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Abstract 

Background  The objective of this study was to determine the independent and incremental values of advanced 
oxidative protein product (AOPP), interleukin 6 (IL-6), and growth differentiation factor 15 (GDF15) in identifying arte-
riosclerosis in patients with obstructive sleep apnea (OSA).

Methods  A total of 104 individuals diagnosed with OSA by polysomnography were recruited in our study. Arterio-
sclerosis was defined by measuring the ultrafast pulse wave velocity of the carotid artery. Peripheral venous blood 
samples were collected to analyze the levels of AOPP, IL-6, and GDF15 utilizing commercially available enzyme-linked 
immunosorbent assays.

Results  Compared to OSA patients without arteriosclerosis, those with arteriosclerosis exhibited significantly higher 
levels of AOPP, IL-6, and GDF15. GDF15 remained significantly associated with arteriosclerosis even after accounting 
for clinical factors such as age, gender, body mass index, systolic blood pressure, fasting blood glucose, smoking, 
and the apnea–hypoxia index (AHI). GDF15 demonstrated the largest area under the curve (AUC) for identifying arte-
riosclerosis in OSA patients (AUC, 0.85 [0.77–0.94]). The logistic regression model, combining clinical factors and AHI, 
was enhanced by the inclusion of AOPP and IL-6 (Chi-square = 25.06), and even further improved when GDF15 
was added (Chi-square = 50.74). The integrated discrimination index increased by 0.06 to 0.16 when GDF15 was added 
to the models including clinical factors, AOPP, and IL-6.

Conclusions  This study verified the independent and incremental value of GDF15 in identifying arteriosclerosis 
in OSA patients, surpassing clinical risk factors and other serum biomarkers such as AOPP and IL-6.
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Background
Obstructive sleep apnea (OSA) is a prevalent sleep dis-
order characterized by recurring episodes of apnea 
and hypoventilation during sleep [1, 2]. OSA is closely 
linked to various cardiovascular diseases (CVD), includ-
ing hypertension and coronary artery disease, and can 
even lead to severe cardiovascular events like cardiac 
arrest [3–5]. Studies have consistently shown the pres-
ence of arteriosclerosis in patients with OSA [6–8]. Fur-
thermore, even after adjusting for confounding factors, 
including comorbidities, the severity of OSA remained 
significantly associated with arterial stiffness [9]. Arte-
riosclerosis is an important biomarker for assessing the 
risk of CVD in the general population [10]. Moreover, 
the presence of increased arterial stiffness can be an early 
indicator of future vascular complications in individu-
als with untreated moderate-to-severe OSA who do not 
have overt CVD [11]. Therefore, elucidating the patho-
physiology of arteriosclerosis associated with OSA and 
identifying novel targets for diagnosis and treatment will 
contribute to reducing the morbidity and mortality of 
CVD in patients with OSA.

Numerous studies have demonstrated that OSA cre-
ates an independent environment conducive to the 
production of free radicals and inflammation [12]. Reac-
tive oxygen species target plasma proteins, resulting in 
the formation of advanced oxidative protein product 
(AOPP), a hallmark of oxidative stress [13, 14]. Multiple 
studies have consistently shown significantly higher levels 
of AOPP in patients with OSA compared to healthy indi-
viduals [15, 16]. Increased oxidative stress can disrupt 
the bioavailability of nitric oxide in the bloodstream, fur-
ther contributing to the development of arteriosclerosis 
[17]. However, the relationship between AOPP and arte-
riosclerosis in patients with OSA remains unexplored. 
Investigations have revealed heightened levels of the pro-
inflammatory cytokine interleukin 6 (IL-6) in patients 
with OSA [18, 19]. Evidence also suggests that IL-6 con-
tributes to the development of athero-/arteriosclerosis 
through its chronic low-grade inflammatory effects [20]. 
Consequently, we hypothesized that IL-6 may play a role 
in the identification of arteriosclerosis in patients with 
OSA.

Growth differentiation factor 15 (GDF15) belongs to 
the transforming growth factor beta superfamily and 
plays a crucial role in vascular development and remode-
ling [21]. In response to external stimuli, such as hypoxic, 
oxidative, or inflammatory stress, GDF15 exhibits a 
robust upregulation [22]. Previous research has linked 
GDF15 to atherosclerotic CVD events and overall mor-
tality [23]. A study by Kamran Sari et al. did not observe 
elevated GDF15 levels in OSA patients compared to 
controls. This may be due to the fact that the proportion 

of patients with severe OSA was only 40% in the OSA 
group [24]. Therefore, there is indeed a need to further 
explore the relationship between OSA and GDF15. Nota-
bly, GDF15 was found to be associated with age [24–26]. 
Arterial stiffness increases with age, and we therefore 
hypothesized that GDF15 could serve as a biomarker of 
arteriosclerosis in patients with OSA.

Herein, the current study tried 1) to assess the predic-
tive value of AOPP, IL-6, and GDF15 in relation to arte-
riosclerosis in patients with OSA; and 2) to examine the 
incremental value of AOPP, IL-6, and GDF15 in identify-
ing arteriosclerosis in patients with OSA.

Materials and methods
Study population
This case–control study was carried out at the Depart-
ment of Respiratory Medicine of the First Hospital of 
China Medical University. Between March 2021 and 
March 2022, a consecutive group of participants who 
exhibited symptoms like snoring and daytime sleepiness, 
were diagnosed with OSA by polysomnography, and vol-
unteered to take part. The OSA diagnosis was based on 
the criteria of the American Academy of Sleep Medi-
cine (2012) [27]. Various exclusion criteria were applied, 
including under 18  years of age, central sleep apnea, a 
history of stroke, coronary artery disease, previous OSA 
treatment, hepatic or renal impairment, malignancy, 
autoimmune or inflammatory diseases, acute or chronic 
vascular inflammation, abnormal thyroid function, use of 
antidepressants or sedative drugs, and carotid atheroscle-
rotic plaque formation. Informed consent was obtained 
from all patients prior to hospital admission. The study 
was approved by the China Medical University Ethics 
Committee and adhered to the principles outlined in the 
Declaration of Helsinki.

OSA diagnosis by polysomnography
Participants underwent polysomnography using the 
Embla system (Natus, Pleasanton, CA) to record vari-
ous nocturnal sleep characteristics, including blood oxy-
gen saturation (SpO2), airflow, posture, snoring sound, 
and chest and abdomen movement during breathing. 
The apnea–hypopnea index (AHI) was calculated as 
the number of apneas and hypoventilations per hour of 
sleep, with mild, moderate, and severe OSA defined as 
5 ≤ AHI < 15, 15 ≤ AHI < 30, and AHI ≥ 30, respectively. 
Sleep apnea was defined as a 90% decrease in oral and 
nasal airflow from baseline lasting for a minimum of 10 s, 
while hypoventilation was defined as a 30–90% reduction 
in oral and nasal airflow lasting for at least 10 s, accom-
panied by a decrease in SpO2 of at least 4%. The clini-
cian responsible for conducting the polysomnography 
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was blinded to the participants’ group allocation and any 
other test results.

Carotid ultrasound imaging
24  h after diagnosis of OSA, participants underwent 
standardized carotid ultrasonography examinations 
using an Aixplorer ultrasound system equipped with the 
SL 10–2 probe (SuperSonic Imagine, France). The meas-
urements were performed following the guidelines for 
peripheral arterial disease set by the European Society 
of Cardiology [28]. The longitudinal images of the com-
mon carotid artery (CCA) were collected at 1 cm proxi-
mal to the carotid bifurcation. The probe was adjusted 
to ensure clear visibility of both the anterior and poste-
rior walls of the CCA. Carotid intima–media thickness 
(cIMT) was measured, and shear wave elastography 
was then obtained at the same location as the longitu-
dinal CCA image. For the superficial walls of the CCA, 
the pulse wave velocity_beginning of systole (PWV_BS) 
and pulse wave velocity_end of systole (PWV_ES) were 
collected. As shown in Fig. 1, the software automatically 
recognized and recorded the PWV at both the BS and 
ES. The Δ ± values represented the variability in PWV 

measurements, which needed to be maintained below 
20% of the PWV values. Furthermore, three consecutive 
measurements were taken at the same site, and a mean 
value was calculated. Arteriosclerosis is defined as an 
increase in arterial stiffness, measured by ufPWV, with 
reference values stratified by age and gender based on 
our previous research [29].

Blood sample collection and postprocessing
After carotid ultrasound measurements, peripheral 
venous blood samples were collected from participants 
within 12  h. The samples were then subjected to cen-
trifugation at 3000 rpm for 10 min to separate the serum, 
which was subsequently stored at −80  °C until further 
analysis. The levels of alanine transaminase (ALT), cre-
atinine, urea, triglycerides, total cholesterol, low-density 
lipoprotein cholesterol (LDLC), high-density lipoprotein 
cholesterol (HDLC), and fasting blood glucose (FBG) 
were measured using a Siemens ADVIA 2400 analyzer 
(NY, USA). Additionally, the levels of advanced oxidation 
protein products (AOPP), IL-6, and GDF15 were deter-
mined using commercial Enzyme‐linked Immunosorbent 
Assay Kits (MEIMIAN Biological Technology, China).

Fig. 1  Representative images of PWV measurements at ES and BS using ultrafast ultrasound imaging. The yellow rectangular box represents 
the area of interest. The two red lines represent the anterior and posterior walls of the auto-tracked common carotid artery. The lumen 
between the two red lines is the carotid artery. The software can automatically identify and record PWV at BS and ES. The Δ ± values indicated 
the variance in PWV measurements and should be kept below 20% of the PWV values
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Reproducibility
Ten OSA patients were randomly selected to evaluate 
the intra- and inter-observer variability of PWV_ES and 
PWV_BS. For intra-observer variability assessment, the 
same observer, unaware of the initial measurements, per-
formed the same measurements again over the course of 
four weeks. To evaluate inter-observer variability, two 
observers independently repeated the measurements 
twice.

Statistical analysis
Continuous data were reported as mean ± standard devi-
ation or median (interquartile range), while categorical 
data were presented as counts or percentages. The nor-
mality of the data was assessed using the Shapiro–Wilk 
test. Student’s t-test was utilized for normally distrib-
uted continuous variables, while the Mann–Whitney 
U-test was employed for variables that did not meet 
the assumption of normality. The Chi-square test was 
applied to compare categorical variables. Correlation 
analysis between the two variables used Pearson correla-
tion analysis. Logistic regression analysis was performed 
to identify independent predictors of arteriosclerosis 
in individuals with OSA. The results were reported as 
odds ratios (OR) with corresponding 95% confidence 
intervals (CI). Receiver operating characteristic (ROC) 
analysis was conducted to evaluate the predictive value 
of selected variables and their combinations for arterio-
sclerosis in OSA patients, with the area under the curve 
(AUC) calculated to assess discriminatory power.

The incremental benefits of the models were assessed 
by calculating the improvement in the Chi-square sta-
tistic and the Cox and Snell R2, or Nagelkerke R2. To 
evaluate the additional value of serum biomarkers to 
the original model, the categorical net reclassification 
improvement (cNRI) and integrated discrimination index 
(IDI) were computed. Intra- and inter-observer repro-
ducibility, as well as bias and limits of agreement (LOA) 
between measurements, were estimated using Bland–
Altman analysis. Data analysis and graph generation were 
performed using SPSS version 25 (IBM SPSS Statistics 
for Windows, Version 25.0, USA) and R version 4.2.1 (R 
Foundation for Statistical Computing, Vienna, Austria). 
P < 0.05 was deemed statistically significant.

Results
Clinical characteristics and laboratory examinations
A total of 104 OSA patients were included in the study, 
28 (27%) of whom were diagnosed with arteriosclerosis 
as evidenced by increased arterial stiffness. Based on the 
presence or absence of arteriosclerosis, the OSA patients 
were categorized into two groups: OSA with arterioscle-
rosis and OSA without arteriosclerosis. Table 1 presents 

the comparison of clinical characteristics and labora-
tory examinations between the two groups. The results 
revealed no significant differences between the groups 
in terms of age, gender, height, weight, and body mass 
index. However, it was observed that systolic blood pres-
sure (SBP, 129 vs. 124  mmHg, p = 0.02) and diastolic 
blood pressure (DBP, 88 vs. 78, p = 0.04) were signifi-
cantly higher in the OSA patients with arteriosclerosis. 
Regarding laboratory parameters, no significant differ-
ences were found between the two groups in FBG, ALT, 
creatinine, urea, triglycerides, total cholesterol, HDLC, 
and LDLC. Conversely, elevated levels of AOPP (58 vs. 
56 μmol/L, p = 0.01), IL-6 (59 vs. 58 pg/mL, p = 0.03), and 
GDF15 (101 vs. 94 ng/mL, p = 0.01) were observed in the 
OSA patients with arteriosclerosis compared to those 
without arteriosclerosis.

Carotid ultrasound and sleep characteristics
Table  2 provides a comparison of carotid ultrasound 
findings and sleep characteristics between OSA patients 
with and without arteriosclerosis. Of 104 patients with 
OSA, 79 patients with AHI ≥ 30 were severe, 25 patients 
with AHI < 30 were mild–moderate. Arteriosclerosis was 
observed in 23 out of 79 (29%) patients with severe OSA, 
while it was observed in 5 out of 25 (20%) patients with 
mild-to-moderate OSA. Although the ratio of arterio-
sclerosis in severe OSA patients was higher than that in 
mild–moderate OSA patients, there was no significant 
difference between two groups (29% vs. 20%; p = 0.45). 
The OSA patients with arteriosclerosis exhibited higher 
values of PWV_ES (9.43 vs. 6.89; p = 0.01) and PWV_BS 
(6.79 vs. 5.34; p = 0.01). Furthermore, the OSA patients 
with arteriosclerosis had significantly higher AHI val-
ues (64.51 vs. 51.08; p = 0.02) compared to those without 
arteriosclerosis. However, there were no significant dif-
ferences between the two groups in terms of mean apnea 
duration, longest apnea duration, lowest SpO2, and mean 
SpO2.

Correlations of the serum biomarkers (including AOPP, 
IL-6 and GDF15) with AHI and ufPWV were performed 
by Pearson correlation analyses (Additional file 1: Figure 
S1). The results showed that AOPP, IL-6, and GDF15 are 
all positively correlated with AHI and PWV_ES, which 
illustrated that the serum biomarkers are not only related 
to OSA but also to arteriosclerosis.

Reproducibility
The Bland–Altman plots demonstrated excellent intra- 
and inter-observer reproducibility for the PWV_ES 
measurement, with no significant biases observed for 
both intra-observer (0.04 m/s [−0.76–0.73 m/s]; p = 0.63) 
and inter-observer (−0.02  m/s [−0.65–0.69  m/s]; 
p = 0.80) analyses. Similarly, no significant biases were 
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Table 1  Comparison of basic characteristics of patients with OSA according to the presence of arteriosclerosis

Data are presented as mean ± SD, median (interquartile range), or frequency (percentages). Bold value means p < 0.05

ALT alanine transaminase, HDLC high-density lipoprotein cholesterol, LDLC low-density lipoprotein cholesterol, AOPP advanced oxidation protein products, IL-6 
interleukin-6, GDF15 growth differentiation factor 15

All patient
(n = 104)

OSA without arteriosclerosis
( n = 76)

OSA with arteriosclerosis
( n = 28)

p value

Clinical characteristics

 Age (yrs) 44.06 ± 10.37 44.37 ± 10.02 43.21 ± 11.41 0.62

 Male (n/%) 78 (75%) 58 (76%) 20 (71%) 0.61

 Height (cm) 172.12 ± 8.32 172.17 ± 7.94 171.96 ± 9.43 0.91

 Weight (kg) 83.94 ± 14.40 84.01 ± 14.19 83.61 ± 15.24 0.92

 Body mass index (kg/m2) 28.31 ± 4.33 28.33 ± 4.38 28.27 ± 4.28 0.95

 Systolic blood pressure (mmHg) 130.96 ± 14.31 124.25 ± 7.18 129.05 ± 13.93 0.02
 Diastolic blood pressure (mmHg) 86.54 ± 8.90 78.20 ± 6.04 87.82 ± 8.46 0.04
 Smoking (n/%) 57 (55%) 39 (51%) 18 (64%) 0.24

Laboratory examination

 Fasting blood glucose (mmol/L) 5.25 ± 0.60 5.27 ± 0.64 5.20 ± 0.45 0.61

 ALT (U/L) 21.00 (18.00–25.00) 21.50 (18.00–26.00) 21.00 (18.00–25.00) 0.91

 Creatine (μmol/L) 69.73 ± 11.59 68.65 ± 11.74 72.64 ± 10.84 0.12

 Urea (mmol/L) 4.87 ± 1.20 4.87 ± 1.22 4.87 ± 1.16 0.98

 Triglyceride (mmol/L) 1.15 (1.01–1.38) 1.13 (1.01–1.38) 1.23 (0.83–1.58) 0.70

 Total cholesterol (mmol/L) 4.43 ± 1.02 4.39 ± 0.96 4.52 ± 1.19 0.57

 HDLC (mmol/L) 1.24 ± 0.35 1.22 ± 0.34 1.26 ± 0.36 0.61

 LDLC (mmol/L) 2.45 ± 0.89 2.41 ± 0.77 2.54 ± 1.16 0.49

 AOPP (μmol/L) 56.60 (54.05–58.36) 56.35 (53.64–58.14) 57.89 (55.82–58.82) 0.01
 IL-6 (pg/mL) 58.58 (56.10–59.97) 58.32 (55.59–59.98) 59.44 (57.13–61.30) 0.03
 GDF15 (ng/L) 97.33 (93.35–100.76) 94.20 (92.21–98.66) 101.45 (99.33–103.68) 0.01

Table 2  Comparison of serum biomarkers of patients with OSA according to the presence of arteriosclerosis

Data are presented as mean ± SD or median (interquartile range). Bold value means p < 0.05

PWV_BS pulse wave velocity at the beginning of systole, PWV_ES pulse wave velocity at the end of systole, IMT intima–media thickness, AHI, apnea–hypopnea index, 
SpO2 blood oxygen saturation, SIT90 ratio of time with SpO2 below 90% in total sleep time

All patient
( n = 104)

OSA without 
arteriosclerosis
( n = 76)

OSA with arteriosclerosis
( n = 28)

p value

Carotid ultrasound

 PWV_ES (m/s) 5.73 ± 1.25 6.89 ± 1.41 9.43 ± 2.04 0.01
 PWV_BS (m/s) 7.57 ± 1.95 5.34 ± 0.91 6.79 ± 1.42 0.01

Carotid IMT (mm) 0.56 (0.50–0.64) 0.56 (0.52–0.62) 0.57 (0.49–0.68) 0.84

 Sleep characteristics

 AHI (events/h) 54.69 ± 27.12 51.08 ± 26.36 64.51 ± 21.19 0.02
 Mean apnea duration (s) 23.57 ± 8.90 26.32 ± 7.83 28.29 ± 10.96 0.55

 Longest apnea duration (s) 50.40 ± 26.35 66.59 ± 25.30 61.71 ± 17.63 0.18

 Lowest SpO2 (%) 75.65 ± 12.06 70.05 ± 13.80 73.83 ± 14.40 0.43

 Mean SpO2 (%) 92.48 ± 4.54 89.05 ± 6.63 91.07 ± 4.12 0.66

 SIT90 (%) 13.01 ± 17.32 11.97 ± 13.87 13.55 ± 19.00 0.75

 OSA Severity 0.45

 Mild–moderate (n/%) 25 (24%) 20 (80%) 5 (20%)

 Severe (n/%) 79 (76%) 56 (71%) 23 (29%)
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found for the PWV_BS measurement in intra-observer 
(−0.01 m/s [−0.73–0.72 m/s]; p = 0.94) or inter-observer 
(−0.04 m/s [−0.70–0.62 m/s]; p = 0.53) analyses (Fig. 2). 
These results indicated strong consistency in the meas-
urement of PWV_ES and PWV_BS between observers 
and within multiple measurements by the same observer.

Predictors of arteriosclerosis
In the univariable logistic analysis presented in Table  3, 
arterial stiffness showed significant associations with 
several factors, including SBP (OR [95%CI] = 1.04 [1.00–
1.07]; p = 0.03), DBP (OR [95%CI] = 1.05 [1.00–1.11]; 
p = 0.03), AHI (OR [95%CI] = 1.02 [1.00–1.04]; p = 0.03), 
AOPP (OR [95%CI] = 1.26 [1.05–1.52]; p = 0.01), IL-6 
(OR [95%CI] = 1.21 [1.05–1.40]; p = 0.01) and GDF15 
(OR [95%CI] = 1.45 [1.23–1.70]; p < 0.01). An analysis 
of the ROC curve for predicting arteriosclerosis is pre-
sented in Fig.  3. The results revealed that AHI, AOPP, 
IL-6, and GDF15 were significant predictors of arte-
riosclerosis. Notably, GDF15, specifically in patients 
with OSA, exhibited a higher AUC of 0.85 [0.77–0.94] 

compared to AOPP (AUC = 0.67 [0.55–0.79]) or IL-6 
(AUC = 0.64 [0.52–0.76]) in detecting arteriosclerosis, 
suggesting that GDF15 had a superior performance as 

Fig. 2  Bland–Altman analysis for the intra-observer and inter-observer variabilities of PWV_ES and PWV_BS. Abbreviations: PWV_BS, pulse wave 
velocity at the beginning of systole; PWV_ES, pulse wave velocity at the end of systole

Table 3  Univariable logistics regression analysis for identifying 
the presence of arteriosclerosis in patients with OSA

Bold value means p < 0.05

AOPP Advanced oxidation protein products, IL-6 interleukin-6, GDF15 growth 
differentiation factor 15, OR odds ratio, CI confidence interval

OR [95%CI] p value

Age (yrs) 0.99 [0.95–1.03] 0.61

Gender 0.83 [0.32–2.11] 0.69

Body mass index (kg/m2) 1.00 [0.90–1.10] 0.95

Systolic blood pressure (mmHg) 1.04 [1.00–1.07] 0.03
Diastolic blood pressure (mmHg) 1.05 [1.00–1.11] 0.04
Fasting blood glucose (mmol/L) 0.82 [0.39–1.73] 0.61

Smoking 1.71 [0.70–4.18] 0.24

Apnea–hypopnea index (events/h) 1.02 [1.00–1.04] 0.03
AOPP (μmol/L) 1.26 [1.05–1.52] 0.01
IL-6 (pg/mL) 1.21 [1.05–1.40] 0.01
GDF15 (ng/L) 1.45 [1.23–1.70] 0.01
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a serum biomarker for identifying arteriosclerosis com-
pared to the other mentioned biomarkers. Additionally, 
in patients with OSA, the combination of AHI, AOPP, 
IL-6, and GDF15 yielded the highest AUC (0.87 [0.79–
0.95]), demonstrating a sensitivity of 92.9% and specific-
ity of 77.6% in identifying arteriosclerosis.

Arteriosclerosis prediction models
Based on previous literature, clinical knowledge, and 
statistically significant covariates from the univariate 
analysis, a series of multivariable logistic models were 
examined to determine independent predictors of arte-
riosclerosis, as shown in Fig.  4. Model 1 is a clinical 
traditional risk factor-only model for predicting arterio-
sclerosis, including age, gender, body mass index, SBP, 

FBG and smoking [30]. Notably, a collinearity diagnostic 
showed that there was a collinear between SBP and DBP 
(Eigenvalue tends to be zero and Condition index > 10 in 
all dimensions, Additional file  1: Table  S1), Therefore, 
only SBP was used in Model 1 in order to reduce the bias 
caused by the collinearity between SBP and DBP. SBP 
(OR [95%CI] = 1.05 (1.01–1.09); p < 0.01) emerged as an 
independent predictor in Model 1.

Next, backward stepwise logistic regression analysis 
was used to determine the sequence of markers add-
ing to the model after clinical model (model 1). The 
results of backward stepwise analysis showed that the 
AHI and AOPP were sequentially excluded out of the 
model in the step 2 and 3 (Additional file 1: Table S2). 
Therefore, we used sequential nested models by adding 

Fig. 3  Receiver operating characteristic analysis of serum biomarkers to identify arteriosclerosis in patients with OSA. AHI, apnea–hypopnea index; 
AOPP, advanced oxidation protein products; IL-6, interleukin-6; GDF15, growth differentiation factor 15; AUC, area under curve; CI, confidence 
interval; PPV, positive predictive value; NPV, negative predictive value; LR ( +), positive likelihood ratio; LR (−), negative likelihood ratio
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AHI, AOPP, IL-6 and GDF15 sequentially for predict-
ing arteriosclerosis in OSA patients. AHI remained an 
independent predictor in Model 2, which accounted for 
the variables in Model 1 and included AHI (model 2; 
OR [95%CI] = 1.02 (1.00–1.05); p < 0.03). AOPP, IL-6, 
and GDF15 were sequentially incorporated into Models 
3–5. Among these, GDF15 exhibited an independent 
association with arteriosclerosis even after adjusting 
for age, gender, body mass index, SBP, FBG, smoking, 
AHI, AOPP, and IL-6 in Model 5 (OR [95%CI] = 1.46 
(1.21–1.78); p < 0.03).

Incremental value of serum biomarkers
As depicted in Fig.  3, the inclusion of AOPP increased 
the AUC of AHI for identifying arteriosclerosis from 
0.64 (95% CI [0.53–0.75]) to 0.69 (95% CI [0.57–0.80]). 
Moreover, the addition of IL-6 further increased the 
AUC of AHI from 0.64 (95% CI [0.53–0.75]) to 0.70 (95% 
CI [0.58–0.81]). Notably, the combination of AHI and 
GDF15 demonstrated the highest incremental AUC of 
0.86 (95% CI [0.78–0.94]) for accurately identifying arte-
riosclerosis. These findings indicated that incorporating 
serum biomarkers such as AOPP, IL-6, and GDF15 with 

Fig. 4  Incremental value of serum biomarkers for identifying arteriosclerosis in patients with OSA in the logistic regression models. Model 1 
included age, gender, body mass index, SBP, FBG and smoking; Model 2 included Model 1 plus AHI; Model 3 included Model 2 plus AOPP; Model 4 
included Model 3 plus IL-6; Model 5 included Model 4 plus GDF15. OR, odds ratio; CI, confidence interval; SBP, systolic blood pressure; FBG, fasting 
blood glucose; AHI, apnea–hypopnea index; AOPP, advanced oxidation protein products; IL-6, interleukin-6; GDF15, growth differentiation factor 15
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AHI significantly enhanced the diagnostic value of arte-
riosclerosis in patients with OSA. Additionally, GDF15 
exhibited greater incremental value compared to AOPP 
or IL-6 in the detection of arteriosclerosis in patients 
with OSA.

The model for predicting arteriosclerosis in patients 
with OSA (model 2) was initially based on clinical 
parameters such as age, gender, body mass index, SBP, 
FBG, smoking, and AHI. The model yielded a Chi-square 
value of 13.85, with Cox and Snell R2 = 0.13 and Nagel-
kerke R2 = 0.18. Subsequent improvements were made 
by including AOPP in model 3, resulting in a Chi-square 
value of 18.84, with Cox and Snell R2 = 0.17 and Nagel-
kerke R2 = 0.24. IL-6 was added to model 4, leading to a 
Chi-square value of 25.06, with Cox and Snell R2 = 0.21 
and Nagelkerke R2 = 0.31. Furthermore, model 5 demon-
strated further improvement by incorporating GDF15, 
resulting in a Chi-square value of 50.74, with Cox and 
Snell R2 = 0.39 and Nagelkerke R2 = 0.56 (Fig. 4). In addi-
tion, model 5 showed a higher AUC value of 0.90 than 
the other models, indicating it was the most powerful at 
identifying arteriosclerosis in patients with OSA (Addi-
tional file 1: Figure S2).

Additional file 1: Table S3 presents the incorporation of 
serum biomarkers (AOPP, IL-6, and GDF15) with clinical 
parameters (age, gender, body mass index, SBP, FBG, and 
smoking) to improve the reclassification of arterioscle-
rosis. Adding AOPP to model 2, which is based on AHI 
and clinical parameters, did not result in a significant 
improvement in reclassification. Similarly, adding IL-6 to 
model 3 did not show a significant improvement either. 
However, the inclusion of GDF15 in model 4, which com-
bines clinical parameters, AHI, AOPP, and IL-6, led to a 
notable enhancement in reclassification. Specifically, the 
NRI increased from 0.04 (-0.11 to 0.18) to 0.31 (0.11 to 
0.51), and the IDI increased from 0.06 (-0.01 to 0.12) to 
0.16 (0.10 to 0.24).

Discussion
The study yielded several significant findings. Firstly, 
AOPP, IL-6, and GDF15 levels were observed to be 
elevated in patients with OSA and arteriosclerosis in 
comparison to those with OSA alone. Secondly, GDF15 
emerged as an independent predictor of arteriosclerosis 
in patients with OSA. Thirdly, GDF15 exhibited incre-
mental value when compared to AOPP and IL-6 in the 
identification of arteriosclerosis among patients with 
OSA. This study is notably the first to investigate the 
incremental value of AOPP, IL-6, and GDF15 in detect-
ing arteriosclerosis within the OSA population. These 
findings are of great importance as they provide poten-
tial new targets for diagnosing and treating arterioscle-
rosis associated with OSA, potentially leading to notable 

reductions in cardiovascular morbidity and mortality 
rates for patients with OSA.

Arteriosclerosis has been shown to be independently 
associated with cardiovascular events [31]. Detecting 
arteriosclerosis at an early stage, before the emergence of 
morphological changes such as intima–media thicken-
ing or plaque formation, could potentially prevent severe 
cardiovascular events. The measurement of pulse wave 
velocity (PWV) is recommended in the 2018 European 
guidelines as a means to assess arterial stiffness [32]. A 
novel and unique method for PWV measurement called 
ultrafast ultrasound imaging (ufPWV) has recently been 
developed, offering an exceptionally high image sam-
pling rate of over 10,000 frames per second [33]. This 
technique enables real-time tracking and visualization 
of local pulse wave propagation, displaying good repro-
ducibility [34]. Traditional PWV measurements, such as 
carotid-femoral PWV, determine the transit time of the 
pulse wave between carotid and femoral arteries, whereas 
ufPWV directly estimates local arterial wall stiffness [35]. 
In a previous study, we established reference values for 
carotid ufPWV in a Chinese population stratified by age 
and gender, which can be used to diagnose arteriosclero-
sis [29]. Consequently, carotid ufPWV was evaluated in 
individuals diagnosed with OSA to determine the pres-
ence of arteriosclerosis using the established carotid 
ufPWV reference values specific to their age and gender. 
Subsequently, participants were divided into two groups: 
OSA with arteriosclerosis and OSA without arterio-
sclerosis. In this study, the prevalence of atherosclerosis 
in the OSA population was approximately 27%. To our 
knowledge, it is the first study to use carotid ufPWV to 
assess the prevalence of arteriosclerosis in patients with 
OSA. A larger sample size is needed in future studies to 
validate arteriosclerosis prevalence in OSA patients.

OSA is characterized by increased sympathetic activity, 
oxidative stress, upregulation of redox-sensitive genes, 
and an inflammatory cascade. The primary treatment 
for patients with moderate-to-severe OSA is continuous 
positive airway pressure (CPAP). However, a study con-
ducted by McEvoy et  al. found no evidence supporting 
the idea that CPAP effectively prevents cardiovascular 
events in patients with moderate-to-severe OSA and pre-
existing CVD [36]. This lack of effectiveness may be due 
to poor adherence to CPAP therapy among patients with 
OSA, as well as the limited impact of CPAP on metabolic 
processes [37]. The pathogenesis underlying OSA-associ-
ated CVD shows significant variability.

Previous researches had shown the connections 
between IL-6 and arteriosclerosis in an animal study [38], 
AOPP and arteriosclerosis in healthy individuals [39], 
and GDF15 and arteriosclerosis in the general population 
[40]. In this investigation, the levels of serum biomarkers 
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AOPP, IL-6, and GDF15 were found to be higher in indi-
viduals with OSA and arteriosclerosis compared to those 
with OSA only. Furthermore, AOPP, IL-6, and GDF15 are 
all positively correlated with AHI and PWV_ES. This fur-
ther illustrates the serum biomarkers are not only related 
to OSA, but also to arteriosclerosis.

Clinical models that incorporate risk factor data have 
been proposed as a method to classify cardiovascular 
risk. Our study revealed that serum biomarkers pro-
vided additional value in identifying arteriosclerosis in 
patients with OSA, surpassing the clinical models that 
consider age, gender, body mass index, SBP, FBG, smok-
ing, and AHI. Specifically, GDF15, a serum biomarker, 
significantly improved the diagnostic accuracy of Model 
4 for arteriosclerosis in patients with OSA (Chi-square 
increased from 25 to 50).

Previous research has proposed that GDF15 plays a 
role in regulating vascular proliferation, differentiation, 
remodeling, and inflammatory damage repair, thus estab-
lishing a strong association between GDF15 and the diag-
nosis and prognosis of various cardiovascular conditions 
[41, 42]. The results of our study also confirmed the pre-
dictive significance of GDF15 and provided evidence that 
GDF15 enhanced the ability to differentiate and reclas-
sify patients with OSA more accurately, determining the 
presence or absence of arteriosclerosis. This observation 
stems from the finding that elevated levels of circulat-
ing GDF15 are linked to increased plaque accumulation 
and higher artery calcium scores [43, 44]. Furthermore, 
a study by Bonaterra et  al. on GDF15 knockout mice 
demonstrated that GDF15 deficiency protected against 
atherosclerosis, suggesting that targeted suppression of 
GDF15 could hinder arterial stiffness progression [45]. 
Consequently, GDF15 may improve the estimation of the 
pretest probability of arteriosclerosis and present new 
targets for diagnosing and treating OSA-associated arte-
riosclerosis, further reducing CVD morbidity and mor-
tality in individuals with OSA.

Limitation
This study had several limitations. Firstly, the small sam-
ple size of the study population can be attributed to the 
stringent exclusion criteria used to select participants. 
Additionally, the study was limited to a single-center 
cohort, necessitating a prospective multicenter trial to 
enhance the validity of the findings. Another limita-
tion was the measurement of blood pressure within 
5  min before the carotid scan, rather than simultane-
ously, which may impact the assessment of arterial stiff-
ness. Furthermore, the definition of arteriosclerosis was 
based on Chinese patients, which restricts the gener-
alizability of the results to other races or ethnicities. 
Therefore, further validation of these findings in diverse 

populations is warranted. As well, we used only one 
method to determine arterial stiffness, carotid ufPWV, 
and did not measure other carotid stiffness parameters, 
such as the Bramwell–Hill equation, to further illustrate 
arteriosclerosis.

Conclusions
In conclusion, GDF15 proved to be a valuable predic-
tor of arteriosclerosis in patients with OSA. It exhibited 
superior accuracy in identifying arteriosclerosis com-
pared to clinical risk factors and other serum biomark-
ers, such as AOPP and IL-6. Moreover, a comprehensive 
evaluation of clinical risk factors, including age, gender, 
body mass index, SBP, FBG, and smoking, along with 
serum biomarkers like AOPP, IL-6, and GDF15, may have 
a more profound impact on assessing arteriosclerosis in 
patients with OSA. However, it is important to note that 
this study was a case–control study, and larger prospec-
tive studies are necessary to validate these findings.
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