central ner-
vous system specificity in EVmarkers, lengthy protocols,
and the absence of standardized procedures for biologi-
cal sample collection, EV isolation, and characterization.
Nevertheless, with rapid advancements in the EV field,
supported by improved isolation methods and sensitive
assays for cargo characterization, brain cell–derived EVs
continue to offer unparallel opportunities with signifi-
cant translational implications for various neurological
disorders.

Significance Statement——Extracellular vesicles pre-
sent a less invasive liquid biopsy approach in the diag-
nosis and prognosis of various neurological disorders.
Characterizing these vesicles in biofluids holds the po-
tential to yield valuablemolecular information, thereby
significantly impacting the development of novel bio-
markers for various neurological disorders. This paper
has reviewed the methodology employed to isolate ex-
tracellular vesicles derived from various brain cells in
biofluids, their utility in enhancing the molecular un-
derstanding of neurodegeneration, and the potential
challenges in this research field.

I. Introduction

The term extracellular vesicle (EV) refers to a variety
of heterogeneous vesicles released by all cell types. EVs
are delimited by a lipid bilayer and cannot replicate
(Th�ery et al., 2018). EVs have been broadly categorized
into subtypes based on their size and origin, such as exo-
somes, microvesicles, and apoptotic bodies (Rani et al.,
2015) (Fig. 1). Exosomes, a type of small-sized EVwith di-
ameters ranging from approximately 30 to 150 nm, origi-
nate from the endocytic pathway within the cell. These
small vesicles are formed through the inward budding of
the endosomes, leading to the formation of a multivesicu-
lar body (MVB) in the lumen of endosomes (Hessvik and
Llorente, 2018). MVBs are then either degraded by
fusion with lysosomes or fuse with the cell’s plasma

membrane, releasing the exosomes into the extracellular
space (Colombo et al., 2014). In contrast, microvesicles
originate by outward budding of the plasma membrane
into the extracellular milieu and have diameters ranging
from approximately 100 to $1000 nm. Apoptotic bodies
originate from the blebbing of the plasma membrane in
cells, undergoing apoptotic stress, and have a variable
size range of �50 to 4000 nm in diameter (Battistelli and
Falcieri, 2020; Kakarla et al., 2020; Jeppesen et al.,
2023). Due to the difficulty in fully separating these
subtypes of vesicles from biofluids, the broader term
EV has been recommended, although various names
have been used in the literature to describe these
vesicles. Despite the lack of consensus on the nomen-
clature of these vesicles, there is a wealth of literature
highlighting the biological importance of EVs inmaintaining

ABBREVIATIONS: ABCA1, ABC transporter A1; AD, Alzheimer disease; ADE, astrocyte-derived extracellular vesicle; ADRD, Alzheimer disease
and related dementia; ADT, antidepressant therapy; APP, amyloid precursor protein; ATN, amyloidosis, tauopathy, and neurodegeneration; Ab,
amyloid b; BD, bipolar disorder; BDE, brain cell–derived extracellular vesicle; BDNF, brain-derived neurotrophic factor; circRNA, circular RNA;
CNS, central nervous system; CSF, cerebrospinal fluid; EDE, endothelial-derived extracellular vesicle; EV, extracellular vesicle; FGF, fibroblast
growth factor; GAP43, growth associated protein 43; GLAST, glutamine aspartate transporter; HAND, human immunodeficiency virus–associated
neurocognitive disorder; HIV, human immunodeficiency virus; IL, interleukin; IRS-1, insulin receptor substrate-1; L1CAM, L1 cell adhesion mole-
cule; lncRNA, long noncoding RNA; MCI, mild cognitive impairment; MDD, major depressive disorder; MDE, microglia-derived extracellular vesi-
cle; miRNA, microRNA; MMKD, modified Mediterranean-ketogenic diet; MRI, magnetic resonance imaging; MSA, multiple system atrophy; MVB,
multivesicular body; NDE, neuron-derived extracellular vesicle; NFL, neurofilament light; NLGN3, Neuroligin-3; NMDA, N-methyl-D-aspartate;
ODE, oligodendrocyte-derived extracellular vesicle; p, phosphorylated; PCR, polymeric chain reaction; PD, Parkinson disease; PDD, PD dementia;
PDE, pericyte-derived extracellular vesicle; PET, positron emission tomography; qPCR, quantitative PCR; sAPP, soluble amyloid precursor protein;
SCZ, schizophrenia; SNAP-25, synaptosome-associated protein-25; TEM, transmission electron microscopy; TMEM119, transmembrane protein
119; TNF-a, tumor necrosis factor-a.
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cellular homeostasis and facilitating intercellular
communication.
The role of EVs in intercellular communication, both

local and distant, is well recognized. EVs, through their
cargo (proteins, lipids, metabolites, and nucleic acids),
stimulate widespread effects on systemic processes, in-
cluding immune function, inflammation, and a host of
disease- and organ-specific processes. Consequently,
there is a growing interest in the potential of EVs to
serve as noninvasive biomarkers for the diagnosis and
prognosis of various diseases, such as cancer, metabolic
disorders, cardiovascular diseases, neurological disor-
ders, infectious diseases, and others (Panigrahi and
Deep, 2017; Shah et al., 2018; Kumar and Deep, 2020;
Kumar, 2021). EVs are released by every cell type into
circulation, and their easy accessibility and isolation
from almost any biofluid make them an attractive and
feasible candidate for biomarker discovery. Further-
more, to a great extent, the cargo of EVs reflects the
pathophysiological state of the parent cell; their analy-
sis could provide treasured information about the par-
ent cells in a given condition (Hedlund et al., 2011; de
Jong et al., 2012; S�anchez-Melgar et al., 2020; Berumen
S�anchez et al., 2021; Kumar, 2021; Phan et al., 2022).
For these reasons, EVs have been suggested as a key
component of liquid biopsy for various diseases, particu-
larly those affecting difficult-to-access organs, like the
brain. In this review, we highlight studies related to the
isolation and characterization of brain cell–derived
extracellular vesicles (BDEs) as a less-invasive ap-
proach for better understanding the molecular

aspects of various neurological disorders, including
Alzheimer’s disease (AD), Parkinson’s disease (PD),
schizophrenia (SCZ), bipolar disorder (BD), major
depressive disorder (MDD), substance use disorders
(SUD), human immunodeficiency virus (HIV)-asso-
ciated neurocognitive disorder (HAND), and cancer/
treatment-induced neurodegeneration. We also discuss
the major challenges in this field and potential oppor-
tunities that lie ahead.

II. Current Approaches for the Isolation of
Brain Cell–Derived Extracellular

Vesicles from Biofluids

Like other cell types in the body, different brain cells
also secrete EVs, and there is ample evidence that
these EVs can find their way into the peripheral circu-
lation. The mechanism underlying EVs crossing the
blood-brain barrier is actively being researched and in-
cludes transcytosis or disrupted blood-brain barrier.
Advances in the EV field have made it possible to iso-
late cell type–specific EVs, including BDEs, from the
biofluids.
The isolation of cell type–specific EVs from biofluids

is a multistep process (Fig. 2). The first step involves
isolating total EVs from the biological sample, such as
blood plasma or serum. This is achieved through meth-
ods such as ultracentrifugation, polymer-based precipi-
tation, density gradient centrifugation, size exclusion
chromatography, filtration, immuno-affinity capture,
and microfluidic chip (Contreras-Naranjo et al., 2017;

MVB/ late endosome

Endocytosis

LysosomeBudding

Microvesicles 
(~100 to ≥1000 nm)  

Apoptotic bodies
(~50–4000 nm)

Exosomes
(~30–150 nm)

Early endosome

Fig. 1. Biogenesis of various subtypes of EVs: exosomes, microvesicles, and apoptotic bodies.
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Li et al., 2017, 2019; Doyle and Wang, 2019; Zhang
et al., 2019a). The choice of method for isolating total
EVs depends largely on the amount of starting biologi-
cal sample, and the resultant yield depends on the
method used, with the aim of maximizing the concen-
tration of total EVs for subsequent isolation of specific
EVs. The most implemented methods for isolating total
EVs are ultracentrifugation and polymer-based precipi-
tation. However, the consensus on the choice of method
for the clinical use of EVs as a biomarker for various neu-
rological diseases is yet to be made, which will be driven
by the feasibility, sensitivity, and specificity of themethod.
For isolating BDEs from plasma/serum, immunocap-

ture is the preferred method, which involves a biotin-
tagged antibody specific to the marker (s) present on
the surface of EVs related to the cell of origin. This is
combined with streptavidin-coated magnetic/agarose/
protein A/G bead/epoxy beads. The first demonstration
of neuron-derived EV (NDE) isolation was provided by

Zhang and colleagues, who directly isolated them from
plasma diluted 1:3 (after centrifugation at 2000 and
12,000g) in phosphate-buffered saline without prior
isolation of total EVs. The diluted plasma samples
were incubated with anti–L1 cell adhesion molecule
(L1CAM) antibody-coated on M-270 Epoxy beads with
gentle rotation before proceeding to exosome release or
lysis (Shi et al., 2014). However, subsequent studies
have preferred a two-step methodology, where total EVs
are first isolated from plasma or serum, followed by
immunocapture of BDE using specific markers (Goetzl
et al., 2016b; Mateescu et al., 2017; Mustapic et al.,
2017; Kapogiannis et al., 2019; Kumar et al., 2021a,
2022; Pounders et al., 2022; Roseborough et al., 2023).
The two-step method can circumvent the interference of
free proteins present in plasma for the isolation of
BDEs. In recent years, several companies, such as Neu-
roDex, Novus Biologicals, Miltenyi Biotech, and FUJI-
FILM Wako Pure Chemical Corporation, have offered
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Fig. 2. An overview of approaches to isolate BDEs from biofluids. The initial step involves enriching small extracellular vesicles (sEVs) from biofluids
through low-speed sequential centrifugation steps (up to 10,000g) and/or filtration (0.22 lm, filters). The subsequent isolation of total sEVs (TEs) can
be achieved through various methods, including ultracentrifugation, precipitation, density gradient centrifugation, or size exclusion chromatography.
Further, immunocapture is the most preferred method for isolating different BDEs using cell type–specific biotin-labeled antibodies with streptavidin-
coated magnetic/agarose beads. Following incubation of TEs with specific antibodies and streptavidin-coated beads, unbound nonspecific sEVs can be
removed by washing after magnetization (for magnetic beads) or centrifugation (for agarose beads). Specific BDEs bound to the beads can either be
eluted for characterization of their biophysical properties or can be lysed directly on the beads for cargo analysis. In the latter scenario, the beads can
be removed after magnetization or centrifugation.
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commercial kits based on the immunocapture principle
for the isolation of total EVs or NDE from biofluids. A
few studies have also presented methods to isolate
BDEs from the brain tissues (Gomes et al., 2023), which
have been discussed in detail by Brenna et al. (2021).
However, for this review, we will primarily focus on the
methods of BDE isolation from the biofluids. The most
common choice of biofluid for BDE isolation is mainly
plasma (Mustapic et al., 2017; Pulliam et al., 2019; Kumar
et al., 2021a, 2022, 2023) or serum (Dagur et al., 2019; Ed-
wards et al., 2021; Qin et al., 2022); however, other bio-
fluids, such as cerebrospinal fluid (CSF), urine, saliva, and
ascites (Sun et al., 2019b; Gomes and Witwer, 2022), have
also been used for their potential as biomarkers for neuro-
degenerative diseases.
The isolation and characterization protocols for

BDEs have primarily been targeted toward NDEs
(Kumar et al., 2022), with limited reports on astrocyte-
derived EVs (ADEs), microglia-derived EVs (MDEs),
oligodendrocyte-derived EVs (ODEs), pericyte-derived
EVs (PDEs), or endothelial-derived EVs (EDEs) (Table
1). Several markers have been used to isolate NDEs
from plasma or serum, with L1CAM (or CD171) being
the most commonly used for biomarkers discovery and
validation (Pulliam et al., 2019; Gomes and Witwer,

2022). L1CAM is a member of the L1 family of adhesion
proteins. It is typically expressed as a single-pass trans-
membrane protein, with its extracellular N-terminal
containing immunoglobulin domains and fibronectin-
like repeat domains, whereas its cytosolic C-terminal re-
gion is involved in various signaling pathways (Samatov
et al., 2016; Gomes and Witwer, 2022). However, the
utility of L1CAM in isolating NDEs has been challenged
for several reasons. First, L1CAM specificity to neurons
or even the central nervous system (CNS) has been
questioned as this protein is expressed by other brain
cell types, like oligodendrocytes, as well as cells outside
the CNS (such as kidney and urinary bladder) and can-
cer cells (Gutwein et al., 2005; Colombo and Meldolesi,
2015; Altevogt et al., 2020). Additionally, the transient ex-
pression of L1CAM due to the susceptibility of proteolytic
cleavage of its ectodomain results in the majority of pro-
tein being in soluble form (Linneberg et al., 2019; Norman
et al., 2021). Nevertheless, there is sufficient evidence
confirming the presence of L1CAM on NDEs’ surface es-
tablished by immunogold labeling coupled with transmis-
sion electron microscopy, confocal microscopy, and flow
cytometry (Winston et al., 2019; Kumar et al., 2021a,
2022, 2023; Lee et al., 2021). Alternatively, neural cell
adhesion molecule (NCAM), GluR2/3 subunits of

TABLE 1
List of potential markers used to isolate different BDEs

BDE Subtype Surface Markers Used for Isolation BDE Characterization Methods References

NDE L1CAM (CD171), NCAM,
SNAP-25, Synaptophysin,
GluR2/3, ATP1A3, GAP43,

NLGN 3

NTA, TRPS, dynamic light
scattering, western blot, TEM,
immuno-gold labeling, flow

cytometry

Shi et al., 2014; Goetzl et al., 2015a,b,
2018a, 2021; Sun et al., 2017, 2019a;

Kuwano et al., 2018; Agliardi et al., 2019;
Dagur et al., 2019; Kapogiannis et al.,
2019; Pulliam et al., 2019; Wijtenburg
et al., 2019; Winston et al., 2019, 2022;

Zhao et al., 2019; Gu et al., 2020;
Hiramoto et al., 2020; Hornung et al.,
2020; Niu et al., 2020; Nogueras-Ortiz

et al., 2020; Song et al., 2020; Arioz et al.,
2021; Delgado-Peraza et al., 2021; Kumar
et al., 2021a, 2022, 2023; Lee et al., 2021;
Nasca et al., 2021; Saeedi et al., 2021; Yao
et al., 2021; Alvarez et al., 2022; Du et al.,

2022a; Durur et al., 2022; Gomes and
Witwer, 2022; Kluge et al., 2022; Perluigi

et al., 2022; Pounders et al., 2022;
Tasdelen et al., 2022; Yousif et al., 2022;
Eitan et al., 2023; Meloni et al., 2023;
Visconte et al., 2023; You et al., 2023

ADE GLAST (ACSA-1) NTA, western blotting, TEM,
immuno-gold labeling, flow

cytometry

Goetzl et al., 2016b, 2018b; Winston et al.,
2019, 2022; Nogueras-Ortiz et al., 2020;

Delgado-Peraza et al., 2021;
Kumar et al., 2021a, 2023; Lee et al.,

2021; Valle-Tamayo et al., 2022; Xie et al.,
2023b

MDE TMEM119, CD11b NTA, western blotting, TEM,
immuno-gold labeling, flow

cytometry

Cohn et al., 2021; Kumar et al., 2021a,
2023; Winston et al., 2022; Roseborough

et al., 2023; Visconte et al., 2023
ODE MOG, PDGFRa, CNPase NTA, western blotting, TEM,

immuno-gold labeling, flow
cytometry

Yu et al., 2020; Dutta et al., 2021; Kumar
et al., 2023

PDE PDGFRb NTA, TEM, immuno-gold labeling,
flow cytometry

Kumar et al., 2023

EDE CD31, CD146 NTA, TEM, immuno-gold labeling,
flow cytometry

Elahi et al., 2018; Abner et al., 2020;
Kumar et al., 2023

ACSA-1, astrocyte cell surface antigen-1; ATP1A3, ATPase Na1/K1 transporting subunit a 3; CNPase, 2,3-cyclic nucleotide-3-phosphodiesterase; GAP43, growth asso-
ciated protein 43; GluR2/3, GluR2/3 subunits of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; MOG, myelin oligodendrocyte glycoprotein; NLGN3, Neuroligin-3;
NTA, nanoparticle tracking analysis; PDGFRa, platelet-derived growth factor a; TRPS, tunable resistive pulse sensing.
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a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
(GluR2/3), synaptosome-associated protein 25 (SNAP-25),
synaptophysin, and ATPase Na1/K1 transporting subunit
a 3 (ATP1A3) have also been used for NDE isolation
(Hornung et al., 2020; Song et al., 2020; Saeedi et al., 2021;
Kumar et al., 2022; Yousif et al., 2022; You et al., 2023)
(Table 1). The isolation of plasmaNDEsusing two separate
markers, L1CAM and SNAP-25, from the independent co-
hort showed high concordance in microRNA (miRNA)
cargo analysis, demonstrating the utility of these
markers in isolating similar NDE populations (Kumar,
2021; Saeedi et al., 2021). However, the decreased ex-
pression of SNAP-25 in serum NDEs from patients with
AD compared with healthy controls has also been re-
ported (Agliardi et al., 2019), which may impact the effi-
ciency of NDE isolation from individuals with AD if
SNAP-25 is used.
In recent years, there has been increasing attention

on non-neuronal cells and their EVs to gain a more
comprehensive understanding of the pathophysiologi-
cal characteristics of various neuropsychiatric disor-
ders. Astrocytes, the most prevalent type of glial cells
in the CNS, and their EVs (ADEs) have been shown to
play a crucial role in several neuropathological condi-
tions (You et al., 2019; Rouillard et al., 2021; Zhao
et al., 2021). ADEs have been reported to be associated
with the pathogenesis of diverse neuropathological dis-
eases by horizontally transferring their cargos to neigh-
boring brain cells as well as peripheral immune cells.
Furthermore, ADEs have also been implicated in neuro-
protection, neuro-regeneration, repair, and maintenance
of normal neuronal function, making their isolation from
patients’ biofluids and cargo analysis vital for the diagno-
sis, treatment, and prevention of neurological diseases
(Zhao et al., 2021). The isolation of ADEs from the pe-
ripheral system has been demonstrated using a biotiny-
lated antibody against glutamine aspartate transporter
[GLAST; also known as astrocyte cell surface antigen-1
(ACSA-1)] (Goetzl et al., 2016b, 2018b; Delgado-Peraza
et al., 2021; Kumar et al., 2021a, 2023; Valle-Tamayo
et al., 2022) (Table 1). Similarly, microglia, the resident
macrophagic cells of the brain, play a crucial role inmain-
taining the integrity of the CNS by regulating neuronal
mapping and activities, CNS development, and tissue ho-
meostasis through the maintenance of a basal inflamma-
tory state (Ransohoff and El Khoury, 2015; Thion et al.,
2018). Recently, we demonstrated the utility of microglia-
specific transmembrane protein 119 (TMEM119) biotin-
tagged antibody in combination with streptavidin-coated
magnetic beads to isolate MDEs from plasma (Kumar
et al., 2021a) (Table 1). This method has been further val-
idated by us and others (Kumar et al., 2023; Roseborough
et al., 2023; Visconte et al., 2023). Recently, the isolation
of NDEs, ADEs, and MDEs using biotin-tagged L1CAM,
GLAST, and TMEM119 antibodies, respectively, tagged
on streptavidin-coated magnetic beads was demonstrated

following sorting of beads-Ab-EV complex on a flow cy-
tometer before their elution (Lee et al., 2021; Winston
et al., 2022). Additionally, the utility of CD11b to isolate
MDEs from cryopreserved brain tissue (Cohn et al., 2021)
and myelin oligodendrocyte glycoprotein (MOG), CD140a/
platelet-derived growth factor a(PDGFRa), and 2,3-cyclic
nucleotide-3-phosphodiesterase (CNPase) for ODEs has
also been demonstrated (Yu et al., 2020; Dutta et al., 2021;
Kumar et al., 2023) (Table 1).
Similar to glial cells, brain pericytes and endothelial

cells have traditionally been described as bystanders in
the development of various neurological disorders. Yet,
these vascular cells may play an active role in the
pathogenesis of various diseases, where neuron-glial-
endothelial cells work as a cohesive unit. Recent studies
have reported the usefulness of EDEs to better under-
stand cerebral vascular disease and cognitive function
(Goetzl et al., 2017; Elahi et al., 2018; Abner et al.,
2020). For example, Abner et al. (2020) reported the iso-
lation of EDEs from plasma using surface markers
CD31 and CD146 to assess the role of small cerebral
vascular disease in the development of dementia in AD.
Recently, we also reported the isolation of EDEs and
PDEs, along with other BDEs, and showed the useful-
ness of their cargo (specific miRNAs) as a potential bio-
marker for AD (Kumar et al., 2023). Table 1 lists various
surface biomarkers that are being used to isolate BDEs
from blood, with references of a few of these studies.

III. Characterization of Brain Cell–Derived
Extracellular Vesicles for Purity and Cargo

BDEs have been extensively characterized for their
concentration (particle number per ml), size distribu-
tion, expression of EV biomarkers, and cargos (protein,
metabolites, and nucleic acids) to identify disease-
specific biomarkers (Goetzl et al., 2015b, 2016b; Doyle
and Wang, 2019; Kumar et al., 2021a, 2022, 2023; Eitan
et al., 2023) (Fig. 3). Size distribution analysis not only
helps determine the prevalence of specific types of EVs,
such as small extracellular vesicles, but also identifies
differences due to pathology or any therapeutic interven-
tion. For instance, nanoparticle tracking analysis showed
a decreased concentration of NDE in AD, indicating
higher diagnostic performance for discriminating AD
from control individuals (Visconte et al., 2023). On the
other hand, the concentration of MDEs was significantly
higher in the mild cognitive impairment (MCI) group
compared with the control group, with no change in size
reported for both NDEs andMDEs (Visconte et al., 2023).
Similarly, another study using nanoparticle tracking
analysis showed a significantly reduced concentration of
NDEs in patients with amnestic MCI or AD dementia
compared with amyloid b (Ab)� or Ab1 normal controls
(Li et al., 2022). However, contrasting results were re-
ported by Nogueras-Ortiz et al. (2020), who found a
higher particle concentration of NDEs and ADEs isolated
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from plasma using L1CAM and GLASTmarkers, respec-
tively, in AD individuals compared with controls. Fur-
ther, Saeedi et al. (2021) reported a smaller size of NDEs
and total EVs, measured using tunable resistive pulse
sensing technology, in MDD subjects compared with con-
trols, which increased after 8 weeks of antidepressant
therapy (ADT) and showed associations with better ther-
apeutic response.
In addition to characterizing EVs for size and concen-

tration, the proteins present on their surface are routinely
characterized using immunogold labeling coupled with
transmission electron microscopy (TEM) or cryo-TEM to
confirm the purity, specificity, and size of BDEs (Dickens
et al., 2017; Men et al., 2019; Willis et al., 2020; Kumar
et al., 2022, 2023; Roseborough et al., 2023). We recently
reported the extensive characterization of BDEs using im-
munogold labeling (Kumar et al., 2022, 2023) and also
detailed the method of immunogold labeling for EV char-
acterization (Su et al., 2022). For BDEs, imaging of typical
EV markers (i.e., CD63 or CD9) along with specific EV
markers [i.e., L1CAM (for NDEs), GLAST (for ADEs),
TMEM119 (for MDEs), PDGFRa (for ODE), PDGFRb (for
PDEs), and CD31 (for EDEs)], using gold-labeled antibod-
ies, confirmed their purity and specificity (Kumar et al.,
2022, 2023). We also reported the coexpression of CD63
and L1CAM on the surface of NDEs by this approach us-
ing two different-sized “gold particles (10 and 20 nm)-
tagged antibodies” (Kumar et al., 2022). We further con-
firmed immuno-gold labeling–TEM results by confocal
microscopy as well as ELISA assays (Kumar et al., 2022).

Recent advancements in flow cytometry instrumenta-
tion and protocols, including the integration of a high-
power 488-nm laser and modifications of the optical de-
tection systems, have made it possible to quantify EVs’
surface proteins, size, and even proteins loaded in EVs
using fluorescent antibodies targeting EV-associated
membrane/cargo proteins (Stoner et al., 2016). Flow cy-
tometry has been used in many recent studies to detect
and quantify specific subpopulations of BDEs. We have
extensively characterizedNDEs using a fluorescent anti-
body (L1CAM) to isolate these EVs, which was further
validated by other NDE-specific markers, such as eno-
lase 2 (ENO2) (a neuron-specific enolase) and synapto-
physin (Kumar et al., 2022). Furthermore, we used flow
cytometry to analyze the purity of six different BDEs
(neurons, astrocytes, microglia, oligodendrocytes, peri-
cytes, and endothelial) and determine the relative per-
centage of these brain cell–specific EVs in the total EV
pool isolated from the plasma of control and individuals
with dementia (Kumar et al., 2023). Similarly, other
studies have also characterized different BDEs using
flow cytometry (Mustapic et al., 2017; Silverman et al.,
2019; Ali Moussa et al., 2022; Huang et al., 2022). Re-
cently, Hong et al. (2021) demonstrated an assay based
on the novel Apogee nanoscale flow cytometry technol-
ogy for the detection of a-synuclein or aggregated a-synu-
clein using specific antibodies with high specificity and
sensitivity in controls and Parkinson’s disease patients.
Due to the small size of EVs and the challenges in their
detection with most conventional flow cytometers, EVs
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Fig. 3. BDEs in biofluids could serve as liquid biopsy for various neurological disorders. EVs secreted by various brain cells find their way into periph-
eral circulation. Based upon their specific surface markers, various BDEs can be isolated by immunocapture method. BDEs are characterized for their
biophysical properties, purity, and/or expression of specific biomarkers by multiple techniques, such as nanoparticle tracking analysis (NTA), nano-
flow cytometry, and electron microscopy. Furthermore, the cargo of BDEs can be characterized by multiple techniques. For proteins, mass spectrome-
try, ELISA, arrays, and western blotting (WB) can be used. Nucleic acids can be analyzed through RNA sequencing (RNA-seq) and qPCR, and metabo-
lites and lipids can be studied using targeted or untargeted mass spectrometry and Raman spectroscopy.
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can be tagged to beads and labeled with specific anti-
body/antibodies that detect EV surface markers, and
conventional flow cytometry instruments can be used for
analysis (Campos-Silva et al., 2019).
Although western blotting of typical EV markers has

been extensively used to characterize EVs isolated
from different biofluids and cell-cultured media, the low
recovery of specific cell-derived EVs, including BDEs,
limits its utility, especially when isolated from human
biofluids. Still, the expression of neuron-specific markers,
such as L1CAM, SNAP25, NeuN, and GluR2, as well as
general EVmarkers, like CD9, Flot-1, CD9, and TSG101,
has been confirmed by western blotting in many studies
(Dagur et al., 2019; Serpente et al., 2020; Saeedi et al.,
2021; Eitan et al., 2023). Similarly, the expression of
typical EV markers, like Alix, flotillin-1, Annexin-A2,
and CD81, has been reported in ADEs isolated from
cultured astrocytes media (Pascua-Maestro et al.,
2019; D’Arrigo et al., 2021). Moreover, commercial EV
protein arrays are available and being used to charac-
terize typical markers for total EVs as well as NDEs
(Joerger-Messerli et al., 2018; Kumar et al., 2022). In
addition to the analysis of typical EV markers, the west-
ern blotting approach has also been used to analyze the
expression of markers related to neuron/astrocyte-
derived EVs (Mustapic et al., 2017; Patel and Weaver,
2021).
The analysis of BDEs’ cargo as a biomarker has primar-

ily been focused on proteins and miRNAs/mRNA, with
some sparse studies on lipids. The methods of characteri-
zation of BDEs, along with the analyzed cargo proteins
and miRNAs in different neurological disease conditions,
are listed in Table 2. The preferred method for these anal-
yses includesmass spectrometry andELISA-based assays
for proteins and real-time polymeric chain reaction (PCR)
and RNA sequencing for miRNA/RNA quantification
(Fig. 3). The studies adopting these methods for the
analysis of BDEs in different disease contexts are dis-
cussed below.

IV. Brain Cell–Derived Extracellular Vesicles’
Usefulness in Characterizing Molecular

Biomarkers of Various Neurological Disorders

A. Alzheimer’s Disease

AD, the most common form of dementia, is currently
a public health crisis. AD becomes more prevalent with
age and is considered one of the most expensive dis-
eases to manage in the United States (Hurd et al.,
2013; Alzheimer’s Association, 2016). Histopathologically,
AD is characterized by extracellular amyloid plaques, in-
tracellular neurofibrillary tangles, synaptic degeneration,
and hippocampal neuronal loss (Swerdlow, 2007). The
principal explanation of AD pathogenesis is the “amyloid
hypothesis,” which posits that Ab peptides accumulate in
the extracellular space, leading to a series of downstream

events, such as synaptic dysfunction, inflammation, tau
pathology, neuronal cell death, and, ultimately, dementia
(Hardy and Selkoe, 2002; Palop and Mucke, 2010; Bloom,
2014; Tu et al., 2014; Marsh and Alifragis, 2018; Chen
et al., 2020). Ab peptide is formed through the sequential
cleavage of amyloid precursor protein (APP) by b- and
c-secretase enzymes to generate the amyloidogenic Ab
peptide, whereas cleavage of APP with a-secretase fol-
lowed by c-secretase precludes Ab formation (Chow et al.,
2010; Zhang et al., 2011).
Despite well-defined histopathological hallmarks and

the increasing prevalence of the disease, the clinical diag-
nosis of AD is complex and relies primarily on extensive
cognitive measures. Neuroimaging, including positron
emission tomography (PET) and magnetic resonance
imaging (MRI), and CSF biomarkers provide objective
evidence of the underlying neuropathology of cognitive
impairment, although these techniques have not been
routinely implemented for early diagnosis. Moreover, us-
ing these standard methods, clinical diagnosis is mostly
possible only when significant and irreversible neuronal
damage has already occurred. Although the assessment
of pathologic proteins like Ab, total- and phosphorylated
(p)-tau, and synaptic proteins are ideal for AD diagnosis,
their concentrations in different biofluids differ signifi-
cantly, and their detection by standard assays is only pos-
sible in the advanced disease condition (Candelise et al.,
2020). Furthermore, the research framework for AD di-
agnosis, developed under the National Institute on Aging
and Alzheimer’s Association, proposed a classification
scheme known as the ATN classification system based on
amyloidosis (A), tauopathy (T), and neurodegeneration
(N). This system divides seven major AD biomarkers into
three binary categories: b-amyloid (amyloid PET and
CSF Ab1-42), tau (CSF p-tau, or tau PET), and bio-
markers of neurodegeneration or neuronal injury ([18F]-
fluorodeoxyglucose–PET, structural MRI, or CSF total
tau) (Jack et al., 2016; Ebenau et al., 2020; Baldeiras
et al., 2022). This framework provides a reference for
AD diagnosis. However, evidence suggests that the
ATN classification does not always reflect the pheno-
typic and pathogenic complexity of AD. Therefore,
ATN biomarkers are not routinely used in clinical
practice for late-onset dementia or to diagnose non-
AD dementia and are mostly used for identifying pre-
clinical AD in research settings (Niemantsverdriet
et al., 2017). Moreover, the collection of CSF for routine
and repeated assessment over time is invasive, and the
cost associated with neuroimaging measures is high.
This has promoted researchers to seek a more feasible,
affordable, and reliable blood-based biomarker for AD
diagnosis.

1. Protein Cargo of Extracellular Vesicles as an Impor-
tant Source of Biomarkers for Alzheimer’s Disease. As
highlighted above, the possibility of isolation of cell type–
specific EVs from the peripheral biofluid has provided an
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opportunity to study the complex molecular changes in
the brain. Profiling the levels of p-T181-tau, p-S396-tau,
Ab1–42, neurogranin (NRGN), glutamate ionotropic re-
ceptor AMPA type subunit 4 (AMPA4), repressor element
1-silencing transcription factor (REST), growth-associated
protein 43 (GAP43), cathepsin D, lysosome-associated
membrane protein (LAMP)-1, ubiquitin, and synaptotag-
min 1 in NDEs has shown differential levels in control,
MCI, and AD patients. These levels were reported to pre-
dict the development of AD 5–10 years prior to clinical on-
set (Fiandaca et al., 2015; Goetzl et al., 2015a,b, 2016a,
2018a; Winston et al., 2016; Jia et al., 2021). Studies con-
sistently showed higher levels of total/p-tau and Ab1-42 in
NDEs isolated from the plasma of MCI and AD individu-
als as well as in EVs isolated from CSF and brain tissues
(Saman et al., 2012; Fiandaca et al., 2015; Polanco et al.,
2016; Guix et al., 2018; Liu et al., 2022; Ruan, 2022). The
higher levels of Ab in NDEs can be justified by other evi-
dence, which showed the cleavage of APP by b-secretase,
mainly in the late Golgi/trans-Golgi network (TGN) and
endosomes. The release of Ab peptide utilizes the endo-
cytic pathway and is secreted into the extracellular space
in EVs (or exosomes) after the fusion of theMVBwith the
plasma membrane (Koo and Squazzo, 1994; Rajendran
et al., 2006). Moreover, the expression of different APP
cleavage forms [soluble amyloid precursor protein (sAPP)-
b, sAPPa, and soluble Ab1-42], and the enzymes responsi-
ble for its cleavage (b- and c-secretase) were detected in
both NDEs and ADEs, with comparatively higher levels
reported in ADEs (Goetzl et al., 2016b). Significantly
higher levels of b secretase-1 (BACE-1) and sAPPb and a
lower level of glial-derived neurotrophic factor (GDNF)
were detected in ADEs from AD patients compared with
controls (Goetzl et al., 2016b).

Analysis of EVs’ cargo in a mixed co-culture of astro-
cytes, neurons, and oligodendrocytes treated with syn-
thetic Ab42 protofibrils showed significantly higher
levels of apolipoprotein E (apoE) in the isolated EVs.
Interestingly, the apoE-containing EVs were primarily
derived from the astrocytes in the co-culture system
(Nikitidou et al., 2017). Additionally, exposure of astro-
cytes to synthetic Ab peptide increased the secretion
and diameter of ADEs, with higher levels of ceramide
and GM1 ganglioside (involved in Ab aggregation,
seeding, and sequestration) loaded as cargo (Dinkins
et al., 2016). Furthermore, microglia in the brain have
been shown to be positively correlated with tau pathol-
ogy, and their involvement in tau propagation was sug-
gested to be mediated by their EVs (Asai et al., 2015).
MDEs isolated from AD brains were reported to be
loaded with higher levels of disease-associated micro-
glia markers, such as ferritin heavy chain 1 (FTH1) and
triggering receptor expressed on myeloid cells 2
(TREM2), along with higher levels of tau and proinflam-
matory lipids (Cohn et al., 2021). EVs secreted from af-
fected brain cells transmit pathologic cargo to other
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brain cells, contributing to disease propagation. For ex-
ample, EVs isolated from frozen brain tissues of human
AD, prodromal AD, and nondementia control individuals
showed higher levels of tau in AD brain tissue derived
EVs. Injecting these tau-containing EVs into the hippo-
campus of 18-month-old female wild-type mice induced
the accumulation of oligomeric and fibrillar tau in mouse
brain compared with recipients of prodromal or control
EVs, demonstrating the potential for tau propagation
loaded in EVs (Ruan et al., 2021). Further, You et al.
(2022) identified brain cell type-specific markers from
human-induced pluripotent stem cell–derived neural cell
types, including excitatory neurons (ATP1A3, NCAM1),
astrocytes [lipoprotein receptor-related protein 1 (LRP1),
integrin subunit a 6 (ITGA6)], microglia-like cells [integ-
rin subunit aM (ITGAM), lymphocyte cytosolic protein 1
(LCP1)], and oligodendrocyte-like cells (LAMP2, FTH1).
Using label-free quantitative liquid chromatography
with tandem mass spectrometry proteomics analysis,
they demonstrated that proteins enriched in ADEs
were most significantly associated with AD pathology
and cognitive impairment. Moreover, a significantly
elevated level of integrin b1 (ITGB1) was also re-
ported in ADEs enriched from total brain tissue EVs
of AD subjects, which was further associated with
brain Ab and tau load in an independent cohort.
Synaptic dysfunction and loss are common early fea-

tures and contributing factors in AD pathogenesis and
positively relate to the severity of dementia (Masliah
et al., 2001; Selkoe, 2002; Reddy et al., 2005; Morrison
and Baxter, 2012). Increased levels of both pre- and
postsynaptic proteins, such as SNAP-25, GAP-43, post-
synaptic density protein-45 (PSD-95), synaptotagmin-1,
and neurogranin, have been reported in CSF at early-stage
AD due to their release from degrading synapsis (McGrow-
der et al., 2021; Kivisakk et al., 2022). However, contrary to
their CSF levels, decreased levels of synaptic proteins,
such as SNAP-25, neurogranin, PSD-95, neuron pentraxin
2 (NPTX2), AMPA4, neuroligin 1 (NLGN1), and a-neu-
rexin 2 (NRXN2a), have been reported in plasma NDEs of
AD dementia patients compared with preclinical AD indi-
viduals with normal cognition (Goetzl et al., 2018a). Addi-
tionally, other risk factors involved in neuroinflammation
[e.g., complement component 1q (C1q)], metabolism dis-
order [e.g., P-S312–insulin receptor substrate-1 (IRS-1)],
neurotrophic deficiency [e.g., hepatocyte growth factor
(HGF)], vascular injury [e.g., vascular endothelial growth
factor D (VEGF-D)], and autophagy-lysosomal system dys-
function (e.g., cathepsin D) have higher levels in NDEs of
ADpatients, supporting the usefulness of EV-based protein
biomarkers as a clinical blood test for AD (Liu et al., 2022).

2. microRNAs in Extracellular Vesicles as Potential
Biomarkers for Alzheimer’s Disease. The analysis of
proteins in EVs has shown great promise in developing
biomarkers for AD, but accuracy and sensitivity could
still be dependent upon the choice of method used for

their detection. In this regard, besides proteins, develop-
ing EV-based miRNA biomarkers holds a few advantages.
Quantitative assessment of miRNAs using real-time
PCR is much more sensitive than ELISA or western
blotting, and it is cost effective, too. Furthermore, the
analysis of miRNAs can also provide information about
altered molecular pathways and possible druggable tar-
gets. Approximately 70% of experimentally detected
miRNAs have been reported to be expressed in the CNS,
and their expression is dynamically and precisely regu-
lated during brain development and neuronal matura-
tion (Nowak andMichlewski, 2013). Any aberrant change
in these miRNAs may contribute to abnormal brain func-
tion and pathologies. The analysis of altered expression of
several miRNAs in CSF, plasma, and brain tissue has
shown promise as AD biomarkers to predict the disease
progression and identify potential therapeutic targets
(Swarbrick et al., 2019; Zhang et al., 2019b), although
their brain cell type specificity remains in question. More-
over, analyzing the miRNAs’ expression in biofluids may
show a poor correlation with the brain tissue primarily
because the circulatory miRNAs in biofluids are contrib-
uted by many different cell types in the body. Since EVs
released from different brain cell types are loaded with
miRNA cargo and can cross the blood-brain barrier to en-
ter circulation, analyzing miRNAs’ expression in various
BDEs from blood holds promise as novel biomarkers for
the diagnosis of AD.
Although all forms of nucleic acids, including DNA,

mRNA, miRNAs, and long noncoding RNAs (lncRNAs),
are detected in EVs, they are highly enriched in miRNAs
(Huang et al., 2013). Several studies have profiled the ex-
pression of miRNAs in total EVs from plasma, serum,
and CSF as well as in specific BDEs (Cheng et al., 2015;
Lugli et al., 2015; Cha et al., 2019; Upadhya et al., 2020;
Sproviero et al., 2021; Vandendriessche et al., 2022;
Kumar et al., 2023). The expression analysis of several
miRNAs, like miR-193b, miR-223, miR-135a, miR-384,
miR-23a, miR-100, and others, in plasma or serum sam-
ples has shown the potential to discriminate AD patients
from healthy controls (Vandendriessche et al., 2022). In a
comprehensive profiling of cell-free miRNAs in CSF and
blood using next-generation deep sequencing, Burgos
et al. (2014) reported differential expression of 41miRNAs
in the CSF and 20 miRNAs in the serum of AD patients
compared with healthy controls. Most studies analyzing
the expression of circulatory miRNA in different biofluids
and brain tissues have shown low expression of miRNAs
in AD condition but with poor consistency and lack of re-
producibility (Burgos et al., 2014; Kiko et al., 2014; Denk
et al., 2015; Riancho et al., 2017). Moreover, most studies
reported a poor correlation between the expression of
miRNAs in the brain tissues and biofluids but improved
consistencywith EVs. For example,miR-9, a brain-specific
miRNA highly expressed in the brain to regulate several
cellular and developmental processes (Kapsimali et al.,
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2007; Coolen et al., 2013; Millan, 2017), has shown higher
expression levels in late-stage AD in brain tissues com-
pared with controls (Lukiw, 2012; Chen et al., 2021b). The
expression of miR-9-5p has been found to be reduced in
the CSF, but interestingly, analysis of miR-9-5p expres-
sion in exosomes enriched from CSF showed an inverse
expression pattern, in agreement with data from AD
brain tissue, showing high expression in CSF-enriched
exosomes in AD subjects (Riancho et al., 2017). In a com-
parative study of miRNA fingerprinting from frontal
cortex homogenate EVs and serum-derived EVs of AD
and control subjects, Cheng et al. (2020) reported upre-
gulated expression of disease-associated miRNAs in
BDEs, which correlated well with miRNA profiles ob-
tained frommatching total brain homogenate. However,
the expression of miR-486-3p was found to be enriched
in both AD and control brain tissue–derived EVs, sug-
gesting that this miRNA may be regularly packaged
into brain tissue–derived EVs during disease or physio-
logic states and play an important role in CNS develop-
ment and cell motility. Furthermore, miRNA changes in
the brain tissue and brain tissue–derived EVs were also
correlated with those detected in peripheral EVs col-
lected from the serum of AD subjects, and a panel of mi-
RNA was suggested as a liquid brain biopsy (Cheng
et al., 2020). Similarly, the assessment of dysregulated
miRNAs in AD brain tissue and plasma NDEs con-
firmed the decreased expression of miR-132 and miR-
212 both in the brain and plasma NDEs of AD individu-
als, showing diagnostic utility in separating controls
from MCI and AD (Cha et al., 2019). Analysis of miR-
NAs in NDEs isolated from the plasma of 40 AD and
40 healthy individuals showed increased expression of
miR-23a-3p, miR-223-3p, and miR-190a-5p, whereas de-
creased expression of miR-100-3p, in NDEs of AD indi-
viduals compared with controls (Serpente et al., 2020).
Furthermore, the analysis of miRNA expression in NDEs
isolated from the plasma of AD and healthy individuals
via next-generation sequencing revealed let-7e as the
most dysregulated (increased) miRNA in AD, showing
excellent diagnostic potential (Durur et al., 2022).
Although AD research has traditionally been focused

on neuronal dysfunction, growing evidence suggests that
changes in the cell types involved in maintaining the in-
tegrity of the neural system also contribute to AD pathol-
ogy (De Strooper and Karran, 2016; Henstridge et al.,
2019). Therefore, analyzing the role of specific non-
neuronal cell types in the CNS could provide a holistic un-
derstanding of the distinct and chronological cascades as
well as novel molecular biomarkers associated with AD
pathogenesis. Moreover, the cross communication of dif-
ferent cells in the brain microenvironment is mediated
through the transfer of miRNAs via EVs. Different BDEs
loaded with miRNAs establish crosstalk among brain
cells and could also affect the normal physiologic function
of the recipient cells in the brain and peripheral system

(Morel et al., 2013; Bahrini et al., 2015). For example,
miRNAs loaded in NDEs have been shown to affect astro-
cytes, microglia, and neurovascular integrity (Morel et al.,
2013; Bahrini et al., 2015; Xu et al., 2017). Similarly, under
inflammatory conditions, alterations in miRNAs cargos
(like miR-125a-5p, miR-16-5p, and miR-34a) have been
reported in ADEs, which affects the synaptic stability
of target neurons and their ability to support neuron
survival or exacerbate neurodegeneration (Mao et al.,
2015; Chaudhuri et al., 2018). To establish the alter-
nations in miRNAs expressions in different BDEs,
we performed comprehensive profiling of eight key
miRNAs (miR-9-5p, miR-29a-5p, miR-106b-5p, miR-107,
miR-125b-5p, miR-132-5p, miR-135b-5p, and miR-210-3p)
in NDEs, ADEs, MDEs, ODEs, PDEs, and EDEs simulta-
neously isolated from the plasma of control individuals and
individuals at different stages of dementia (Kumar et al.,
2023). We observed that different miRNAs showed altered
expression in various BDEs and exhibited excellent diag-
nostic potential in identifying dementia status. Interest-
ingly, we reported that the expression of hypoxia-specific
miRNA, miR-210-3p, increased in NDEs and ADEs in pro-
dromal dementia, possibly due to vascular dysfunction.
This observation is supported by the finding that hyp-
oxia induced the expression of miR-132 in mouse and
human brain microvascular endothelial cells, which,
in turn, caused disruption to the blood-brain barrier
(Burek et al., 2019; Kumar et al., 2023). Moreover, the
expression of miR-132 and miR-135b in PDEs and
EDEs could distinguish overall dementia from control
individuals (Kumar et al., 2023).

3. Lipid Cargo of Extracellular Vesicles as Novel Bio-
markers for Alzheimer’s Disease. In addition to profil-
ing proteins and miRNA cargos, lipid analysis of EVs,
predominantly isolated from brain tissue, has also pro-
vided evidence of dysregulation in AD samples, which
can be attributed to lipid imbalance in AD (Wang et al.,
2012; Cohn et al., 2021; Su et al., 2021). A multiomics
analysis of microglial (CD11b-positive) EVs from cryopre-
served human brain tissue and the parietal cortex of four
late-stage AD (Braak Vand/or VI) and three age-matched
normal/low pathology cases revealed dysregulation of
594 lipids identified by targeted lipidomics. The study
presented an overall proinflammatory lipid profile, endo-
lysosomal dysfunction, and a significant AD-associated
decrease in the levels of docosahexaenoic acid (DHA)-con-
taining polyunsaturated lipids (Cohn et al., 2021).
Together, to achieve amore comprehensive understand-

ing of AD pathogenesis, biomarker development, and the
identification of novel avenues for patient stratification
and therapy, it is essential to analyze dynamic changes in
proteins, lipids, and miRNAs expression across different
brain cell types. Since BDEs offer a unique tool to simul-
taneously study such molecular alterations in peripheral
circulation, these EVs could be a potential adjuvant
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biomarker to support the existing methods for AD diag-
nosis and prognosis.

B. Parkinson’s Disease

PD is the second most prevalent age-associated neu-
rodegenerative disorder after AD, caused by the selec-
tive destruction of dopaminergic neurons, resulting in
unintended or uncontrollable bodymovements (Jankovic,
2008; Massano and Bhatia, 2012). Clinically, PD is char-
acterized by four fundamental features, which can be
grouped under the acronym TRAP: tremor at rest, rigid-
ity, akinesia (or bradykinesia), and postural instability
(Jankovic, 2008). Additionally, PD is associated with other
nonmotor symptoms, such as disturbed sleep, disturbed
autonomic function, psychiatric problems, and constipa-
tion. Despite several studies suggesting that both genetic
and environmental factors contribute to the etiology of
PD, the clear pathologic and etiological features of the
disease remain unclear (Warner and Schapira, 2003).
The diagnosis of PD is primarily based on neurological
and physical examinations and sometimes medical and
family history. However, PD is often not diagnosed until
the advanced stage, when more than 80% of the dopami-
nergic neurons have degenerated. Moreover, the low
fidelity of neurological examination in PD diagnosis
necessitates the development of better biomarkers for
accurate and early prediction of the disease. Further-
more, understanding the cellular and molecular changes
underlying the degenerative processes and the develop-
ment of novel biomarkers is crucial for improved disease
management. Therefore, in recent years, there have been
increasing efforts to develop liquid biopsy–based bio-
markers using multiomics approaches for the early diag-
nosis of PD (Miller and O’Callaghan, 2015). However,
like other neuropsychologic diseases, these blood-based
biomarkers lack brain cell specificity.

1. Protein Cargo of Extracellular Vesicles as Promis-
ing Biomarkers for Parkinson’s Disease. In the context
of neurodegenerative diseases, including PD, EVs could
be useful in multiple ways. For example, EVs could facili-
tate the expulsion of pathologic proteoforms and restrict
their accumulation within the cells. However, the patho-
logic cargo of BDEs, when received by the other brain
cells, can affect their normal physiologic function and
contribute to the spread of the pathology. a-Synuclein, a
presynaptic neuronal protein, is a major contributor to
the pathogenesis of PD, mainly through its aberrant se-
creted soluble oligomeric conformations, and has been
implicated as a genetic defect leading to PD (Stefanis,
2012). The analysis of a-synuclein levels in plasma or se-
rum has yielded inconsistent outcomes and is inadequate
as a biomarker for detecting PD, primarily due to the con-
tribution of peripherally derived a-synuclein. Despite
these limitations, a-synuclein is still by far the most stud-
ied biomarker for PD (Malek et al., 2014).
Compared with peripheral biofluids, the levels of

a-synuclein in CSF is considered a more useful

biomarker for PD (Shi et al., 2014). However, collect-
ing CSF is painful and not feasible for repeated meas-
ures over time. Therefore, plasma BDEs offer a unique
opportunity to develop PD-related biomarkers. A study
by Shi et al. (2014) demonstrated the presence of a-synu-
clein in plasma NDEs and reported approximately a two-
fold higher concentration of a-synuclein in individuals
with PD compared with age- and sex-matched healthy
controls. However, this study used the isolation of NDEs
directly from plasma using biotin-tagged L1CAMantibody,
which could limit the isolation of NDEs due to the higher
soluble form of L1CAM compared with membrane-bound
L1CAM present on NDEs surface. Consequently, further
studies employed a two-stepmethod involving the isolation
of total EVs from plasma followed by immunocapturing of
NDEs.Niu et al. (2020) reported increased levels of a-synu-
clein in plasmaNDEs in patients with early-stage PD. In a
22-month follow-up, they observed a longitudinal increase
in a-synuclein level, which was associated with a higher
risk for motor symptom progression in PD. Furthermore,
the level of a-synuclein inNDEs correlatedwithMovement
Disorders Society Unified Parkinson’s Disease Rating
Scale III scores, Non-Motor Symptom Questionnaire
scores, and Sniffin’ Sticks 16-item test scores of pa-
tients with PD. A large cross-sectional study involving
664 serum samples collected from multiple cohorts in-
vestigated individuals with various neurodegenerative
disorders, including rapid eye movement sleep disorder,
PD, dementia with Lewy bodies, multiple system at-
rophy (MSA), frontotemporal dementia, progressive
supranuclear palsy, corticobasal syndrome, and con-
trols. Longitudinal analysis from PD and control indi-
viduals demonstrated an overall increase in mean
NDEs a-synuclein levels in prodromal and clinical PD
when compared with MSA, controls, or other neuro-
degenerative diseases. More importantly, a-synuclein
in NDEs was found to be elevated at an early stage
and remained elevated with disease progression (Jiang
et al., 2020).
Since the differential diagnosis of PD with atypical

syndrome is challenging due to overlapping pathologic
features, the analysis of plasma NDE for a-synuclein
and aggregated tau was shown to efficiently distin-
guish PD from atypical Parkinsonian syndromes with
high sensitivity and specificity (Meloni et al., 2023). In
addition to NDEs, an increased level of a-synuclein was
also shown in ODEs isolated from the plasma or serum
of PD and MSA using the anti-MOG marker compared
with healthy controls (Dutta et al., 2021). Interestingly,
a-synuclein levels were found to be higher in NDEs
compared with ODEs in the PD group, whereas the op-
posite trend was reported for MSA (Dutta et al., 2021).
Contrary to these reports, Si et al. (2019) analyzed the
levels of a-synuclein in serum-derived NDE from early-
stage PD individuals and subdivided them into tremor-
dominant and non–tremor-dominant groups, along with
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individuals with essential tremor and healthy controls.
Lower levels of a-synuclein were reported in the PD
group compared with the essential tremor and healthy
controls. However, among the PD groups, the levels were
lower in the non–tremor-dominant group than in the
tremor-dominant group, suggesting the biomarker poten-
tial of a-synuclein in NDE toward identifying PD from es-
sential tremor and healthy controls as well as identifying
different motor types in PD. Moreover, a recent study by
Kluge et al. (2022) analyzed plasma NDEs for levels of
a-synuclein from 30 PD patients and 50 healthy controls
but did not find any significant difference between the
two groups.
a-Synuclein is also known to interact with soluble N-

ethylmaleimide-sensitive factor attachment protein recep-
tor (SNARE) proteins, causing synaptic dysfunction. Anal-
ysis of NDEs for levels of oligomeric a-synuclein and
the presynaptic SNARE complex proteins, including syn-
taxin-1A (STX-1A), vesicle-associated membrane protein-
2 (VAMP-2), and SNAP-25, demonstrated higher levels of
a-synuclein, whereas significantly lower levels of STX-1A
and VAMP-2 were observed in PD patients compared with
healthy controls (Agliardi et al., 2021). In addition to
a-synuclein, cortical amyloid deposition is a common fea-
ture in PD dementia (PDD). Analysis of platelet-derived
EVs, using nano-scale flow cytometry with fluorescence-
labeled CD62P and Ab1-42 antibodies, showed a higher
concentration of the Ab1-42 in the PDD group compared
with the control. This has been proposed as a diagnostic
and prognostic biomarker for PDD patients (Wang et al.,
2023). Furthermore, considering the contribution of in-
flammation in the pathogenesis of PD, a recent study by
Chan et al. (2023) profiled the levels of various cytokines
in plasma EVs of PD patients compared with healthy con-
trols. They reported significant changes in the levels of in-
terleukin (IL)-1b, tumor necrosis factor-a (TNF-a), and
IL-6, which were found to be significantly associated with
changes in the severity of postural instability, gait distur-
bance, and cognition between baseline and the 1-year
follow-up. Similarly, comprehensive profiling of plasma
EVs’ surface markers related to inflammatory and im-
mune cells from PD, matched healthy controls, MSA,
and atypical parkinsonism with tauopathies, using
flow cytometric multiplex bead-based platform, re-
vealed that PD and MSA patients displayed a greater
pool of overexpressed immune markers compared with
atypical Parkinsonism with tauopathies (Vacchi et al.,
2020). Additionally, DJ-1 (protein deglycase, also known
as Parkinson’s disease protein 7), a highly conserved di-
mer protein associated with inflammatory disorders in-
volving PD, was found to be highly expressed in plasma
NDEs of PD patients compared with healthy controls,
suggesting its potential as a biomarker along with a-syn-
uclein in PD (Zhao et al., 2019).
Mass spectrometry analysis of serum EVs from PD

patients and healthy controls identified 14 proteins

that were significantly different in mild and severe PD
patients compared with controls. Among these, pig-
mented epithelium-derived factor, afamin, and apolipo-
protein D and J were significantly increased in PD
patients, whereas the expression of seven proteins, in-
cluding complement C1q and protein immunoglobulin
k variable 1-33 (IGLV1-33), were decreased in PD pa-
tients (Jiang et al., 2019). Interestingly, a recent mass
spectrometry analysis of EVs isolated from urine sam-
ples of PD patients with and without mutations in the
leucine-rich repeat kinase 2 (LRRK2) gene, as well as
idiopathic PD patients, identified 4476 unique proteins
and 2680 unique phosphoproteins. Many of these pro-
teins are involved in key PD pathways, including au-
tophagy, and were found to be elevated (Hadisurya
et al., 2023).

2. microRNAs in Extracellular Vesicles as Potential
Biomarkers for Parkinson’s Disease. Apart from pro-
tein-based biomarkers, numerous studies have sug-
gested alterations in the miRNAs in EVs isolated from
biofluids for biomarker studies in PD (Dutta et al.,
2023). miRNAs mediate the regulation of almost all
PD-related genes and are involved in the pathogenesis
of PD, making them potential biomarkers. The analy-
sis of miRNAs as biomarkers for PD has been per-
formed in several biofluids, including CSF, plasma,
serum, and brain tissue (Cao et al., 2017; Dos Santos
et al., 2018; He et al., 2021; Valencia et al., 2022). In a
study analyzing EVs derived from CSF of PD and age-
correlated controls, using next-generation small-RNA
sequencing, Caldi Gomes et al. (2021) presented the
complete and quantitative microRNAome. They de-
tected a total of 688 miRNAs, with 22 miRNAs showing
differential expression in PD subjects compared with
controls, the majority of which were upregulated in
PD. Using a machine-learning approach, they sug-
gested an iterative signature involving miR-126-5p,
miR-99a-5p, and miR-501-3p, which could differentiate
PD and control samples (Caldi Gomes et al., 2021). An-
other study analyzing miRNA expression in CSF exo-
somes using a TaqMan low-density array for human
miRNA panel and further validation of differentially
expressed miRNAs using quantitative PCR (qPCR) re-
vealed reduced expression of 11 miRNAs and increased
expression of 16 miRNAs in PD patients compared
with healthy controls. Further analysis of these dysre-
gulated miRNAs in an independent cohort identified
miR-1 and miR-19b-3p as significantly reduced, whereas
miR-153, miR-409-3p, miR-10a-5p, and let-7g-3p were
significantly overexpressed in CSF exosome from the PD
group (Gui et al., 2015). Similarly, the analysis of serum
EVs identified several miRNAs that showed differential
expression patterns between PD and controls. Several
miRNAs, like miR-34a-5p, miR-155-5p, miR-24, and
miR-195, were found to be significantly elevated, whereas
miR-146a, miR-19b, and miR-125b were reported to be
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reduced in the serum EVs of PD patients compared with
healthy controls (Cao et al., 2017; Caggiu et al., 2018; Fan
et al., 2020; Grossi et al., 2021). Interestingly, the reduced
expression of miR-125a-5p correlated with the increased
expression of lncRNA brain-derived neurotrophic factor
(BDNF)-antisense and was suggested as a potential ther-
apeutic target for PD (Fan et al., 2020).
The analysis of miRNAs’ expression in plasma EVs re-

vealed increased expression of miR-331-5p, miR-30c-2-3p,
andmiR-411-5p as well as reduced expression ofmiR-505,
miR-15b-5p, miR-138-5p, miR-338-3p, miR-106b-3p,
miR-431-5p, and miR-146a-5p in PD patients compared
with healthy controls. Among these miRNAs, miR-331,
miR-505, and the combination of miR-15b-5p, miR-30c-
2-3p, miR-138-5p, and miR-106b-3p showed valuable
diagnostic potential as identified by the area under the
curve (Yao et al., 2018; Xie et al., 2022). In a study by
Wang et al. (2020), next-generation sequencing was
performed on plasma exosome samples from PD pa-
tients and age- and sex-matched healthy individuals,
identifying 15 upregulated and 24 downregulated exo-
somal lncRNAs in the PD group. Importantly, the ex-
pression of lnc-MKRN2-42:1 was positively correlated
with the Movement Disorder Society-Sponsored Revision
of the Unified Parkinson’s Disease Rating Scale III score
for PD patients. Similarly, the level of lnc-POU3F3 in
the plasma NDE showed a positive correlation with
motor dysfunction or nonmotor symptoms in PD pa-
tients (Zou et al., 2020).

3. Lipid and Carbohydrate Cargo of Extracellular
Vesicles as a Novel Source for Biomarkers for Alzheimer’s
Disease. Beyond protein andmiRNA-based biomarkers,
Gualerzi et al. (2019) studied the biochemistry of EVs
using Raman spectroscopy and identified significant bio-
chemical differences in lipids and saccharides of PD pa-
tients from controls. The authors suggested that after
validation, the Raman spectrometry approach for charac-
terizing EVs could be developed into a reliable, automat-
able, and sensitivemethod for stratifying PD patients.
Overall, these studies have demonstrated the po-

tential utility of EVs in developing less invasive and
reliable biomarkers for PD.

C. Schizophrenia

SCZ is a complex, multifactorial psychiatric disorder
that mainly occurs in late adolescence and early child-
hood. It is characterized by symptoms such as halluci-
nations, delusions, apathy, anhedonia, and cognitive
deficits. This disorder shows a heritability rate of ap-
proximately 80% (Lichtenstein et al., 2009; Correll and
Howes, 2021; Sun and Chen, 2023). Despite numerous
attempts to study the brain pathology of SCZ, no specific
pathologic changes have been definitively identified in
post-mortem brains, unlike other psychiatric disorders,
such as AD and PD. The diagnosis of SCZ primarily relies
on a relatively subjective assessment of symptoms, medi-
cal and family history, and clinical interview-based tools

(Hany et al., 2023). Unfortunately, there are no objective
biomarkers available, leading to a high rate of misdiagno-
sis, particularly with psychotic bipolar disorder (Wang
et al., 2022). However, few reports in consensus suggested
that cortical pathology could be a fundamental feature of
SCZ [reviewed in Sun and Chen (2023)]. There is some ev-
idence suggesting the molecular and cellular etiology of
SCZ, including aberrant connectivity in glutamatergic,
GABAergic, dopaminergic, serotonergic neurotransmis-
sion, and other neuronal networks. These abnormalities
create an imbalance in excitation and inhibition and play
a pivotal role in SCZ (Yizhar et al., 2011; Lisman, 2012;
Gao and Penzes, 2015; Liu et al., 2021; Sun and Chen,
2023). Additionally, synaptic disturbance (synaptopathy)
has been implicated in the pathogenesis and/or patho-
physiology of SCZ (Hayashi-Takagi, 2017; Obi-Nagata
et al., 2019). Dystrobrevin binding protein 1 (DTNBP1),
which encodes dysbindin, is a known risk gene for SCZ.
Dysbindin serves as a synaptic protein by forming multi-
ple complexes and regulating the transport of neuro-
transmitters and receptors (Straub et al., 2002; Ghiani
and Dell’Angelica, 2011). The aggregation of dysbindin-
1B can affect neuronal viability and can be transferred
among primary cortical neurons via exosomes with high
efficiency (Zhu et al., 2015). Moreover, studies have dem-
onstrated the long-distance propagation of dysbindin-1B
aggregates from fimbria (site of injection of exosomes con-
taining dysbindin-1B) to the molecular layer of the entire
hippocampus, suggesting the exosomes-mediated propa-
gation of neurotoxic proteins and their accumulation in
the brain of SCZmice (Zhu et al., 2015).

1. Protein Cargo of Extracellular Vesicles as Potential
Biomarkers for Schizophrenia. Cognitive dysfunction
is widely accepted as a fundamental characteristic of
SCZ that typically manifests from the onset of the dis-
order and significantly contributes to disability (Bora
et al., 2010; Guo et al., 2019). The higher glucose lev-
els in the brain, identified using magnetic resonance
spectroscopy, and lower levels of neuronal insulin re-
sistance biomarkers in NDEs have been suggested as
potential biomarkers and a measure of memory im-
pairment for SCZ (Wijtenburg et al., 2019). Although
the involvement of Ab and taus pathology in cognitive
impairment during AD pathogenesis is well estab-
lished, their role in SCZ remains unclear. A study
conducted by Lee et al. (2021) analyzed the levels
of Ab1-42, Ab1-40, and p-T181-tau in plasma-derived
NDEs and ADEs from control individuals and those
with SCZ. The study found significantly higher levels
of ADE Ab1-42 in SCZ patients, whereas other exoso-
mal markers showed no significant difference between
the two groups. Additionally, higher levels of ADE p-
T181-tau were associated with worse executive function.
Furthermore, neuroinflammation is a well established
feature in a subset of individuals with SCZ, with a signifi-
cant increase in inflammatory markers. The elevated
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expression of the astrocyte marker glial fibrillary acidic
protein (GFAP) is known to be associated with increased
astrocytic activation and inflammation in the CNS. Inter-
estingly, a significantly higher concentration of GFAP
was observed in plasma EVs of individuals with SCZ
compared with controls, suggesting a possible astrocyte
pathology (Ranganathan et al., 2022).

2. Extracellular Vesicle–Derived microRNAs as Poten-
tial Biomarkers for Schizophrenia. Since the analysis
of post-mortem brain tissue did not reflect any significant
and distinct phenotypic changes in the brains of individuals
with SCZ, establishing protein-based biomarkers may be
challenging. As a result, parallel research efforts have fo-
cused on analyzing the expression of miRNAs in EVs for
biomarker development. The first genome-wide analysis
of miRNA expression profiling in serum exosomes, con-
ducted in 49 drug-free, first-episode SCZ patients and 46
controls (divided into training and testing groups), identi-
fied several miRNAs, including hsa-miR-206, hsa-miR-
145-5p, hsa-miR-133a-3p, hsa-miR-144-5p, hsa-miR-144-
3p, and hsa-miR-184, that exhibited more than a twofold
alteration in SCZ patients. These miRNAs were pre-
dicted to regulate protein glycosylation and pathways as-
sociated with neurotransmitter receptor and dendrite
(spine) development. Additionally, 11 miRNAs were sug-
gested to differentiate between SCZ patients and control
individuals with high specificity and sensitivity. Further
validation of these differentially expressed miRNAs in
100 SCZ patients and 100 controls using qPCR identified
increased expression of miR-206 levels in blood exosomes
of SCZ patients, which was consistent with the downre-
gulation of its target, BDNF, in the blood (Du et al.,
2019). Another study analyzedmiRNA expression in EVs
isolated from frozen post-mortem prefrontal cortices of
SCZ patients using a Luminex FLEXMAP 3D microflui-
dic device and validated the findings through qPCR. This
analysis revealed significantly increased expression of
miR-497 in SCZ samples compared with control samples
(Banigan et al., 2013). Similarly, miR-223, an exosome-
secreted miRNA, targets N-methyl-D-aspartate (NMDA)
and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor subunits to regulate neuronal function.
Overexpression of miR-223 in the orbitofrontal cortex of
SCZ and unaffected control individuals was identified at
thematuremiRNA level of SCZ and comparedwith control
(Harraz et al., 2012; Amoah et al., 2020). Interestingly,
miR-223 was primarily enriched in cultured mouse astro-
cytes (as opposed to neurons) and in their exosomes. When
co-cultured with rat cortical neurons, these ADE increased
neuronal miR-223 expression and downregulated Gria2
andGrin2b levels (Amoah et al., 2020).
Circular RNAs (circRNAs), which function as mi-

RNA sponges, play a crucial role in gene regulation at
various levels, including the post-translational level,
by sequestering proteins (Chen, 2020). Aberrant ex-
pression of circRNAs in the dorsolateral prefrontal

cortex of SCZ patients was found to be positively cor-
related with the age of SCZ onset (Liu et al., 2019),
suggesting the potential of EV circRNAs as early bio-
markers for SCZ (Guo et al., 2023). Tan et al. (2021)
conducted the first comparison of alterations in plasma
exosomal circRNAs between SCZ patients andmatched
healthy controls using high-throughput sequencing. They
proposed that 44 plasma exosomal circRNAs exhibited
differential expression in SCZ patients compared with
healthy controls. Further validation of these differentially
expressed circRNAs through qPCR confirmed the differ-
ential expression of four circRNAs, which contained bind-
ing sites for many microRNAs and were predicted to play
a crucial role in metabolic process, stress response, and
histone ubiquitination (Tan et al., 2021). Additionally, the
expression of lncRNAs was also analyzed in the serum
exosomes of SCZ patients and control individuals. Guo
et al. (2022) analyzed the expression of 15 lncRNAs in the
serum exosomes from 152 subjects to evaluate their diag-
nostic potential for SCZ by generating receiver operating
characteristics curves. They found that the expression
of lncRNAs MIAT was increased, whereas PVT1 was
decreased, in SCZ patients compared with the control
group.

3. Metabolites in Extracellular Vesicles as Novel Bio-
marker for Schizophrenia. In addition to protein and
RNA-based EV biomarkers, there has been at least one
study performed that profiled the exosome-derived me-
tabolites in patients with SCZ and healthy controls us-
ing ultra-performance liquid chromatography–tandem
mass spectrometry. This study involved a large cohort of
385 SCZ patients and 332 healthy controls. The analysis
revealed 25 perturbed metabolites in SCZ patients com-
pared with healthy controls, demonstrating high diag-
nostic performance. Bioinformatics analysis of these
metabolites identified enrichment in pathways such as
glycerophospholipid metabolism, which is known to be
implicated in SCZ (Du et al., 2021).
Collectively, these studies highlight the potential

utility of EV-based biomarkers in enhancing our un-
derstanding of SCZ pathology.

D. Bipolar Disorder

BD is characterized by recurring episodes of mania
or hypomania alternating with depression. It ranks
as the sixth leading cause of disability worldwide, af-
fecting approximately 5% of the population and lead-
ing to serious consequences (Colombo et al., 2012).
BD is widely recognized as a heritable disease, with
numerous genetic loci identified through genome-wide
association studies (Craddock and Sklar, 2013). Addition-
ally, several factors, including childhood emotional abuse,
stressful or traumatic life events, and interactions be-
tween multiple genetic, neurochemical, and environmen-
tal factors, have been linked to the development of BD
(Rowland and Marwaha, 2018). The molecular mecha-
nisms associated with the pathophysiology of BD involve
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alterations in neurotropic signaling molecules, such as
BDNF, nerve growth factor, neurotrophin-3 (T-3), and
neurotrophin-4 (NT-4), along with oxidative stress, im-
mune-inflammatory imbalance, mitochondrial dysfunc-
tion, and compromised hypothalamic-pituitary-adrenal
axis (Scaini et al., 2020). Although analyzing the levels of
these proteins in BDEs could serve as a potential bio-
marker for BD, supporting studies are still lacking.

1. Protein Cargo of Extracellular Vesicles as Potential
Biomarkers for Bipolar Disorder. The dysregulation of
insulin signaling is considered a characteristic feature of
BD (Stahl et al., 2019) as evidenced by the high preva-
lence of metabolic disorders, such as type 2 diabetes mel-
litus and obesity, in individuals with BD (Vancampfort
et al., 2015). NDEs isolated from the plasma of patients
with bipolar depression were used to assess the treat-
ment response of infliximab, a TNF-a antagonist known
to affect insulin signaling. The levels of neuronal insulin
signaling molecules, particularly pS312-IRS-1, as well as
related canonical pathways [Akt, glycogen synthase
kinase 3 b (GSK-3b), and p70 ribosomal S6 kinase
(p70S6K)] and alternative pathways (ERK1/2, JNK,
and p38-MAPK), were evaluated in NDEs. Based on
preliminary results, the authors reported that BD pa-
tients treated with infliximab showed concerted changes
in NDE cargos related to the insulin signaling pathway
and hypothesized this pathway as a relevant pathophys-
iological mechanism and a potential target for interven-
tions in BD (Mansur et al., 2021).

2. Extracellular Vesicle–Derived microRNAs as Poten-
tial Biomarkers for Bipolar Disorder. In a preliminary
investigation, the expression of miRNAs in plasma-
derived EVs from 20 patients with type 1 BD and 21 age-
and sex-matched healthy controls was examined. This
analysis identified 33 miRNAs that were nominally al-
tered in BD, including miRNAs that were previously re-
ported (such as miR-133a, miR-29c, and miR-22) to be
altered in post-mortemBD patients’ brain tissue, primar-
ily the anterior cingulate cortex and prefrontal cortex
(Kim et al., 2010; Azevedo et al., 2016; Fries et al., 2019).
Although detailed studies specifically analyzing different
BDEs in the biofluids of BD patients are currently lack-
ing, such studies in the future could be crucial in the de-
velopment of novel biomarkers for BD cases.

3. Extracellular Vesicle Metabolites as Biomarkers for
Bipolar Disorder. Alterations in the insulin signaling
pathway can contribute to a series of metabolic dys-
functions. Several studies have indicated increased lac-
tate levels and reduced intracellular pH in the brains
of individuals with BD, which may be indicative of mito-
chondria dysfunction, impaired metabolism, change in
morphology, increased mitochondria polymorphism, al-
tered mitochondrial respiration, and glycolytic shift (Clau-
sen et al., 2001; Scaini et al., 2016). Analysis of serum
exosomes from BD patients using liquid chromatography–
tandem mass spectrometry identified 26 differentially

expressed serum exosomal metabolites in patients with
BD compared with healthy control, primarily related to
sugar metabolism pathways. Further analysis revealed
that 15 exosomal metabolites could accurately distinguish
BD patients from controls, with 0.838 accuracy (95%
confidence interval, 0.604–1.00) in the training set and
0.971 accuracy (95% confidence interval, 0.865–1.00) in
the testing set (Du et al., 2022b).

E. Major Depressive Disorder

MDD is one the most prevalent neuropsychiatric pa-
thologies, characterized by a wide range of symptoms,
including depressed mood, diminished interests, anhe-
donia, impaired cognitive function, fatigue or loss of en-
ergy, and vegetative symptoms, such as disturbed sleep
or appetite (Otte et al., 2016; Bernaras et al., 2019).
The clinical diagnosis of MDD is based on the Diagnos-
tic and Statistical Manual of Mental Disorders, Fifth
Edition, which requires the presence of at least five of
the aforementioned symptoms, of which one must have
a depressed mood or anhedonia (Bains and Abdijadid,
2023). Etiologically, MDD is a multifactorial disorder
involving biological, genetic, environmental, and social
factors. However, due to symptom overlap with other
psychiatric diseases and the absence of specific bio-
markers, MDD is often misdiagnosed, which can im-
pact the disease’s progression and prognosis.

1. Protein Cargo as Potential Biomarkers for Major
Depressive Disorder. Similar to bipolar disorder, dys-
function in insulin signaling and mitochondrial metabo-
lism, leading to oxidative stress and increased production
of reactive oxygen species, has been suggested as a patho-
logic feature of MDD (Brivio et al., 2022). Increased con-
centration of IRS-1 was reported in the plasma NDEs
(L1CAM1 EVs) of individuals with MDD compared with
age- and sex-matched controls. Furthermore, the in-
creased concentration of IRS-1 in NDEs of MDD partici-
pants was found to be associated with suicidality and
anhedonia (Nasca et al., 2021). In addition, a study by
Goetzl et al. (2021) analyzed NDEs isolated from the
plasma of individuals with MDD for the levels of 14 neu-
ronal mitochondrial proteins involved in mitochondrial
biogenesis, dynamics and function maintenance, mito-
chondrial energy metabolism, neuroprotection, and reg-
ulation of neuronal metabolism. The study suggested
differential levels of most of these proteins in NDEs of
individuals with MDD compared with age- and sex-
matched healthy controls.
Several studies have also indicated a strong correla-

tion between members of the fibroblast growth factor
(FGF) system and depression (Deng et al., 2019), with
significantly higher peripheral levels of FGF2, mainly
secreted by astrocytes, in individuals with MDD com-
pared with healthy controls (Wu et al., 2016). However,
it remains to be assessed whether the higher periph-
eral FGF2 is loaded in ADEs, which could be an inter-
esting parameter to investigate in individuals with
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MDD. Similarly, the sigma-1 receptor (Sig-1R), an up-
stream regulator of endoplasmic reticulum stress and
endoplasmic reticulum–mitochondrial signaling, was
found to be significantly enriched in the plasma EVs in
animal models of depression as well as in patients com-
pared with healthy controls (Wang et al., 2021). Inter-
estingly, injecting exosomes from depression mouse
models or patients into lipopolysaccharide-challenged
mice was reported to exert antidepressant-like effects
and prevent neuroinflammation (Wang et al., 2021).
EVs have also been shown to be involved in the neu-

roinflammation process in MDD (Duarte-Silva et al.,
2022). In an exploratory pilot case-control study, NDE-
related blood-based biomarkers were analyzed using a
novel sandwich immunoassay. In this assay, SNAP-25
antibody (neuronal marker) was used to capture NDEs,
which were then analyzed for the levels of other markers
related to neuroinflammation and synaptic functions
along with a typical exosomal marker (CD81). Impor-
tantly, this study suggested that during the course of de-
pression, certain proteins related to neuroinflammation
(such as IL-34) and synaptic functions (such as synapto-
physin) might be carried into peripheral blood via exo-
somes (Kuwano et al., 2018). Analyzing the expression of
these proteins in NDEs could be useful for the objective
clinical evaluation of MDD. Similarly, another study by
Xie et al. (2023b) assessed the levels of inflammation-
related markers in serum samples and ADEs of 70 indi-
viduals with MDD and 70 healthy matched controls. The
serum samples from MDD subjects showed higher levels
of TNF-a and IL-17A and a low level of IL-12p-70 com-
pared with the healthy controls. Interestingly, in ADEs,
the levels of all analyzed inflammatory markers (inter-
feron-c, IL-12p70, IL-1b, IL-2, IL-4, IL-6, TNF-a, and
IL-17A), except IL-10, were found to be elevated in MDD
subjects. Previous studies have shown that reactive as-
trocytes induce inflammation in a mouse model through
the NF-jB pathway, leading to increased secretion of
IL-6 and IL-1b (Chen andWang, 2017).

2. Extracellular Vesicle–Derived microRNAs as Bio-
markers for Major Depressive Disorder. A small study
analyzed the expression of miRNAs from plasma EVs of
four treatment-resistant depression patients and four
healthy subjects using miRNA sequencing. The study re-
vealed a significantly dysregulated miRNA expression
profile, with significant upregulation of miR-335-5p and
downregulation of 1292-3p. Pathway analysis predicted
that these differentially regulated miRNAs could affect
postsynaptic density and axonogenesis as well as path-
ways related to axon formation and cell growth (Li et al.,
2021).
Most studies investigating miRNA expression in

EVs have been conducted in animal models of depres-
sion. The increased level of miR-207 was found in
EVs isolated from the cultured natural killer cells
from unstressed mice, which directly targeted Tril

(TLR4 interactor with leucine-rich repeats) and inhib-
ited NF-jB signaling in astrocytes, thereby reducing
the release of proinflammatory cytokines (Li et al.,
2020). Similarly, expression profiling of serum EVs in
a chronic unpredictable mild stress–induced rat model
and control rats, using high-throughput sequencing and
subsequent expression validation by qPCR, revealed dif-
ferential expression of several miRNAs, including miR-
146a-5p, miR-122-5p, miR-133a-3p, miR-206-3p, miR-
187-3p, and miR-1b (Fan et al., 2022). Moreover, an in-
creased level of miR-146a-5p was shown in the CSF of
chronic unpredictable mild stress rats compared with
controls, and this miRNA was predicted to be closely
associated with signaling pathways regulating the plu-
ripotency of stem cells (Fan et al., 2022). Previous re-
search suggested that miR-146a-5p is highly enriched
in microglia, absent in hippocampal neurons, and ex-
pressed at low levels in astrocytes (Jovi�ci�c et al., 2013).
Increased expression of miR-146a-5p in serum EVs was
suggested to be primarily contributed by microglia, and
MDE-mediated transfer of miR-146a-5p to neurons was
shown to affect proliferation and differentiation of neu-
ronal stem cells (Fan et al., 2022). Apart from cargo
analysis of EVs, the size of plasma NDEs was also mea-
sured between control and MDD individuals, revealing
smaller sizes of both total EVs and NDEs in MDD sub-
jects compared with controls (Saeedi et al., 2021).
In conclusion, various EVs in the brain participate

in signaling pathways related to inflammation, neuro-
genesis, synapse formation, and neuroprotection and
have the potential to be developed as biomarkers of
MDD.

F. Substance Use Disorders

EVs are emerging as useful tools in identifyingmolecu-
lar biomarkers associated with the pathophysiology of
drug misuse and its associated side effects (Hu et al.,
2012, 2018; Dominy et al., 2014; Momen-Heravi et al.,
2015; Saha et al., 2016; Li et al., 2018a; Rao et al., 2018;
Duan et al., 2019; Shahjin et al., 2019; Kodidela et al.,
2020; Kumar et al., 2020; Chen et al., 2021a; Zhang et al.,
2021). Chen et al. (2022) conducted a study on 120 pa-
tients with SUDs and reported stage-specific alterations
in exosomal miRNA and neurotransmitters in the pe-
ripheral circulation. They successfully identified critical
exosomal miRNAs associated with neurotransmitters
and psychologic comorbidities. Notably, they suggested
that plasma exosomal miRNAs, particularly has-miR-
451a and has-miR-21-5p, could be useful in monitoring
substance dependence and withdrawal. They also re-
ported, in heroin and methamphetamine users, a rela-
tionship between exosomal markers and anxiety using
the Hamilton-Anxiety scale. Dominy et al. (2014) identi-
fied unique proteins in the saliva of HIV1 heroin-depen-
dent people that were associated with a neurocognitive
disorder, and most of the identified proteins were associ-
ated with exosomes. In another example highlighting the
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use of peripheral markers to identify clinical conditions,
Darbinian et al. (2022) used blood from pregnant women
who consumed alcohol and found significant correlations
between the markers of fetal BDEs, isolated from mater-
nal blood, and eye diameter of the fetus; the levels of mye-
lin basic protein in fetal BDEs predicted fetal alcohol
spectrum disorder.
Several preclinical studies have incorporated within-

subjects designs to examine how substance use alters
peripheral and central markers. For example, Li et al.
(2018b) assessed the expression of miRNAs in serum
exosomes and in the hippocampus of rats following
methamphetamine exposure. They noted that the bio-
logical function of differentially expressed miRNAs’
target genes correlated between serum exosomes and
hippocampus. They also reported that rhynchophylline
treatment could block the alterations in behavior and
the expression of several differentially expressed miR-
NAs induced by methamphetamine exposure. In an-
other study, the same group identified key miRNAs in
serum exosomes associated with methamphetamine-
dependent and also ketamine-dependent rats (Li et al.,
2018a). Using brain-derived EVs, Koul et al. (2020) re-
ported sex-specific differences in EV biogenesis, protein
cargo signatures, and molecular pathways associated
with long-term nicotine self-administration. Jarvis et al.
(2020), using CD63-GFPf/1 exosome reporter mice, re-
ported that cocaine self-administration strongly reduced
the internalization of neuronal exosomes by astrocytes
and microglia cells, which can be effectively reversed by
extinction training. Hu et al. (2012) reported that astro-
cytes treated with morphine and HIV Tat secreted exo-
somes containing miR-29b that could be taken up by the
neurons, resulting in neuronal death. This study also
demonstrated that exosomal miR-29b was associated
withmorphine’s in vivo effects. Toyama et al. (2017) iden-
tified several circulatingmiRNAs that were differentially
expressed following oxycodone treatment in males and
could serve as a surrogate of m-opioid receptor signaling.
Shahjin et al. (2019) identified distinct brain-derived
EVs’ miRNA signatures associated with in utero and
postnatal oxycodone exposure. Our recent study also re-
ported the usefulness of CSF-derived EVs in assessing
the transgenerational adverse effects due to prenatal co-
caine exposure in adult female andmale rhesus monkeys
(Rather et al., 2022). Proteomics analysis of CSF EVs
suggested that prenatal cocaine exposure could poten-
tially be associated with long-term neuroinflammation
and an increased risk of neurodegenerative diseases.
In the field of SUD research, the role of EVs in un-

derstanding the interaction between neurons and glial
cells has also been studied. Meng et al. (2020) reported
that methamphetamine exposure increased the secre-
tion of pathologic phosphorylated-a-synuclein in exo-
somes by neurons. When these exosomes were added to
the astrocyte culture, phosphorylated-a-synuclein was

transferred to astrocytes and induced a proinflamma-
tory response. Hu et al. (2018) reported that EVs de-
rived from astrocytes exposed to morphine were taken
up by microglial endosomes, leading, in turn, to activa-
tion of TLR7 with subsequent upregulation of lincRNA-
Cox2 expression, ultimately resulting in impaired mi-
croglial phagocytosis. We have also recently reported
the feasibility of isolating distinct brain cell–derived
EVs (NDEs, ADEs, and MDEs) and characterized those
to understand the effect of oxycodone self-administra-
tion on biomarkers of neurodegeneration in cynomolgus
monkeys (Kumar et al., 2021a). We also reported that
the treatment of NDEs (from monkeys self-administer-
ing oxycodone) induced glucocorticoid receptor localiza-
tion to the nucleus in human astrocytes as well as
induced proinflammatory effects in human THP1 mono-
cytes in cell culture. Interestingly, Kumar et al. (2021b)
reported that cocaine treatment significantly affected
EV biogenesis, reducing the concentration of exosomes
secreted by microglial cells in culture and affecting the
loading of various cargo proteins. This study suggested
that several CNS disorders associated with cocaine mis-
use could be due to the interruption of cell-to-cell com-
munication mediated by exosomes. Barreto et al. (2022)
also reported that cocaine exposure decreased the num-
ber of both neuronal early and late endosomes and exo-
somes in the brain of male mice but not female mice.
Similarly, recently, D’Acunzo et al. (2023) reported that
the generation and secretion of vesicles of mitochondrial
origin (mitovesicles) could be affected by mitochondrial
abnormalities induced by chronic cocaine exposure.
Overall, various drugs can affect EV secretion by

neurons as well as other cell types in the brain, thereby
affecting intercellular communication in the brain and
contributing to substance use disorders. Furthermore,
these studies suggest that EVs in biofluids could be
helpful in identifying biomarkers associated with vari-
ous stages of drug use and assessing the effects of be-
havioral and pharmacological interventions.

G. Human Immunodeficiency Virus–Associated
Neurocognitive Disorder

HAND encompasses a range of cognitive, motor, and
behavioral dysfunctions that affect a significant percent-
age of individuals living with HIV/AIDS. Even though
there is a reduction in the rate of progression and sever-
ity of HAND-related symptoms due to effective antiretro-
viral therapy for HIV infection, the overall prevalence of
HAND has not changed (Ditiatkovski et al., 2020). This
suggests that pathologic changes associated with HAND
continue to process even when viral replication is effec-
tively suppressed by antiretroviral therapy.
EVs have emerged as crucial contributors to the

pathogenesis of HAND (Ditiatkovski et al., 2020).
EVs containing the HIV-1 protein Nef (exNef) have
been found in the blood of individuals infected with
HIV and undergoing antiretroviral therapy (Raymond
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et al., 2011; Lee et al., 2016; Ferdin et al., 2018). Im-
portantly, HIV proteins (Tat, gp-120, and Nef), which
have the potential to induce neurotoxicity, have been
reported as cargo within EVs (Kodidela et al., 2019).
Ditiatkovski et al. (2020) reported that the modifica-
tion of the neuronal cholesterol trafficking and lipid
rafts by exNef (EVs from HEK293 cells transduced to
express Nef) contributes to early stages of neurode-
generation and pathogenesis in HAND. This study
showed that exNef were rapidly taken up by neural
cells in cell culture, reducing the abundance of ABC
transporter A1 (ABCA1) and cholesterol efflux and
increasing the abundance of lipid rafts in neuronal
plasma membranes. Importantly, exNef treatment
caused the redistribution of APP and tau proteins to
lipid rafts and increased the abundance of these pro-
teins as well as that of Ab1-42. In vivo, treatment of
C57BL/6 mice with either purified recombinant Nef or
exNef reduced the abundance of ABCA1 and elevated
the abundance of APP in brain tissue. Additionally,
this study found a lower abundance of ABCA1 in the
brain tissue of HIV-infected individuals diagnosed with
HAND, whereas the abundance of lipid rafts was
higher compared with HIV-negative individuals. Simi-
larly, Sami Saribas et al. (2017) reported that exNef
were released by primary human fetal astrocytes when
transduced with an adenovirus construct to express
Nef. Furthermore, exNef levels were enriched signifi-
cantly when the cells were treated with autophagy
activators (perifosine, tamoxifen, and MG-132) or in-
hibitors (LY294002 and wortmannin), suggesting the
involvement of autophagy signaling in exNef release
within EVs. Importantly, exNef were readily taken
up by neurons, induced oxidative stress, and suppressed
functional neuronal action potential assessed by multie-
lectrode array studies.
Interestingly, the characterization of total EVs and

NDEs in the blood has been conducted to identify bio-
markers that could be useful for diagnosing HAND
(Pulliam et al., 2019) and monitoring its progression
and/or the effects of treatment. Sun et al. (2017) re-
ported that neuropsychologically impaired men, in-
cluding both HIV-infected and noninfected men, had
fewer NDEs but were enriched with high-mobility group
box 1 (HMGB1), neurofilament light (NFL), and Ab com-
pared with neuropsychologically normal individuals. In a
subsequent study, the same group characterized plasma
NDEs to identify sex-based differences associated with
HIV infection and cognitive impairment (Sun et al.,
2019a). Through small RNA sequencing in total plasma
EVs, they identified the upregulation of 11 miRNAs
in individuals with lower neuropsychological perfor-
mance compared with those with higher performance
among people living with HIV (O’Meara et al., 2019).
Several of the differentially expressed exosomal

miRNAs were predicted to be involved in inflammation
and neurodegeneration pathways (O’Meara et al.,
2019).
Overall, EVs contribute to HIV-induced neurode-

generation, and gaining a better understanding of the
mechanisms underlying EV-mediated pathogenesis of
HAND could provide valuable biomarkers and poten-
tial targets for therapeutic intervention.

H. Cancer-Related Neurodegeneration

Neurological disorders are not solely associated with
genetic and physio-biochemical changes in the brain
and its microenvironment. Conditions such as cardio-
vascular diseases, hypertension, type 2 diabetes, vas-
cular dysfunction, and cancer can also impact normal
brain functioning and cognition. The susceptibility of
the CNS and peripheral nervous system to cancer and
its treatment is well recognized (Giglio and Gilbert, 2010;
Stone and DeAngelis, 2016). Cognitive decline is com-
monly observed in cancer patients, including those in
remission (Pendergrass et al., 2018). Understandably, tu-
mors in the brain or brain metastasis of non-CNS tumors
can directly or indirectly affect different brain cells, lead-
ing to impairments in attention, memory, and executive
function (Gehring et al., 2010; Aaronson et al., 2011). Ad-
ditionally, tumors in non-CNS regions have been shown
to impact cognitive status, including verbal memory, lan-
guage, visual-spatial skills, executive function, and psy-
chomotor function, even in newly diagnosed patients
(Meyers et al., 2005; Ahles et al., 2008; Wefel et al., 2011).
For example, women with breast cancer have been re-
ported to experience cognitive issues related to attention
impairment, learning, memory, and immediate and de-
layed word recall prior to treatment (Wefel et al., 2004;
Hurria et al., 2006). Similarly, patients with small cell
lung cancer were identified with cognitive deficits before
receiving therapy, particularly in verbal memory, frontal
lobe executive functions, and motor coordination (Meyers
et al., 1995). These findings suggest that tumor cells
could affect the cognitive status of cancer patients even
before treatment.
Cancer treatment has also been shown to impact cogni-

tive behavior and induce neurotoxicity (Giglio and Gilbert,
2010; Stone and DeAngelis, 2016; Lange et al., 2019).
Efforts have been made to understand cancer- and can-
cer therapy–associated cognitive impairment and neu-
rodegeneration, primarily relying on assessments of
cognitive functioning and brain imaging measures.
However, these approaches do not provide a compre-
hensive understanding of the etiology and pathophys-
iology of cognitive dysfunction and neurodegeneration
in cancer patients. EVs could play a role in the com-
munication between distant tumors and the brain,
mediating processes such as the preparation of preme-
tastatic niches in the brain microenvironment and
influencing cognitive functions. Numerous studies have
analyzed alterations in EV cargo and their release, due to
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cancer and its treatment, and considering their capabili-
ties to cross the blood-brain barrier, tumor-derived EVs
can transmit their cargo to brain cells to affect their nor-
mal functioning. Although studies exploring whether
these EVs could influence neurobiological functions, cog-
nitive status, and behavior are lacking; and primarily fo-
cused on characterization of EVs for cancer diagnosis or
prognosis. For example, high Ab expression has been as-
sociated with various cancers (Jin et al., 2017; Munir
et al., 2021; Zayas-Santiago et al., 2022), which could be
loaded in EVs, potentially seeding Ab in the brain and in-
ducing amyloidopathy. Additionally, cancer cell–derived
EVs can affect the functions of immune cells, including
macrophages, T cells, and natural killer cells (Othman
et al., 2019). Elevated levels of TNFa in EVs from colo-
rectal cancer patient serum samples were reported,
which correlated with aggressive features of colorec-
tal cancer (Xie et al., 2023a). Also, elevated levels of
TNFa were reported in ADEs of MDD subjects and
have been shown to participate in cognitive dysfunc-
tion (Bortolato et al., 2015; Xie et al., 2023b). Further,
EVs secreted by breast cancer cells exhibited higher
levels of Annexin A2, which triggered macrophage-
mediated activation of the p38 mitogen-activated pro-
tein kinases, NF-jB, and signal transducer and acti-
vator of transcription 3 (STAT3) pathways, leading to
increased proinflammatory cytokine production (Maji
et al., 2017). Analyzing the cargo of EVs and BDEs for
neurodegenerative and neuroinflammation markers,
such as Ab, total and p-tau, NFL, a-synuclein, proinflam-
matory interleukins, and specificmiRNAs in the biofluids
of cancer patients, could be an important indicator of
neurological disorders.

V. Brain Cell–Derived Extracellular Vesicles’
Usefulness in Predicting Treatment Response in

Neurological Disorders

BDEs have shown promise in not only serving as bio-
markers for the diagnosis of neurological disorders but
also in assessing the response of treatments and inter-
ventions. Analyzing the early molecular changes that
occur following the adoption of treatment or interven-
tional plan aids in making timely decisions regarding
the continuation of treatment or the need for an alter-
native approach. The response to treatments for neuro-
psychiatric disorders is typically observed through
behavioral, cognitive, and phenotypic changes. How-
ever, these changes are often preceded by molecular al-
terations at the cellular level. EVs are suggested as
snapshots of the cells or tissues in their healthy or spe-
cific pathophysiological state, and they have been re-
garded as windows into parental tissues. By analyzing
the cargo of BDEs, a molecular understanding of the
response of brain cells to a particular treatment regi-
men can be obtained.

Several studies have reported the beneficial effects
of the ketogenic diet against Alzheimer’s disease and
related dementia (ADRD) (Reger et al., 2004; Krikor-
ian et al., 2012; Jensen et al., 2020; Kraeuter et al.,
2020; Lilamand et al., 2020). In a recent clinical pilot
study, the effect of a high-fat, low-carbohydrate modi-
fied Mediterranean-ketogenic diet (MMKD) was com-
pared with a low-fat American Heart Association diet
on 11 cognitively normal older adults and nine adults
with amnestic MCI (Neth et al., 2020). The outcomes
of the study showed that MMKD was well tolerated and
associated with increased levels of CSF Ab1-42 and de-
creased tau levels (Neth et al., 2020). To further under-
stand the molecular effects of theMMKD intervention on
ADRD biomarkers, NDEs were isolated from the plasma
samples of the same individuals (Kumar et al., 2022).
The cargo analysis of NDEs revealed that the MMKD in-
tervention reduced the levels of Ab1-42, p-T181-tau, and
NFL in participants with MCI (Kumar et al., 2022). Fur-
ther analysis provided molecular insights and suggested
that the MMKD intervention differentially targeted the
glutamate receptors, including glutamate receptor iono-
tropic NMDA1, glutamate receptor ionotropic NMDA2A,
glutamate receptor ionotropic NMDA2B, and glutamate
receptor ionotropic AMPA type subunit 1 (Kumar et al.,
2022). Moreover, the molecular measures of NDEs
showed a strong correlation with corresponding clinical
biomarkers in the CSF (Kumar et al., 2022). Further-
more, cerebrolysin, a peptidergic preparation, and do-
nepezil, a cholinesterase inhibitor (approved for the
symptomatic treatment of AD), are known to inhibit Ab
levels, tau, and synaptic pathology. In a randomized
clinical trial, the treatment response of these drugs in-
dividually and/or in combination was tested using
plasma NDEs from mild to advanced AD patients com-
pared with control subjects. The combination therapy
with both drugs reduced the levels of Ab in NDEs com-
pared with monotherapies, and NDEs’ total tau, P-
T181-tau, and P-S396-tau were decreased in cerebroly-
sin-treated patients compared with those on donepezil
monotherapy (Alvarez et al., 2022). These findings sug-
gest the potential utility of plasma NDEs as a tool in
the development of novel preventive and therapeutic
interventions for ADRD.
Another study showcased the utility of NDEs’ biophysi-

cal measurements and cargo (miRNAs) analysis in as-
sessing the response to ADT in patients with MDD,
including both drug-responsive and nonresponsive indi-
viduals, as well as controls. Interestingly, a comparison of
size before and after ADT revealed an increase in NDEs’
size after 8 weeks of treatment, which displayed a signifi-
cant inverse relationship with the Montgomery-Asberg
Depression Rating Scale score. In addition to size, mi-
RNA analysis of NDEs revealed changes in the expres-
sion of nine miRNAs following ADT, namely miR-423-3p,
miR-191-5p, miR-486-5p, miR-30d-5p, miR-425-5p, miR-
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25-3p, miR-21-5p, miR-335-5p, andmiR-126-5p. Interest-
ingly, the combination of miR-21-5p, miR-30d-5p, and
miR-486-5p changes over the course of ADTwas found to
be associated with treatment response (Saeedi et al.,
2021). To further validate the changes in miRNA expres-
sion in NDEs isolated using L1CAM as a marker, the au-
thors isolated NDEs using another neuronal marker,
SNAP-25, and consistently found altered expression of
miR-486-5p and miR-30-5p in ADT responders compared
with nonresponders (Saeedi et al., 2021).
In patients with MDD, altered expression of several

proteins involved in mitochondrial biogenesis, dynamics,
and energy metabolism were identified in plasma NDEs.
The levels of these proteins were normalized in patients
who responded to 8-week treatment with selective sero-
tonin reuptake inhibitor but not in nonresponders,
highlighting the importance of plasma NDEs in access-
ing the treatment response (Goetzl et al., 2021). Another
study conducted by Mansur et al. (2021) investigated
the potential of infliximab as a potential treatment of bi-
polar depression. NDEs’ cargo analysis in plasma sam-
ples collected during a 12-week randomized, double-
blind, placebo-controlled clinical trial revealed that res-
ponders to infliximab showed a significant increase in
biomarkers of insulin alternate pathway (but not in ca-
nonical pathways) and increased phosphorylated JNK
levels compared with infliximab nonresponders, placebo
responders, and placebo nonresponders. Additionally, in-
fliximab responders exhibited increased levels of phos-
phorylated ERK1/2 relative to placebo nonresponders
(Mansur et al., 2021). Importantly, these changes in insu-
lin alternate pathway biomarkers in plasma NDEs were
proposed to mediate neurostructural changes as observed
by MRI measures of brain volume and treatment-related
changes in the dorsolateral prefrontal cortex volume
(Mansur et al., 2021). Furthermore, reduced expression
of DJ-1, a redox-sensitive protein with neuroprotective
function, was observed at both protein and mRNA levels
in blood EVs of patients with SCZ. The targeting mi-
RNA of DJ-1, miR-203a-3p, showed higher expression
in blood EVs of SCZ patients. Treatment with an anti-
psychotic drug, olanzapine, for 6 weeks increased DJ-1
level and attenuated miR203a-3p level in blood-derived
exosomes, bringing those closer to the levels observed in
controls (Tsoporis et al., 2022). The treatment of SCZ pa-
tients after resolution of the positive symptoms with an-
tipsychotic medication was recommended for 2–5 years
(Remington et al., 2017); accessing the treatment re-
sponse as early as 6 weeks using NDE cargo measures
will certainly help clinicians to decide the long-term
treatment regimen. A similar analysis of miR-333-5p ex-
pression in plasma exosomes of patients with depression
revealed elevated levels of miR-335-5p and decreased lev-
els of miR-1292-3p in patients with treatment-resistant
depression and predicted to affect postsynaptic density,
axonogenesis, signaling pathway of axon formation, and

cell growths. Screening patients resistant to conventional
treatment at the start of the therapy could help in adopt-
ing alternate approaches (Li et al., 2021). Moreover, ana-
lyzing the expression of these miRNAs and their targets
not only has the potential to serve as novel biomarkers for
improving the accuracy of diagnosis and effectiveness of
treatment but could also provide specific targets for the de-
velopment of personalized therapy for treatment-resistant
depression.
Although limited studies are available, the existing

literature supports the translational application of
EVs in assessing the response to therapeutic inter-
ventions in various neurological disorders.

VI. Conclusion: “Boom or Bust”

In the past decade, numerous studies have demon-
strated the potential of EVs as biomarkers for the diagno-
sis and assessment of cellular and molecular alterations
related to various neurological disorders. Advances in
the EV field have enabled the isolation of various subpo-
pulations of BDEs from biofluids, offering the possibility
to predict the pathophysiological state of brain cells. The
isolation of BDEs from biofluids is less invasive compared
with collecting CSF and more convenient and cost effec-
tive than neuroimaging modalities. This allows for repet-
itive measurements to track disease progression and
treatment response over time. Analyzing the cargo of
BDEs, including proteins, nucleic acids, and metabolites,
in longitudinal studies can provide insights into progres-
sive molecular changes specific to different types of brain
cells, highlighting their contribution to various neuropsy-
chiatric conditions. Moreover, BDE cargos were shown to
be related to molecular alterations with treatment/inter-
vention responses at early stages at the cellular level.
The potential of BDEs for clinical utility in the context of
different neurological diseases has been supported by
many evidence-based laboratory studies, which certainly
encourages more collaborative practice among laboratory
scientists, industries, and clinicians to develop EV-based
diagnosis/treatment of patients.
Despite the promising findings suggesting the useful-

ness of BDEs in neurological disorders, these vesicles
are currently not approved for clinical use. However, the
increasing number of ongoing clinical trials (Rezaie
et al., 2022) focused on EVs for cancer management pro-
vides hope and may pave the way for their application
in other disease conditions, including neurological disor-
ders. Clinical studies analyzing the cargo of EVs, such
as proteins and miRNAs, for prostate cancer (PCa) diag-
nosis have been completed or are in the clinical valida-
tion stage. The ExoDx Prostate (IntelliScore) test, which
analyzes a three-gene RNA signature: V-ets erythro-
blastosis virus E26 oncogene homologs (ERG), prostate
cancer antigen 3 (PCA3), and SAM pointed domain con-
taining ETS transcription factor (SPDEF), in urine exo-
somes, known as “EPI score”, has been commercially

220 Kumar et al.



available in the United States since 2016 (Donovan
et al., 2015; McKiernan et al., 2016; Tutrone et al.,
2020). This test determines the risk of clinically signifi-
cant PCa, aiming to help clinicians in making critical di-
agnostic and treatment decisions.
To fully exploit the tremendous potential of BDEs

as liquid biopsy for neurological disorders, there is
an urgent need to address the technical challenges
associated with their isolation and analysis. The major
and persistent challenge in the field is the CNS specific-
ity of biomarkers used to isolate brain cell–specific EVs
from blood samples. Earlier, we mentioned the conflict-
ing reports regarding the use of L1CAM as a surface
marker for isolating NDEs. Although there is a sub-
stantial body of literature supporting the usefulness of
NDEs isolated using L1CAM, it is undeniable that
L1CAM expression is not specific to neurons or the
CNS and is also present as a cleaved secretory protein.
As a result, extensive research efforts are focused on
identifying CNS- and neuron-specific surface markers
for NDEs as well as addressing similar challenges for
other types of BDEs, such as PDEs and EDEs. In this
context, characterizing EVs derived from brain tissues
and induced pluripotent stem cell–derived or primary
brain cells is proving to be a valuable approach for iden-
tifying specific and sensitive surface markers for BDEs
(Muraoka et al., 2020; You et al., 2022, 2023).
Another challenge lies in isolating the needed quantity

of BDEs from plasma samples, especially for assays that
require relatively larger amounts of the samples, such
as immunoblotting, metabolomics, or the assessment of
multiple biomarkers. However, ongoing efforts to develop
sensitive assays and implement multiplexing techniques
are helpful in overcoming this challenge. Alongside this,
continuous improvement in existing methods and the de-
velopment of new approaches for isolation and analysis
of BDEs are being developed.
Furthermore, when considering the clinical utility of

BDEs in neurological disorders, as well as the utility of
EVs in the diagnosis or prognosis of any disease, it is im-
portant to acknowledge that outcomes can be influenced
by the methodology used to isolate the EVs. There is a
wide range of methods employed for isolating total EVs
from biological fluids, including ultracentrifugation, poly-
mer-based precipitation, density gradient, filtration, and
size exclusion chromatography, each with its own advan-
tages as discussed in detail in many review articles
(Konoshenko et al., 2018; Brennan et al., 2020; Sidhom
et al., 2020). Additionally, the analysis of EV size and
concentration can yield variable results depending on
the method and instrument used for analysis (Kumar,
2021; Vogel et al., 2021). The variations in EV isolation
and characterization methodologies make it challenging
to compare and, at times, reproduce results. Efforts
have been made to raise awareness of the impact of
procedures for sample collection, EV isolation, and

characterization as well as the importance of in-depth re-
porting of methodology. Guidelines such as the Minimal
Information for Studies of Extracellular Vesicles and EV-
TRACK have been developed to assist researchers in
these endeavors (Th�ery et al., 2018; Witwer et al., 2021).
Similarly, useful guidelines are emerging for implement-
ing relevant controls and good practices in the use of vari-
ous methodologies such as flow cytometry, RNA
sequencing, or real-time PCR for EV characterization
(Welsh et al., 2020, 2023).
Moreover, in recent years, there have been efforts to

develop tools and techniques specifically tailored to the
EV field, operating at the nano level instead of relying on
techniques and standards developed for characterization
at the cell level. For example, several nanoflow cytometry
tools, improved immunoassays, and sensitive sequenc-
ing-based protein analysis methods are being specifically
designed for EV research. Such advancements have the
potential to accelerate discoveries in the EV field.
Altogether, BDEs hold great promise as attractive

and useful tools for biomarker development in a wide
range of neurological disorders. To fully unlock this po-
tential, it is crucial to carefully define and control key
features and the complexity of EVs. In the near future,
larger multisite prospective studies should be planned,
ensuring meticulous collection and storage of biofluids,
implementing standardized operating procedures for
EV isolation and characterization, and employing ro-
bust data analysis techniques. By overcoming current
challenges, BDEs have the potential to serve as valu-
able liquid biopsies, complementing existing clinical bi-
omarkers and neuroimaging measures for enhanced
diagnostic and prognostic capabilities in neurological
disorders.
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