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Metagenomic analysis of the honey bee queen microbiome 
reveals low bacterial diversity and Caudoviricetes phages
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ABSTRACT In eusocial insects, the health of the queens—the colony founders and 
sole reproductive females—is a primary determinant for colony success. Queen failure 
in the honey bee Apis mellifera, for example, is a major concern of beekeepers who 
annually suffer colony losses, necessitating a greater knowledge of queen health. Several 
studies on the microbiome of honey bees have characterized its diversity and shown its 
importance for the health of worker bees, the female non-reproductive caste. However, 
the microbiome of workers differs from that of queens, which, in comparison, is still 
poorly studied. Thus, direct investigations of the queen microbiome are required to 
understand colony-level microbiome assembly, functional roles, and evolution. Here, we 
used metagenomics to comprehensively characterize the honey bee queen microbiome. 
Comparing samples from different geographic locations and breeder sources, we show 
that the microbiome of queens is mostly shaped by the environment experienced 
since early life and is predicted to play roles in the breakdown of the diet and protec­
tion from pathogens and xenobiotics. We also reveal that the microbiome of queens 
comprises only four candidate core bacterial species, Apilactobacillus kunkeei, Lactobacil­
lus apis, Bombella apis, and Commensalibacter sp. Interestingly, in addition to bacteria, we 
show that bacteriophages infect the queen microbiome, for which Lactobacillaceae are 
predicted to be the main reservoirs. Together, our results provide the basis to understand 
the honey bee colony microbiome assemblage, can guide improvements in queen-rear­
ing processes, and highlight the importance of considering bacteriophages for queen 
microbiome health and microbiome homeostasis in eusocial insects.

IMPORTANCE The queen caste plays a central role in colony success in eusocial insects, 
as queens lay eggs and regulate colony behavior and development. Queen failure can 
cause colonies to collapse, which is one of the major concerns of beekeepers. Thus, 
understanding the biology behind the queen’s health is a pressing issue. Previous studies 
have shown that the bee microbiome plays an important role in worker bee health, but 
little is known about the queen microbiome and its function in vivo. Here, we charac­
terized the queen microbiome, identifying for the first time the present species and 
their putative functions. We show that the queen microbiome has predicted nutritional 
and protective roles in queen association and comprises only four consistently present 
bacterial species. Additionally, we bring to attention the spread of phages in the queen 
microbiome, which increased in abundance in failing queens and may impact the fate of 
the colony.

KEYWORDS symbiosis, bacteriophage, eusocial insect, genetic background, Apis 
mellifera

Q ueen health in eusocial insects is a primary determinant for the success of the 
colony. Eusocial insects live in groups with cooperative care of juveniles, overlap 
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of generations, and reproductive division of labor. Exemplars of insect societies are 
ants, wasps, and bees from the order Hymenoptera, the largest and most well-
known animal group with eusocial species. In eusocial insects, the reproductive female 
caste (queens) is responsible for laying eggs and regulating the colony’s behavior and 
development. After mating, queens spend almost their entire life, which can reach 
several decades, inside the colony being fed by specialized workers. They are among 
the most fecund terrestrial animals; queens from some insect species can lay ~20,000 
eggs per day (1), which may explain the success of some eusocial insect genera. The 
importance of queens also extends beyond their reproductive role. Queens maintain 
the colony homeostasis by managing the behavior of other colony members, such as 
attracting workers or inducing submissive behavior, modulating aggression, or inhibiting 
the production of new queens through pheromone signals (2–6).

The importance of queens for colony success becomes even more evident with the 
example of honey bees (Apis mellifera). In addition to the significance of honey bees 
for general ecosystem services in their natural range, managed colonies contribute 
billions to the agricultural economy annually in the United States, due to their pollina­
tion services (7). However, annual losses of honey bee-managed colonies have reduced 
reliability on them and affected food security. Queen failure and premature supersedure 
are consistently reported as the leading contributing factors for colony mortality (8). 
Honey bee queens can live 3–4 years, but recently, their diminished longevity requires 
the replacement of the queens almost every year, a practice also used preventively (9). 
The causes behind failing queens are still poorly understood, but they may include 
problems with development, insemination success, infection by parasites, exposure to 
xenobiotics, and adverse temperatures (10, 11). Interestingly, the microbiome of insects, 
including honey bee foragers, is also known to modulate the host response to some 
of these stressors. For example, the worker gut microbiome can protect the host from 
parasites (12), and parasites can also shape the gut microbiome due to the infection 
(13); or the microbiome can buffer the effect of pesticides (14), and pesticides can 
shape the microbiomes (15), ultimately impacting colony fitness. Thus, the microbiome 
is an important trait that should be included in studies on the health of eusocial insect 
queens, and Apis mellifera is an excellent model system for these investigations.

Most of what is known about the microbiome of honey bees and its role in colony 
health comes from investigations on worker bees—the non-reproductive females that 
take care of the hive and when older leave the colony to collect pollen and nectar. 
Honey bee workers have a taxonomically simple and consistent gut microbiome among 
colonies around the world, comprising the core members Bifidobacterium, Snodgrassella, 
Gilliamella, and two groups of Lactobacillus, Firm-4 and Firm-5. This microbial commun­
ity impacts host health in multiple ways (see reference 16), and its acquisition and 
transmission occur mostly through interactions with individuals from the colony and 
the hive environment (17). Dysbiosis in this system is strongly correlated with poorer 
worker fitness and is characterized by shifts in the load of core microbes and the spread 
of opportunistic bacteria (18). More recently, fungi and bacteriophages’ community 
characterization has also been included in studies of the bee microbiome (19–23). 
The role that phages play in molding the microbiome and impacting host health has 
been shown in unrelated model systems (24–27), but in honey bees, their diversity and 
potential effects are understudied.

Curiously, there is evidence that honey bee queen microbes are distinct from those of 
workers from their own colony (28). Thus far, based on 16S rRNA amplicon-based studies, 
the honey bee queen microbiome appears to comprise mostly bacteria from the genera 
Lactobacillus, Bombella, and Commensalibacter. However, the queen gut microbiome 
is not as consistent as observed for worker bees, and the relative abundance of the 
associated bacteria is quite variable among queens from different colonies (28–30). In 
addition to the natural microbiome variability among queens, controlled experiments 
have shown that both age and early-bacteria colonizers coming from social interactions 
or rearing protocols also lead to differences in their microbiomes (29). A metagenomic 
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approach, enabling species-level characterization and access to genomic information, 
could improve our understanding of the queen microbiome assemblage and its role in 
queen health.

Here, we sequenced the metagenomes of 18 queen gut samples from the Uni­
ted States and Canada to characterize their microbiome. These queen samples have 
associated metadata from previous studies (31, 32), including both failing and healthy 
queens. We describe the queen gut microbial community, from bacteria to phages, 
and investigate the most important factors shaping it. In addition, we characterize 
the microbiome at a functional level and recover metagenome-assembled genomes to 
identify, at the species level, the candidate core microbiome.

RESULTS

The honey bee queen microbiome is dominated by bacteria of the Acetobac­
teraceae and Lactobacillaceae families

We sequenced a total of 18 queen gut metagenomes, ranging from 7 to 33 million 
paired reads per sample after quality trimming (Table S1). First, we asked which microbes 
were present in the community associated with the honey bee queen gut. We mapped 
trimmed reads against 18S rRNA and 16S rRNA databases for taxonomic identification 
of fungi and bacteria, respectively. As expected, based on the paucity of fungal reads 
recovered from other studies, no reads mapped to 18S rRNA; on the other hand, reads 
mapped to bacteria from at least five families, mostly Acetobacteraceae and Lactobacil­
laceae (Fig. 1A). At the genus level, the queen microbiomes varied extensively in the 
abundance of Acetobacteraceae (Bombella or Commensalibacter) and Lactobacillaceae 
(Apilactobacillus or Lactobacillus) (Fig. 1A). Other bacteria, known to often be a part of the 
worker bee gut microbiome, were also present in some of the queen samples, such as 
Bombilactobacillus, Bifidobacterium, and Frischella. The geographical location from which 
queens were sampled (PERMANOVA; City, bacterial family, P = 0.046, R2 = 0.304, F = 
2.165; bacterial genus P = 0.045, R2 = 0.252, F = 1.667; State, bacterial family, P = 0.047, 
R2 = 0.115, F = 2.270; bacterial genus, P = 0.039, R2 = 0.121, F = 2.286) and the year of 
sampling (which is conflated with the geographic location, see Table S1) were two of the 
factors explaining the differences between the queen microbiomes both at the family 
and genus level. Additionally, the queen source—that is, the breeder who provided the 
queen—was also a factor explaining microbiome differences across samples (PERMA­
NOVA; bacterial family, P = 0.040, R2 = 0.421, F = 2.488, bacterial genus, P = 0.039, R2 = 
0.357, F = 1.850). Queen source, although influenced by the genetics of the stocks, could 
also be influenced by environmental differences since the queen-rearing environment 
and protocol used by the beekeeper could impact queen microbiomes. Importantly, in 
our study, the location of these samples (State and City) is also confounded by the queen 
source, as beekeepers from the same area generally had the same queen suppliers (Table 
S1).

Due to the effect of the environment on the queen microbiome composition, 
differences in the microbiome of healthy or failing queens were only observed depend­
ing on their geographical location (PERMANOVA; interaction between State and Status, P 
= 0.047, R2 = 0.121, F = 2.395). This interaction effect was observed at the family level; the 
queen core microbiome families, Lactobacillaceae and Acetobacteraceae, were among 
the taxa that explain most of these differences among the samples and their clustering in 
the principal coordinate analysis, PCoA (Fig. 1B). But also, Erwiniaceae, a non-core 
bacterial family of the honey bee microbiome, was more abundant in failing queens and 
contributed to the PCoA topology separating sample A0012 from the other U.S. samples 
(Fig. 1B). Interestingly, with the normalization of the bacteria coverage by the library read 
depth, we can also observe that failing queens, mostly from British Columbia (Canada), 
have higher proportions of bacterial reads per gut sample (Fig. 1A). This result, however, 
could also be affected by differences in diet consumption (environmental DNA) on the 
day of sampling, and future studies could use quantitative PCR to obtain absolute 
bacterial abundances.
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Queen genetic background is not directly correlated with microbiome 
composition or health status

Because the queen source—that is, the breeder who provided the queen—was one of 
the factors explaining microbiome composition, we decided to further investigate if the 
queen’s genetic background could be a direct predictor of its gut community. Honey 
bee queen population structure was assessed from genotype likelihoods of 7,342,540 
polymorphic sites. Both population structure plots showed a clear genetic differentiation 
among the honey bee queens from Pennsylvania (USA) and British Columbia (Canada); 
although the admixture plot suggests some gene flow between populations (Fig. 2A). 
We also tested higher numbers of ancestral populations and there is no clear popula­
tion structure for queens from the same apiary or queen company supplier (Fig. S1). 
The principal component analysis (PCA) also cleanly delineates the samples based on 
the State factor and interestingly, the samples with mixed ancestry are those at the 
edges of each cluster, closer to the center of PC1 (Fig. 2B). Finally, we used a Mantel 
test to compare similarity/dissimilarity of queen genetic background and microbiome 
composition. The bacterial families or genera were not correlated with pairwise genetic 
distance among queens (bacterial family, R = 0.04113, P = 0.3906; bacterial genus R = 

FIG 1 The microbiome of honey bee queens varies extensively in the abundance of the two most prevalent bacterial families, 

Acetobacteraceae and Lactobacillaceae. (A) Relative (above) and library read depth normalized (below) coverage of bacteria 

genera comprising the microbiome of healthy and failing honey bee queens from two different locations, Pennsylvania 

(USA) and British Columbia (Canada). Color shades represent bacteria families; Acetobacteraceae (yellow), Bifidobacteriaceae 

(green), Erwiniaceae (gray), Lactobacillaceae (purple), and Orbaceae (blue). (B) Principal coordinate analysis (PCoA) showing 

the distribution of queen samples based on the dissimilarity of relative proportions of the microbial communities at family 

(above) and genus level (below). Arrows highlight the bacteria with the strongest contribution to the ordination, and each axis 

shows the percentage of variation explaining.
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0.1676, P = 0.1152) or covariance matrix of queen genotype likelihoods (bacterial family, 
R = 0.05412, P = 0.2925; bacterial genus R = −0.04525, P = 0.727).

The candidate core microbiome of queens comprises four bacterial species

We recovered metagenome-assembled genomes (MAGs) of the core honey bee queen 
microbiome members. The co-assembly of all trimmed reads generated 177,846 contigs 
> 500 nt (Table S2), which were then grouped into bins. In total, eight bacterial MAGs 
with partial (<50%) to nearly complete (>90%) genomes were recovered and placed into 
a phylogenetic context to predict species (Table S3; Fig. 3; Fig. S2). Considering that 
MAGs will be retrieved from the abundant species in metagenomes (present in more 
samples, with more reads), among them we should be able to find the core members 
of the queen microbiome. Core microbiome members should be present in all healthy 
queens and some of the failing queens, while non-core members would be present only 
in a few queen samples. Single-copy core genes were used to estimate the coverage of 

FIG 2 Genetic background of the honey bee queens groups them in a population for each general geographical location 

and not by health status or microbiome composition. (A) Bar plot resulting from the SNP admixture analysis for K2 ancestral 

populations (y-axis shows the proportion of each ancestral population), clustering queens from Pennsylvania (PA) and British 

Columbia (BC). (B) PCA of the genotype likelihood covariance matrix shows the same population structure, separated in PC1, 

which explains 22% of the total variation.
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MAGs, revealing that Bombella apis, Commensalibacter sp., Apilactobacillus kunkeei, and 
Lactobacillus apis were present in all queen samples (with the exception of L. apis, which 

FIG 3 The core microbiome of honey bee queens comprises only four species. (A) Phylogenies inferred with maximum likelihood for the MAGs of the two core 

Acetobacteraceae. Above, Bombella apis and relatives, inferred from the alignment of 927 single-copy orthologs (SCO). Below, Commensalibacter and relatives, 

inferred from the alignment of 708 SCO. (B) Phylogenies for the MAGs of the two core Lactobacillaceae. Above, Lactobacillus apis and relatives, inferred from 

the alignment of 80 SCO. Below, Apilactobacillus kunkeei and relatives, inferred from the alignment of 292 SCO. (A and B) On the side of each phylogeny is 

the relative coverage of the MAG in queens with different health statuses and geographical locations. Below the phylogenies of each bacterial family is the 

same plot configuration, but with the coverage sum of both MAGs. Significant statistical difference was only observed when comparing the abundance of core 

Lactobacillaceae among queens with different health statuses in Pennsylvania; there is a reduction of their abundance in failing queens (Wilcoxon rank test, *P = 

0.028).
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was absent in one failing queen; Fig. 3; Table S4). In 11 out of 18 samples, these four 
bacteria species represent more than 50% of the microbiome (Table S4). Only the sample 
A0012, a failing queen, had an important reduction of the core microbiome (9%) and an 
increase in the abundance of Enterobacteriaceae. This opportunistic bacterium is part 
of the non-core MAGs, which includes the Lactobacillaceae Lactobacillus panisapium, 
the Bifidobacteriaceae Bifidobacterium apousia, the Orbaceae Frischella perrara, and the 
Enterobacteriaceae Tenebrionicola-like (Fig. S2).

We also used these MAGs to ask if a shift in the microbial community, i.e., dysbiosis, 
was observed in the abundance of the core species from the microbiome of failing 
queens. Although we can observe a tendency for a shift in species proportions when 
comparing queens with different health statuses, variance of relative coverage within 
the group was high, and there was no significant difference and no shift pattern in their 
proportions in failing queens across both locations (Fig. 3). At the family level, however, 
Lactobacillus in the state of Pennsylvania had a significant decrease in their proportion in 
failing queens (Wilcoxon rank test, P = 0.028).

Functional properties of the queen gut microbiome

To characterize the potential role of the microbiome in the queen host and interactions 
with and within the microbial community, we predicted protein functions from all 
bacterial contigs—thus avoiding biases due to MAG completion status or non-binned 
partial bacteria genomes, which may also have proteins with functional relevance. From 
all bacterial contigs, 23,833 proteins were predicted and 12,910 (54%) were assigned to 
Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog categories. The presence 
and absence of proteins in each sample were used to compare them in a clustered 
heatmap, where all functional categories in the queen microbiome are shown (Fig. 4). 
Overall, there was no broad functional category missing or overrepresented in samples, 
so no clustering by microbiome functional profile was observed for samples of the same 
geographic location (Pennsylvania vs British Columbia) or health status. Cluster 2 (C2, Fig. 
4), however, includes the samples with more abundant non-core bacteria. In addition to 
proteins with general cell function, the main categories present were the metabolism 
of cofactors and vitamins, energy metabolism, carbohydrate metabolism, and amino 
acid metabolism. Protein counts from the energy metabolism category confirm that 
the microbes associated with honey bee queens mostly use oxidative phosphorylation 
for energy production (Fig. S3E). These microbes also harbor genes involved in the 
degradation of xenobiotics (e.g., cytochrome P450), the biosynthesis of antibiotics (e.g., 
monobactam and streptomycin), and biofilm formation pathways, which may play an 
important role in community regulation (Fig. S3M, B, and D, respectively). While genes 
for lysine biosynthesis were annotated in all samples, only sample A0012, a failing queen 
with depleted core-microbiome and increased abundance of the Enterobacteriaceae 
Tenebrionicola-like, has an increase in proteins involved in the degradation of this amino 
acid, known to be able to buffer poor bee nutrition (Fig. S3A) (33).

Bacteriophages of the class Caudoviricetes compose the queen microbiome 
and are found in higher abundance in failing queens

In addition to the search for fungi and bacteria in the microbiome of queens, we also 
wondered if bacteriophages, important modulators of microbial communities, could also 
compose the microbiome of the honey bee queens. A total of 74 phage viral operational 
taxonomic units (vOTUs) were retrieved, including three temperate and 71 putative 
virulent phages (Table S5). All the phage sequences with predicted genes were classified 
taxonomically as Caudoviricetes based on the similarity with viral marker genes in the 
database. Among the temperate phages, one is integrated into the genome of Lactoba­
cillus panisapium, and the other two are integrated into the genome of the Enterobacter­
iaceae, Tenebrionicola-like. We tested whether viruses integrated into their host genomes 
were being induced by comparing the coverage of temperate phages and the coverage 
of the respective host (Table S6). The coverage of these phages, however, was not greater 
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than the coverage of the genome of their hosts, indicating that they are not being 
induced.

To predict putative hosts for the virulent phage vOTUs, we first conducted nucleotide 
similarity searches against CRISPR-cas arrays predicted in our MAGs. Genomes of B. 
apis, L. apis, L. panisapium, and Tenebrionicola-like have CRISPR-cas arrays with one to 
seven spacers per array (List S1), but none of the virulent phage sequences from the 
metagenomes matched these spacers. However, we still were able to predict putative 
hosts of 21 virulent phages based on the other approaches used, including matches 
with other CRISPR spacers’ databases, BLASTs, and k-mer compositional analyses (Fig. 
5; Table S5). The virulent phages were predicted to infect mostly Lactobacillaceae and 
Enterobacteriaceae.

Differences in the abundance of phage sequences among the samples were signifi­
cant for all factors being tested, including geographic location (Kruskal-Wallis rank test; P 
= 0.005, df = 3), age (Wilcoxon rank test; P = 8.41e−02), or queen source (Kruskal-Wallis 
rank test; P = 0.005, df = 4). Interestingly, the queen’s health status was one of the most 
significant factors in terms of differences in phage abundance (Wilcoxon rank test; P = 

FIG 4 The microbiome functional profile suggests an important role for honey bee queen health and homeostasis. The heatmap shows scaled protein counts 

per KEGG category (rows), which include proteins involved in xenobiotics biodegradation and metabolism, amino acid metabolism biosynthesis (e.g., lysine), 

or biosynthesis of secondary metabolites (e.g., antibiotics). Samples (columns) were hierarchically clustered. Three main functional groups were formed (C1, C2, 

and C3), but they do not correlate with any of the variables tested in our investigations, such as health status or geographic location. Cluster 2, however, has an 

increase (dark red) in the representation of all KEGG categories due to the relative abundance of non-core bacteria in their microbiomes.
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0.029; British Columbia, P = 5.12e−05, Pennsylvania, P = 0.032), even when excluding 
temperate phages (Wilcoxon rank test; P = 0.04).

Additionally, we estimated the ratio between bacteria and phages in the samples, 
showing that although queens tend to have more bacteria than phages, the four 
samples with more phages than bacteria were failed queens (Table S7). Also, since 
phages need a host, we could expect a consistently increased abundance of phages 
in the samples with an increased abundance of their hosts. Following this rationale, 
we used a correlation analysis to potentially find putative hosts for phages with 
no putative host identified with the previous methods. As expected, all significant 
correlations among phages and bacteria were positive correlations, and most bacteria 
co-occurred precisely with phages predicted to infect their family, such as Lactobacilla­
ceae and Enterobacteriaceae. The result of this analysis indicates some phages that 
may be candidates to infect three members of the core microbiome, B. apis (e.g., 
k141_169038), A. kunkeei (e.g., k141_368347), and Commensalibacter (e.g., k141_456794; 
Fig. S4), although these bacteria also had significant, but weaker correlations with 
Lactobacillaceae-putative phages.

DISCUSSION

Investigations on the microbiome of eusocial insect queens are not as frequent as those 
on worker castes, despite the key role of the queen for superorganism fitness. However, 
studies conducted so far have revealed that the microbiome of queens—including 
species of termites, ants, and bees—usually differs from that of their workers (28, 
34, 35). The lack of direct correlation between worker and queen microbiomes rein­
forces the importance of queen microbiome characterization to understand colony-
level microbiome assembly, functional roles, and evolution. Honey bees, especially, 
are economically relevant and have been important models for microbiome investiga­
tions; amplicon-based characterizations of the queen microbiome have shown that it 
is mostly composed of Lactobacillaceae and Acetobacteraceae (28–30). Here, using a 
metagenomic approach, we showed that the microbiome of honey bee queens (i) varies 
considerably in the abundance of these two bacterial families, with the environment 
having an important impact on these differences, (ii) the microbiome comprises four 
core bacterial species and is predicted to have a protective and nutritional role, and that 

FIG 5 Caudoviricetes phages spread opportunistically in the microbiome of failing queens. The coverage of phage vOTUs 

(dots, with a coverage >1) is shown for each queen sample, which was higher in failing queens (Wilcoxon rank test, P = 0.0297; 

PA, P = 0.032; BC, P = 5.12e−5). The color of the dot indicates the host where its genome is integrated or its putative host.
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(iii) temperate and virulent Caudoviricetes phages are part of the microbiome, for which 
core Lactobacillaceae may be important reservoirs and spreaders.

Previous studies on bee workers and queens have shown that, to some extent, their 
genetic background influences microbiome composition. In workers, these results were 
obtained by comparing the microbiome of A. mellifera subspecies, isolated from each 
other and inbred since 1980 (36). The evidence for the effect of queen genetic back­
ground on microbiome composition was shown by comparing two species of Apis (A. 
cerana and A. mellifera), which have their last common ancestor dated to approximately 
6 mya (37, 38). In the current study, we did not observe the same trends comparing 
queen genotypes of the same A. mellifera subspecies, meaning the genetic differences 
among the queens were not enough to explain the differences in the microbiome 
(Fig. 2). This result, however, does not eliminate the possibility of rare alleles playing 
a role in the queen microbiome assembly, and a larger sample size with queens from 
more populations could test this hypothesis. Interestingly, we instead found that the 
queen microbiome composition was shaped by the rearing environment, i.e., geographic 
location and queen breeder source. For worker bees, it is known that the environment 
landscape plays an important role in the microbiome composition (39). The effect of 
breeder source on queen microbiome composition was also observed in another study 
with honey bee queens (30) and, together with the lack of correlation between queen 
genetic background and microbiome composition, suggests a role of priority effects 
(arrival order and/or timing) on queen microbiome assembly. The effect of the environ­
ment on microbiome composition may also have masked differences in the microbiome 
of healthy and failing queens (Fig. 1). Dysbiosis can shift the microbiome to a different 
end community composition depending on previous colonizers and the factors causing 
the shift (18). Thus, to characterize dysbiosis patterns in failing queens, an experimental 
design controlling for environmental effects would be important in future investigations. 
Regardless, with our approach, we were able to observe a typical dysbiotic pattern in 
some of the failing queens, which was an increase in bacteria abundance and an increase 
in the proportion of non-core microbiome members. However, the changes observed 
in the microbiomes of the failing queens in our study could be a consequence of weak 
queens and not the direct cause of queen failure.

Our findings reveal that the microbiome of queens is very constrained, composed 
of only four candidate core bacterial species: Bombella apis, Commensalibacter sp., 
Apilactobacillus kunkeei, and Lactobacillus apis (Fig. 3). This represents even fewer 
bacterial members than the known simple core microbiome of worker bees, comprising 
five phylotypes with multiple species (40, 41). Additionally, no fungi were detected in our 
queen samples, which is in contrast to previously published amplicon sequencing-based 
investigations with queens and worker bees (19, 20, 42, 43). Importantly, this difference 
could be due to the fact that amplicon sequencing will detect extremely low abundance 
templates resulting from the honey bee diet.

Queens are the longest-lived members in a colony, they are larger than workers, 
and they have well‐developed ovaries, thus their physiology itself already represents 
a different niche for bacteria to colonize. Additionally, the highly specialized diet of 
queens throughout their lives, comprising mainly royal jelly, may have facilitated the 
selection of a small number of core members. Queens are genetically identical to their 
sisters that became workers, i.e., female larvae are bipotent and can equally develop 
into queens or workers depending on their larval diet (royal jelly vs worker brood food). 
Royal jelly is composed of water, proteins, sugars, and lipids, but it is also very viscous, 
acidic, and imbibed with antimicrobial peptides, such as royalisin, jelleines, apismin, 
royalactin, and fatty acids, which together confer the antimicrobial role of the royal 
jelly (44, 45). For example, royal jelly can inhibit the growth of bee pathogenic bacteria, 
such as Melissococcus plutonius and Paenibacillus alvei (46). Interestingly, royal jelly does 
not inhibit all bacteria; a recent study showed that Bombella apis, one of the core 
members of the queen microbiome, can withstand and even replicate in royal jelly (33). 
In this same study, however, Apilactobacillus kunkeei, did not show the same ability. In 
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other host model systems where the microbiome is also composed of Acetobacteraceae 
and Lactobacillaceae, such as in Drosophila, the colonization of these bacterial families 
is enabled due to cross-feeding; Acetobacter pomorum uses the lactate produced by 
Lactobacillus plantarum to supply amino acids that are essential to L. plantarum (47). All 
the members of the queen microbiome can be isolated and cultivated in the laboratory, 
and future experiments could test if cross-feeding is behind the presence of these core 
bacteria in such an antimicrobial environment. It is also important to note that the 
royal jelly is produced, secreted, and offered to the queen by nurse bees, meaning 
the selection for these royal-jelly-resistant microbes is likely already occurring in the 
nurse bee hypopharyngeal glands. Moreover, it is conceivable that queens have different 
needs with regard to nutrition compared to workers, and thus they may require different 
nutritional symbionts. In fact, our functional analysis has shown that the microbiome of 
queens is equipped with genes involved in protein and carbohydrate metabolism (e.g., 
peptidases, lipid biosynthesis, fructose, and mannose metabolism; see Fig. 4; Fig. S3), 
likely supplementing primary components of the host’s diet.

With our metagenomic approach, we were able to show for the first time that 
Caudoviricetes, a class of tailed bacteriophages, are part of the queen gut microbial 
community (Table S5). Previous studies have shown that Caudoviricetes are the main 
phages in the microbiome of honey bee workers (21–23), but the lack of similarity in 
the gut bacterial community of these two female castes has left open the question 
about the phages present in the queen microbiome. In the worker’s gut, the main 
phage hosts are the core bacteria Bifidobacterium, Gilliamella, and Lactobacillus, and 
the non-core Bartonella (21–23). Among these hosts, Lactobacillus is the only genus 
that is also found in the queen microbiome and, interestingly, we show here it is the 
queen gut bacterium hosting the majority of phages (Fig. 5). Importantly, however, 
for many phages, the host prediction is difficult to impossible (21–23); here, 77% of 
the phage sequences did not have a host predicted. However, we indeed predicted 
CRISPR-Cas systems with spacers in the Bombella apis MAG, suggesting a history of 
infections by phages (List S1). Also, phage sequence distribution was consistent with the 
change in the microbiome due to environmental effects, and phages were also more 
abundant in the failing queens (Fig. 5; Table S7). This result points out that dysbiosis, 
usually detected via shifts in bacterial composition, can also be characterized by phage 
production and spread in the microbiome. We observed that some of the most abundant 
phage sequences in the queen microbiome are associated with a non-core bacterium, 
an Enterobacteriaceae, putting the native queen microbiome at risk. One of these most 
abundant phages is a temperate phage, based on the analysis of coverage compared to 
the host genome. If phages are induced or spread in the microbiome, they can not only 
directly kill their hosts but may also trigger immunological responses or even foster gene 
transfer between cells (48). The inherent complexity of a eusocial insect colony poses a 
challenge in investigations on the health of queens and, ultimately, of the colony (49). 
For future studies, a longitudinal approach could improve the resolution of the ecological 
interaction feedback between phages and bacteria over time and its impact on queen 
health or failure.

MATERIALS AND METHODS

Honey bee queen samples

Honey bee queens were sampled in 2018 from colonies located in Pennsylvania, USA, 
and in 2019 from colonies in British Columbia, Canada. The samples from both locations 
are part of previously published data sets (31, 32), in which the queens were classified 
according to their health status. Queens were scored as healthy when they showed no 
sign of supersedure cells, no drone brood in worker cells, no signs of disease, and had 
strong worker populations. Failing queens exhibited one or more of the following: drone 
brood in worker cells, spotty brood pattern, weak colony population, and supersedure 
cells. In addition to the health status, these samples have associated metadata that were 
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used for the analysis, including queen age, source, ovary mass and size, and manage­
ment strategy (Table S1). All samples were stored at −70°C until dissection and further 
use.

Sample processing and shotgun sequencing

All queens were dissected on ice with 70% ethanol sterilized tools by gently pulling on 
the last abdominal tergite. DNA extraction was performed by a microbiome analytics 
company, Microbiome Insights, using the Qiagen MagAttract PowerSoil DNA KF Kit 
optimized for the Thermo Scientific KingFisher robot. Quality and quantity of DNA were 
checked on an Agilent 2200 TapeStation, and a total of 18 samples with a DNA integrity 
number > 6 were submitted for library construction and metagenome sequencing at the 
biotechnology company SeqCenter, Pittsburgh, PA, USA. Libraries were prepared using 
the Illumina DNA Prep kit and IDT 10 bp UDI indices and sequenced on an Illumina 
NextSeq 2000, producing 2 × 151-bp reads. Demultiplexing, quality control, and adapter 
trimming were performed with bcl-convert (v3.9.3) from Illumina. Sequencing data can 
be found within the NCBI BioProject PRJNA1007366.

Bacteria and fungi community characterization

Paired-end raw sequencing reads were first trimmed by length and quality using 
Trimmomatic v.0.36, with options “LEADING:28 TRAILING:28 SLIDINGWINDOW:6:25 
MINLEN:75” (50). Bowtie2 v.2.4.2 was used to map trimmed individual sample reads to 
bacteria and fungi marker gene databases, using the options “--no-discordant --very-sen­
sitive” (51). The bacteria sequence database used was BEExact, a comprehensive 16S 
rRNA database of all bacteria taxa previously found associated with bees (52). The fungal 
sequence database used was SILVA 138.1 SSU, which contains 18S rRNA sequences 
(53). Samtools was used to transform mapping files and retrieve, with depth command, 
option “-a,” the coverage per base of the marker gene sequence (54). Coverage was 
summed for sequences from the same family or genus and normalized by the sequence 
length and library read depth (mean sequence coverage/normalization factor; Table S1).

Co-assembly and broad taxonomic assignment

Trimmed reads from all 18 samples were used in a co-assembly with MEGAHIT 
v.1.1.2 (55). Contigs > 500 nt were binned into metagenome-assembled genomes 
(see the section Metagenome-assembled bacteria genomes) and used for broad 
taxonomic classification of samples. We first classified bee contigs by mapping a 500 
nt random fragment of contigs with Bowtie2 v.2.4.2 against Apis mellifera genome, 
GCF_003254395.2_Amel_HAv3.1 (51). Contigs that did not map were used as queries 
in a BLASTx (56) against nr database from the NCBI, being classified according to the 
best hit taxonomy as bacteria, eukaryote/bee, virus, or unknown (Table S2). Contig 
coverage used for the following analyses was recovered by mapping trimmed individual 
sample reads back to all contigs with Bowtie2 v.2.4.2, using the options “--no-discordant 
--very-sensitive” (51). Samtools was used for file transformation, and the depth command 
with option “-a” was used to recover the coverage per base of the contigs (54). Mapping 
results were also used to plot the proportion of reads mapping to host or other taxa (Fig. 
S5).

Metagenome-assembled genomes

Contigs were grouped into bins with MetaBAT2 v.2.11.3 using default settings (57). 
CheckM v.1.1.6 was used to assess the quality of the resulting MAGs (58). Bacterial 
MAGs with >30% completeness and <5% contamination were included in the following 
analyses. To confirm that dereplication of MAGs is not necessary, which is expected for 
co-assemblies, we ran the “dereplicate” command from dRep v.3.4.2 (59). No MAGs were 
clustered beyond the threshold of >90% average nucleotide identity from the primary 
dendrogram of pair-wise Mash distances between all MAGs. Each MAG was subjected to 
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gene/protein prediction with Prokka v.1.14.6, using default options (60). In addition, we 
used CRISPRCasFinder with default parameters to identify CRISPR-Cas loci in contigs from 
all MAGs (61). CRISPR repeat spacers from all CRISPR arrays were extracted and added 
to a spacer database used for putative phage host discovery (see “Characterization of 
bacteriophages in the microbiome”; List S1).

Phylogenetic placement of MAGs and abundance

MAGs were placed into phylogenetic trees with related genomes for species-level 
taxonomic characterization. The best BLASTx results of the MAG contigs (see “Co-
assembly and broad taxonomic assignment”) guided the choice of species reference 
genomes to retrieve from NCBI and include in the phylogenetic analysis, in addition 
to outgroups. Single-copy orthologs were recovered with OrthoFinder v.2.5.4 (62), 
aligned with MAFFT v.7.520 (63), and then concatenated for IQTREE v.2.2.0.3 maximum 
likelihood analysis, options -m TEST -B 1000 (64). Figtree v.1.4.4 was used for tree 
visualization. To estimate and compare MAG abundance across samples, the mean 
coverage of single-copy orthologs was retrieved from previous mapping output (see 
“Co-assembly and broad taxonomic assignment”) with an in-house Perl script (https://
github.com/liliancaesarbio/general_scripts/) and normalized to the library read depth 
(mean sequence coverage/normalization factor; Table S1). The proportion of total reads 
mapping to each MAG was also recovered and made available in Table S8.

Microbiome functional characterization

All contigs classified taxonomically as bacteria, including MAG sequences, had pro­
teins predicted with Prokka using default settings (60). The mean coverage of each 
protein was retrieved from previous mapping (see “Co-assembly and broad taxo­
nomic assignment”) with an in-house Perl script (https://github.com/liliancaesarbio/gen­
eral_scripts/). Proteins were assigned for functionality at different levels of the KEGG 
database with EggNOG-mapper 2.1, using default parameters (65). Genes with >0.1× 
coverage were considered present. First, KEGG level B of description was retried for 
each KO ID, and categories with total samples sum of >700 coverage and 100 protein 
counts were considered. Gene counts for both KEGG level B and KEGG level C for each 
non-general function category were plotted with R v.3.6.3, using package pheatmap (66). 
To test for functional similarity between the samples, the heatmap was hierarchically 
clustered with hclust complete linkage method.

Characterization of bacteriophages in the microbiome

Sequences of bacteriophages were identified using three programs; geNomad was run 
with option “end-to-end” and a cutoff of >0.7 virus score (67), VirSorter2 v2.2.4 was run 
using options “--min-score 0.7 --hallmark-required-on-short” (68), and VIBRANT v1.2.1 
was run using the default settings (69). For this analysis, contigs > 500 nt, classified 
as bacteria, virus, or unknown, were used as input, enabling the identification of 
virulent or temperate phages. For contigs of bacteria, only proviruses (temperate phages) 
were considered, since the other detected phage sequences may represent horizontal 
gene transfer events. No viral bins were generated or dereplication needed due to 
the co-assembly approach (see Metagenome-assembled genomes”); also, no bins were 
recovered with vRhyme v1.1.0, using default settings (70). CheckV “end-to-end” was 
used to estimate completeness of the final list of viral operational taxonomic units 
(71), and only phage vOTUs with at least one non-host gene were retained for the 
following analyses. The mean coverage of vOTUs was recovered from the depth output 
files previously obtained (see “Co-assembly and broad taxonomic assignment”) using 
an in-house script (https://github.com/liliancaesarbio/general_scripts/). Coverage was 
estimated based only on the viral region of the contig since they are the result of a 
co-assembly, and in some samples that virus may not be present—as for the case of 
temperate phages. Candidate hosts were predicted with iPHoP v.1.3.1 (72), BLASTn with 
options “-evalue 1e-3 -ungapped -perc_identity 95” against NCBI nt database, CRISPR 
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spaces annotated from MAGs and also against the CrisprOpenDB (73). The last data­
base includes more than 9 billion spacers, as well as the ones annotated in previously 
published bee microbiome studies (21–23).

Queen genetic background

Trimmed reads from individual samples were mapped against Apis mellifera refer­
ence genome (GCF_003254395.2_Amel_HAv3.1) with Bowtie2 v.2.4.2, using the option 
“--no-discordant --very-sensitive” (51). Bam files were used to generate the beagle file of 
genotype likelihoods with ANGSD, options “-GL 2 -doGlf 2 -doMajorMinor 1 -SNP_pval 
1e-6 -doMaf 1” (74). Since microbiome metagenome sequencing does not aim at a great 
sequencing depth of the host genome, here we follow the recommended approach 
of using genotype likelihoods to circumvent the uncertainty of host genotypes due 
to low or medium host sequencing coverage (75). Genetic structure and individual 
queen ancestry proportions were analyzed with NGSadmix, option -minMaf 0.05, for 
clusters (K) ranging from 2 to 5 (76). Population structure was further investigated 
by partitioning the genetic variance using a principal component analysis based on 
genotype likelihoods using PCAngsd (77). The contribution of each principal component 
was calculated in R and plotted using ggplot2 (78). As an alternative approach, used 
later for correlation analysis with microbiome composition, we also estimated pairwise 
genetic distances directly, using genotype likelihoods, with ngsDist (79). The input file for 
ngsDist was prepared with ANGSD, options “-minMapQ 20 -minQ 20 -doCounts 1 -Gl 1 
-doMajorMinor 1 -doMaf 1 -SNP_pval 1e-6 -doGeno 8 -doPost 1.”

Statistical analysis

All graphs and analyses were run on R v.3.6.3 using the packages cited. We assessed 
beta diversity and clustering profiles for the 16S rRNA-based results with a PCoA 
ordination plot ran on Bray-Curtis dissimilarity matrices using package Ape (80), then 
plotted with ggplot2 (78). To test for the effects of geographic location (State and City), 
year, age, queen origin, management, health status, and fitness markers (ovary size 
and ovary mass) on the bacterial community composition, we ran PERMANOVA, 9,999 
permutations, with the function adonis2 from Vegan package (81). The effect of the 
same factors on the proportion of core microbiome members and Caudoviricetes was 
tested with t-test or Wilcoxon rank test and Kruskal-Wallis rank test in the case data were 
not normally distributed with Shapiro-Wilk normality test. All P-values were adjusted 
with the false discovery rate method. To test for the co-occurrence of phages and 
bacteria, we ran a Spearman correlation analysis with package Hmisc (82), plotted with 
packages corrplot (83) and PerformanceAnalytics (84). To test for the correlation between 
host genetic background and microbiome composition, we used the Mantel test from 
package Vegan (81), with Spearman correlation and 9,999 permutations. The input 
matrices were the queen genotype likelihood covariance matrix or the queen pairwise 
genetic distance (see “Queen genetic background”) and the Bray-Curtis dissimilarity of 
the gut microbiome composition at the family or genus level.
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