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The membrane-associated ubiquitin ligase MARCHF8 stabilizes 
the human papillomavirus oncoprotein E7 by degrading CUL1 
and UBE2L3 in head and neck cancer
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ABSTRACT The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived 
protein required for HPV-driven cancer development and maintenance. E7 is degraded 
through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating 
enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most 
HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 
protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-
associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 
upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck 
cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein 
by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box 
ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in 
HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the 
CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to 
and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances 
the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and 
UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor 
growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degrada­
tion of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 
and UBE2L3 proteins.

IMPORTANCE Since human papillomavirus (HPV) oncoprotein E7 is essential for virus 
replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. 
However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by 
proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 
(CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential 
role in E7 ubiquitination and degradation. Here, we show that the membrane ubiqui­
tin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 
E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degrada­
tion through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, 
decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer 
cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and 
suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 
protein levels in the host cell by inducing MARCHF8, which may be critical for cell 
proliferation and tumorigenesis.
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H uman papillomaviruses (HPVs) are non-enveloped DNA viruses that infect skin 
keratinocytes (1). The high-risk HPV genotypes such as HPV16 and HPV18 are 

causally associated with over 95% of cervical cancers, 25% of head and neck cancers 
(HNC), and most anogenital cancers (2, 3). High-risk HPV E6 and E7 interact with 
various cellular proteins to modulate almost all oncogenic mechanisms defined as cancer 
hallmarks (4). Thus, HPV-driven cancers are addicted to E6 and E7 expression, and their 
survival requires sustaining high E7 expression (5–7).

HPV16 E6 and E7 facilitate the ubiquitination and degradation of various host 
proteins by interacting with E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases 
(8–12). While E6 degrades p53 through E6AP, E7 degrades host proteins such as pocket 
proteins (pRb, p107, and p130) and the tyrosine-protein phosphatase non-receptor type 
14 (PTPN14) through the cullin-RING E3 ubiquitin ligase complex (13–16). On the other 
hand, the HPV16 E7 protein is also degraded through ubiquitination by the S-phase 
kinase-associated protein (SKP)-Cullin-F box (SCF) ubiquitin ligase complex containing 
ubiquitin-conjugating enzyme E2 L3 (UBE2L3, also called UBCH7), cullin 1 (CUL1), and 
S-phase kinase-associated protein 2 (SKP2) (17). The SCF ubiquitin ligase complex 
ubiquitinates many cell cycle regulatory proteins, such as E2F1, p27, origin recognition 
complex subunit 1, and cyclin D1 (18–21). UBE2L3 interacts with various E3 ligases 
containing HECT (homologous of E6AP C-terminus) or RING (Really Interesting New 
Gene) finger domains (22, 23). Following SCF-mediated ubiquitination, E7 is degraded via 
the 26S proteasome (17, 24). Despite the efficient degradation mechanism in host cells, 
HPV-positive (HPV+) cancer cells maintain high levels of E7 proteins. Previous studies 
have shown that the E7 protein is stabilized by various mechanisms, such as deubiquiti­
nation (25) and phosphorylation (26). However, little is known about how the E7 protein 
overcomes its degradation by the SCF ubiquitin ligase complex-mediated ubiquitination 
in HPV+ cancer cells.

A recent study showed that membrane-associated ring-CH-type finger 8 (MARCHF8) 
knockdown in esophageal squamous cell carcinoma cells increases the levels of CUL1 
and UBE2L3 proteins (27). MARCHF8 is a member of the MARCHF family of E3 ubiquitin 
ligases, which ubiquitinates diverse immune receptors, such as major histocompatibility 
complexes (MHC-I and MHC-II) (28, 29) and interleukin-1 (IL-1) receptor accessory protein 
(IL1RAP) (30). We have recently revealed that MARCHF8 is significantly upregulated 
in HPV+ HNC cells and inhibits apoptosis by ubiquitinating and degrading the death 
receptors from the tumor necrosis factor (TNF) receptor superfamily, Fas cell surface 
death receptor (FAS), and TNF-related apoptosis-inducing ligand receptors 1 and 2 
(TRAIL-R1 and TRAIL-R2) (31).

Here, we show that MARCHF8 binds to and ubiquitinates CUL1 and UBE2L3 proteins 
in HPV+ HNC cells. Furthermore, knockdown or knockout of MARCHF8 in HPV+ HNC cells 
significantly increased CUL1 and UBE2L3 protein levels, decreasing the levels of HPV16 
E7 protein. Conversely, overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases 
HPV16 E7 protein levels and suppresses tumor growth in vivo. These findings suggest 
that HPV-induced MARCHF8 stabilizes HPV16 E7 proteins to maintain the high levels of 
E7 in HPV+ HNC cells.

RESULTS

CUL1 and UBE2L3 overexpression increases the ubiquitination and decreases 
the HPV16 E7 protein levels in HPV+ HNC cells

HPV E7 was previously shown to be ubiquitinated and degraded by CUL1 and UBE2L3 
in cervical cancer cells (17) (Fig. 1A). Hence, to examine if CUL1 and UBE2L3 enhance 
ubiquitination and degradation of HPV16 E7 protein in the HPV+ HNC cells, we 
generated SCC152 and SCC2 cells overexpressing CUL1 or UBE2L3 using lentiviral 
transduction and blasticidin selection. Western blotting showed that CUL1 or UBE2L3 
overexpression significantly decreased HPV16 E7 protein levels in SCC152 (Fig. 1B and 
C) and SCC2 (Fig. 1D and E) cells. These results confirm that CUL1 and UBE2L3 reduce 
HPV16 E7 protein levels. Interestingly, CUL1 overexpression increased UBE2L3 protein 
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levels in SCC152 and SCC2, and UBE2L3 overexpression increased CUL1 protein levels in 
the two cell lines. Next, to determine if CUL1 and UBE2L3 overexpression enhances the 
ubiquitination of HPV16 E7 proteins, we pulled down ubiquitinated proteins in whole 

FIG 1 CUL1 and UBE2L3 overexpression increases the ubiquitination and decreases HPV16 E7 protein level in HPV+ HNC cells. (A) The schematic model 

of HPV16 E7 degradation through CUL1- and UBE2L3-mediated ubiquitination. Figure generated with a Biorender icon. CUL1 or UBE2L3 is overexpressed in 

HPV+ HNC (SCC152) (B–C) and SCC2 (D–E) cells using lentiviral transduction. CUL1, UBE2L3, HPV16 E7, and MARCHF8 proteins were detected by western 

blotting. The relative band intensities were quantified using NIH ImageJ in SCC152 (C) and SCC2 (E). β-Actin was used as an internal control. (F) SCC152 cells 

with CUL1 or UBE2L3 overexpression were treated with MG132 (10 µM). Ubiquitinated proteins were pulled down from the cell lysate using anti-ubiquitin 

antibody-conjugated magnetic beads, and HPV16 E7 protein was detected by western blotting. The data shown are means ± SD of three independent 

experiments. Student’s t-test was used to determine P-values. *P < 0.05, **P < 0.01, ***P < 0.001.
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cell lysates from the proteasome inhibitor MG132-treated SCC152 cells overexpressing 
CUL1 or UBE2L3 using anti-ubiquitin antibody-conjugated magnetic beads. The results 
showed that ubiquitination levels of E7 (Fig. 1F) were increased by CUL1 and UBE2L3 
overexpression in SCC152 cells despite the significantly lower levels of input E7 proteins 
compared to SCC152 cells with vector. These results suggest that CUL1 and UBE2L3 
enhance HPV16 E7 ubiquitination and degradation.

CUL1 and UBE2L3 expression is downregulated in HPV+ HNC cells

To determine if HPV alters the endogenous CUL1 and UBE2L3 expression, we measured 
CUL1 and UBE2L3 protein levels in HPV+ HNC cells (SCC2, SCC90, and SCC152) compared 
to HPV- HNC cells (SCC1, SCC9, and SCC19) and normal keratinocytes (N/Tert-1) by 
western blotting. The results showed that CUL1 and UBE2L3 protein levels are signifi­
cantly lower in HPV+ HNC cells compared to HPV− HNC cells and normal keratinocytes 
(Fig. 2A and B). To examine if CUL1 and UBE2L3 expression is transcriptionally regulated 
in HPV+ HNC cells, we measured CUL1 and UBE2L3 mRNA levels in HPV+ and HPV− 
HNC cells along with N/Tert-1 cells by reverse transcription-quantitative PCR (RT-qPCR). 
Our results showed that CUL1 mRNA expression was not significantly changed in SCC90 
and SCC152 cells but upregulated in SCC2 cells compared to N/Tert-1 cells (Fig. 2C). 
On the other hand, UBE2L3 mRNA expression was significantly upregulated in all HPV+ 
HNC cells but downregulated in all HPV− HNC cells compared to N/Tert-1 cells (Fig. 2C). 
Additionally, our patient data from the previous study (2) revealed that CUL1 and UBE2L3 
mRNA levels are consistently increased in HPV+ HNC patients compared to normal 
samples, while HPV− HNC patients also showed upregulation of CUL1 and UBE2L3 mRNA 
(Fig. 2D). These results suggest that the low CUL1 and UBE2L3 protein levels in HPV+ 
HNC cells are not caused by transcriptional regulation. However, another data set from 
TCGA indicates a possible decrease in CUL1 mRNA expression (THInCR.ca); it cannot be 
completely ruled out that CUL1 is also transcriptionally regulated.

To determine if proteasome-dependent protein degradation causes the low CUL1 and 
UBE2L3 protein levels in HPV+ HNC cells, CUL1 and UBE2L3 protein levels were measured 
in MG132-treated SCC152 cells. The results showed that MG132 treatment increased the 
CUL1 and UBE2L3 protein levels in SCC152 cells (Fig. 2E and F). These results suggest that 
the proteasome-dependent degradation of CUL1 and UBE2L3 proteins is enhanced in 
HPV+ HNC cells. Surprisingly, the HPV16 E7 protein level was not increased by MG132 
treatment in the SCC152 cells (Fig. 2E and F). As shown in Fig. 1F, the overexpression of 
CUL1 and UBE2L3 enhanced the ubiquitination of the HPV16 E7 protein. Thus, this may 
be due to the significantly increased CUL1 and UBE2L3 proteins by MG132, which 
enhance HPV16 E7 ubiquitination, compensating for proteasome inhibition. Additionally, 
the ubiquitinated forms of HPV16 E7 have higher molecular weights and slower electro­
phoretic mobility than the unmodified HPV16 E7, resulting in not being detected by 
western blotting.

Next, to assess if the HPV16 oncoproteins E6 and/or E7 are responsible for the low 
CUL1 and UBE2L3 protein levels, we measured CUL1 and UBE2L3 protein levels in N/
Tert-1 cells expressing HPV16 E6 (N/Tert-1 E6), E7 (N/Tert-1 E7), and E6E7 (N/Tert-1 E6E7) 
compared to control N/Tert-1 cells containing an empty vector (N/Tert-1 vector) by 
western blotting. The E7 protein (Fig. 2G and H) and HPV16 E6 and E7 mRNA levels (Fig. 
2I) in these N/Tert-1 cells were verified by western blotting and RT-qPCR, respectively. 
The results showed that the protein levels of both CUL1 and UBE2L3 were significantly 
decreased in HPV16 E6, HPV16 E7, and HPV16 E6E7 cells compared to N/Tert-1 vector 
cells (Fig. 2G and H). These results suggest that either E6 or E7 expression is sufficient for 
decreasing CUL1 and UBE2L3 protein levels in normal keratinocytes.

MARCHF8 knockdown increases the CUL1 and UBE2L3 protein levels and 
decreases the HPV16 E7 protein level in HPV+ HNC cells

The E3 ubiquitin ligase MARCHF8 ubiquitinates several cellular proteins for degradation. 
By analyzing proteomics data from a previous study in esophageal squamous cell 
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FIG 2 CUL1 and UBE2L3 protein levels are low in HPV+ HNC cells. CUL1 and UBE2L3 protein levels in normal (N/Tert-1), HPV- HNC (SCC1, SCC9, and SCC19), 

and HPV+ HNC (SCC2, SCC90, and SCC152) cells were determined by western blotting (A). Relative band intensities were quantified using NIH ImageJ (B). HPV16 

E7 and β-actin were used as viral and internal controls, respectively. CUL1 and UBE2L3 mRNA expression levels in normal (N/Tert-1), HPV+ HNC (SCC2, SCC90, 

and SCC152), and HPV− HNC (SCC1, SCC9, and SCC19) cells were quantified by RT-qPCR (C). The data shown are normalized by the glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) mRNA level as an internal control. The mRNA expression levels of CUL1 and UBE2L3 were analyzed using our previous gene expression 

data (GSE6791) (2) and shown as fluorescence intensity (log2) from microdissected human tissue samples from HPV+ (n = 16) and HPV− (n = 26) HNC patients 

and normal individuals (n = 12) (D). CUL1, UBE2L3, and E7 protein levels in SCC152 cells treated with MG132 (10 µM) or dimethyl sulfoxide (DMSO) (E). Relative 

band intensities were quantified using NIH ImageJ (F). CUL1 and UBE2L3 proteins were detected in N/Tert-1 cells expressing HPV16 E6, E7, or E6 and E7 by 

western blotting (G). The size of HPV16 E7 in N/Tert-1 E7 cells is about 22 kDa due to HA tagging, while the size of native HPV16 E7 in N/Tert-1 E6E7 cells is about 

17 kDa. Relative band intensities were quantified using NIH ImageJ (H). Total RNA was extracted from N/Tert-1 containing an empty vector and N/Tert-1 cells 

expressing HPV16 E6, E7, or E6 and E7 (E6E7). The HPV16 E6 and E7 mRNA levels were quantified by RT-qPCR (I). The data shown are normalized by the GAPDH 

mRNA level as an internal control. All experiments were repeated at least three times, and the data shown are means ± SD of three independent experiments. 

Student’s t-test determined P-values. *P < 0.05, **P < 0.01, ***P < 0.001.
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carcinoma (27), we found that the CUL1 and UBE2L3 proteins are among the cellular 
proteins increased by the MARCHF8 knockdown. Thus, we hypothesized that MARCHF8 
plays an essential role in maintaining high HPV16 E7 protein levels in HPV+ HNC cells by 
degrading CUL1 and UBE2L3 proteins. To test the hypothesis, we knocked down 
MARCHF8 expression in two HPV+ HNC cells, SCC152 and SCC2, using multiple shRNAs 
against MARCHF8 (shR-MARCHF8) delivered by lentiviral transduction. All SCC152 (Fig. 
3A and C) and SCC2 (Fig. 3B and D) cell lines with shR-MARCHF8 showed at least a 50% 
decrease in MARCHF8 protein levels compared to the cells with scrambled shRNA (shR-
scr). As hypothesized, western blotting showed that CUL1 and UBE2L3 protein levels are 
significantly increased by MARCHF8 knockdown (Fig. 3A through D). Interestingly, HPV16 
E7 protein levels are dramatically decreased by MARCHF8 knockdown, showing an 
inverse correlation with the CUL1 and UBE2L3 protein levels (Fig. 3A through D). The 
decreased HPV16 E7 protein levels are also validated by the significant increase in pRb 
protein levels by MARCHF8 knockdown (Fig. 3A through D). To test if MARCHF8 knock­
down affects mRNA expression of CUL1 and UBE2L3, we measured mRNA levels of CUL1 
and UBE2L3 in SCC152 and SCC2 cells with MARCHF8 knockdown by RT-qPCR. The 
results showed a significant decrease in CUL1 and UBE2L3 mRNA levels by MARCHF8 
knockdown in SCC152 cells (Fig. 3E) but not in SCC2 cells (Fig. 3F). These results indicate 
that the increase of the CUL1 and UBE2L3 protein levels by MARCHF8 knockdown in 
HPV+ HNC cells is independent of CUL1 and UBE2L3 mRNA expression. We also observed 
a slight decrease in HPV16 E7 mRNA levels by MARCHF8 knockdown (Fig. 3E and F). 
However, as the E7 mRNA levels are still high despite the MARCHF8 knockdown, it is 
unlikely that the slight decrease of E7 mRNA levels entirely causes the considerable 
reduction of the HPV16 E7 protein levels by the MARCHF8 knockdown. Thus, our findings 
suggest that HPV-induced MARCHF8 is responsible for the low CUL1 and UBE2L3 and 
high HPV16 E7 protein levels in HPV+ HNC cells.

MARCHF8 interacts with and ubiquitinates CUL1 and UBE2L3 proteins in 
HPV+ HNC cells

As MARCHF8 knockdown increased CUL1 and UBE2L3 protein levels (Fig. 3A and B), we 
hypothesized that HPV-induced MARCHF8 ubiquitinates CUL1 and UBE2L3 proteins for 
proteasomal degradation. First, to determine if MARCHF8 binds to CUL1 and UBE2L3, we 
pulled down MARCHF8 protein in whole cell lysates from SCC152 cells treated with 
MG132 using anti-MARCHF8 antibody-conjugated magnetic beads. We detected CUL1 
and UBE2L3 proteins by western blotting. The results showed that CUL1 and UBE2L3 
proteins were co-immunoprecipitated with MARCHF8 protein (Fig. 4A). In contrast, 
HPV16 E7 protein was not co-immunoprecipitated with MARCHF8 protein (Fig. 4A), 
indicating that HPV16 E7 may not be a direct target of MARCHF8. Reciprocally, we pulled 
down CUL1 or UBE2L3 proteins in the same whole cell lysates from MG132-treated 
SCC152 cells using anti-CUL1 or anti-UBE2L3 antibodies, respectively and found that 
MARCHF8 protein is co-immunoprecipitated with CUL1 and UBE2L3 proteins (Fig. 4B and 
C). These results suggest that the MARCHF8 protein interacts with CUL1 and UBE2L3 but 
not the HPV16 E7 protein.

Next, to determine if MARCHF8 ubiquitinates CUL1 and UBE2L3 proteins, we pulled 
down ubiquitinated proteins in whole cell lysates from MG132-treated SCC152 cells 
using anti-ubiquitin antibody-conjugated magnetic beads. The results showed that 
ubiquitinated forms of CUL1 (Fig. 4D) and UBE2L3 (Fig. 4E) proteins were decreased in 
SCC152 cells with MARCHF8 knockdown despite the significantly higher levels of total 
input CUL1 and UBE2L3 proteins compared to SCC152 cells with shR-scr (Fig. 4D and E). 
These results suggest that the decrease of CUL1 and UBE2L3 protein levels in HPV+ HNC 
cells is likely mediated by MARCHF8-driven ubiquitination and protein degradation. To 
determine if the ubiquitination of HPV16 E7 protein is increased by MARCHF8 knock­
down, we detected HPV16 E7 protein from the same pulldowns of ubiquitinated 
proteins. We found that the levels of ubiquitinated HPV16 E7 protein were dramatically 
increased by MARCHF8 knockdown, showing an inverse correlation with the 
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FIG 3 Knockdown of MARCHF8 expression increases CUL1 and UBE2L3 protein levels and decreases HPV16 E7 protein levels in HPV+ HNC cells. SCC152 (A and 

C) and SCC2 (B and D) cells were transduced with five and three lentiviral shR-MARCHF8, respectively, or shR-scr as a control. MARCHF8, CUL1, UBE2L3, HPV16 

E7, and pRb proteins in SCC152 (A) and SCC2 (B) cells were detected by western blotting. The relative band intensities were quantified using NIH ImageJ (C 

and D). β-Actin was used as an internal control. The mRNA levels of CUL1, UBE2L3, and HPV16 E7 were quantified by RT-qPCR in SCC152 (E) and SCC2 (F) cells 

transduced with five and three lentiviral shR-MARCHF8, respectively, or shR-scr as a control. The data shown are normalized by the GAPDH mRNA level as an 

internal control. The data shown are means ± SD of three independent experiments. Student’s t-test determined P-values. *P < 0.05, **P < 0.01, ***P < 0.001.
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ubiquitination levels of CUL1 and UBE2L3 proteins (Fig. 4F). Together, these results 
suggest that MARCHF8 binds to and ubiquitinates CUL1 and UBE2L3 to prevent ubiquiti­
nation of HPV16 E7.

MARCHF8 knockdown suppresses HPV+ HNC cell proliferation

It is well known that the oncoprotein E7 promotes cell cycle progression and prolifera­
tion of HPV-infected cells (32, 33). Thus, we tested if the decrease of HPV16 E7 protein 
levels by MARCHF8 knockdown inhibits the proliferation of SCC152 and SCC2 cells 
by counting cell numbers over time. The results showed that MARCHF8 knockdown 
significantly decreases the cell numbers of SCC152 (Fig. 5A) and SCC2 (Fig. 5B) cells 
compared to the corresponding control cells with shR-scr. In addition, to determine 
if MARCHF8 knockdown inhibits the cell cycle progression of HPV+ HNC cells, we 
stained SCC152 and SCC2 cells with bromodeoxyuridine (BrdU) and the Zombie NIR 
for measuring de novo DNA synthesis and cell viability, respectively, and analyzed labeled 
cells by flow cytometry. The results showed that BrdU incorporation in SCC152 and SCC2 
cells is significantly decreased by MARCHF8 knockdown (Fig. 5C and D). These results 
suggest that MARCHF8 knockdown decreases the proliferation of HPV+ HNC cells, likely 
due to the reduction of HPV16 E7 protein levels.

FIG 4 MARCHF8 protein interacts with and ubiquitinates CUL1 and UBE2L3 proteins. MARCHF8 (A), CUL1 (B), and UBE2L3 (C) were pulled down from the lysate 

of SCC-152 cells treated with MG132 (10 µM) using anti-MARCHF8 (A), anti-CUL1 (B), and anti-UBE2L3 (C) antibodies, respectively. CUL1, UBE2L3, HPV16 E7, and 

MARCHF8 were detected from the immunoprecipitated proteins by western blotting. (D–F) Ubiquitinated proteins were pulled down from the lysate of SCC152 

cells with shR-scr or shRNA against MARCHF8 (shR-MARCHF8 clone 3) treated with MG132 (10 µM) using anti-ubiquitin antibody-conjugated magnetic beads. 

CUL1 (D), UBE2L3 (E), and HPV16 E7 (F) proteins were detected in the immunoprecipitated proteins by western blotting. All experiments were repeated at least 

three times. The data shown are means ± SD of three independent experiments. Student’s t-test determined P-values. *P < 0.05, **P < 0.01, ***P < 0.001.
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Marchf8 knockout in HPV+ mouse oral cancer cells restores CUL1 and UBE2L3 
protein levels and decreases HPV16 E7 protein levels

To investigate if the degradation of HPV16 E7 protein by CUL1 and UBE2L3 inhibits tumor 
growth, we utilized a C57BL/6J (B6) mouse oral epithelial (MOE) cell line expressing 
HPV16 E6/E7 and Hras (mEERL) which forms tumors in immunocompetent syngeneic B6 
mice (34). First, the protein levels of MARCHF8, CUL1, and UBE2L3 in mEERL cells were 
determined by comparing them to normal immortalized MOE cells (NiMOE) and mouse 
HPV− MOE cells transformed with Hras and shR-Ptpn14 (MOE/shPtpn14). Consistent with 
those from human HNC cells, the results showed significantly higher MARCHF8 and lower 
CUL1 and UBE2L3 protein levels in mEERL cells compared to NiMOE cells and HPV− MOE 
cells (Fig. 6A and B). These results suggest that mEERL cells recapitulate our findings from 

FIG 5 Knockdown of MARCHF8 expression suppresses proliferation of HPV+ HNC cells. Cell proliferation rate was determined 

by cell counting using two HPV+ HNC cell lines, SCC152 (A) and SCC2 (B), with shR-scr or three shR-MARCHF8. 1 × 105 cells 

per well were seeded in a six-well plate. The cells were detached and counted at 24, 48, and 72 hours. BrdU incorporation 

assays were performed with SCC152 (shR-MARCHF8 clones 1 and 5) (C) and SCC2 (shR-MARCHF8 clones 4 and 5) (D) cells 

with MARCHF8 knockdown. 1 × 106 cells were seeded in 10 cm Petri dishes and incubated for 16 hours with BrdU (10 mM). 

BrdU incorporation was analyzed by flow cytometry. Cell viability was determined by Zombie NIR staining as a control. All 

experiments were repeated at least three times, and the data shown are means ± SD. Student’s t-test determined P-values. 

***P < 0.001.
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human HPV+ HNC cells, showing that HPV-induced MARCHF8 degrades the CUL1 and 
UBE2L3 proteins. Although there is a significant increase in MARCHF8 protein in HPV− 
MOE compared to NiMOE cells, the CUL1 and UBE2L3 protein levels are not reduced (Fig. 
6A and B). This result suggests that MARCHF8 requires an additional factor(s), expressed 
in HPV+ HNC cells but not in HPV− HNC cells, for CUL1 and UBE2L3 ubiquitination and 
degradation.

Next, to determine if high MARCHF8 protein levels in mEERL cells are responsible for 
the low CUL1 and UBE2L3 protein levels, we measured CUL1 and UBE2L3 protein levels in 
Marchf8 knockout mEERL cell lines (mEERL/Marchf8-/-) previously established using 
CRISPR/Cas9 (31). Western blotting confirmed that mEERL/Marchf8-/- cells have signifi­
cantly increased CUL1 and UBE2L3 protein levels and decreased HPV16 E7 protein levels 
compared to mEERL cells with the scrambled control sgRNA (mEERL/scr) (Fig. 6C and D). 
These results are consistent with human HPV+ HNC cells presented in Fig. 3, suggesting 
that HPV-induced increase of MARCHF8 in HPV+ HNC cells stabilizes HPV16 E7 protein by 
degrading CUL1 and UBE2L3.

Cul1 and Ube2l3 overexpression in HPV+ mouse oral cancer cells delays 
tumor growth in vivo

To determine whether Cul1 and Ube2l3 overexpression suppresses HPV+ HNC tumor 
growth, we generated mEERL cells overexpressing Cul1 (mEERL/Cul1) or Ube2l3 (mEERL/
Ube2l3) using lentiviruses and blasticidin selection. Consistent with the results from 
human HPV+ HNC cells (Fig. 1B through E), Cul1 or Ube2l3 overexpression decreased the 
HPV16 E7 protein level in mEERL cells (Fig. 7A and B). Next, ten C57BL/6J mice were 
subcutaneously injected with 5 × 105 of either mEERL/Cul1, mEERL/Ube2l3, or mEERL/scr 
cells. The results show that all 10 mice injected with mEERL/vector cells vigorously grew 
tumors (Fig. 7C and F) and succumbed to tumor burden within ~7 weeks post-injection 
(Fig. 7G). In contrast, the mice injected with mEERL/Cul1 or mEERL/Ube2l3 cells displayed 
delayed tumor formation and death by tumor burden (Fig. 7D and G). Our results suggest 
that Cul1 or Ube2l3 overexpression results in HPV16 E7 protein degradation and tumor 
suppression.

DISCUSSION

The HPV oncoprotein E7 is essential for virus replication (35), and its continuous expres­
sion at high levels is required for HPV-associated cancer progression and maintenance (5, 
6, 36, 37). HPV16 E7 interacts with several E3 ubiquitin ligases to facilitate carcinogenesis. 
It is well understood that E7 induces the proteasomal degradation of various tumor 
suppressors, such as pRb and mediator of cell motility 1, by interacting with the CUL2 
ubiquitin ligase complex (13, 16, 38, 39). In contrast, E7 also stabilizes host proteins such 
as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3A), a 
hypoxia-inducible factor (HIF-1a), p53, and p21 (12, 40–42). The dual functions of E7 in 
host protein degradation suggest intertwined interactions between E7 and various 
ubiquitin ligases in host cells.

Despite its essential role in cancer progression and maintenance, the E7 protein can 
be efficiently ubiquitinated and degraded by host factors. E7 protein has a relatively 
short half-life of less than 1 hour (43, 44). Mechanistically, the SCF (Skp-Cullin-F box) 
ubiquitin ligase complex containing CUL1 and UBE2L3 mediates E7 ubiquitination and 
degradation (17). Although HPV16 E7 contains two lysine residues in positions 60 and 97 
(44), the 11 amino acids at the N-terminal residues are essential for ubiquitination and 
degradation (44). Substituting the two lysines K60 and K97 to arginine in the E7 protein 
did not abrogate its ubiquitination. In contrast, deleting the N-terminal 11 amino acids 
prevented E7 ubiquitination and stabilized HPV16 E7 proteins (44). Mechanistically, the 
free N-terminal residue of E7 is first linearly ubiquitinated, and then other ubiquitin 
groups are attached to the internal lysine of the first ubiquitin moiety at the N-terminal 
residue (44). The lysine-independent ubiquitination of E7 proteins is similar to the 
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mechanism by which MyoD (45) and Epstein Barr virus latent membrane protein 1 (46) is 
ubiquitinated (44).

To maintain the high E7 levels in HPV+ cancer cells, E7 proteins are stabilized through 
several mechanisms, such as deubiquitination and phosphorylation (25, 26). First, E7 
binds to several ubiquitin­specific proteases (USPs) that remove ubiquitin from ubiquiti­
nated proteins (47). Previous studies have shown that USP7 and USP11 deubiquitinate 
and stabilize E7 proteins (25, 48). In addition, dual­specificity tyrosine phosphorylation-
regulated kinase 1A phosphorylates HPV16 E7 and prolongs the E7 protein half-life by 
hindering ubiquitinated E7 binding to proteasomes (26). E7 proteins are also stabilized 
by an E6^E7 fusion protein from an E6^E7 splice isoform that encodes 41 N-terminal 
amino acids of E6 and 38 C-terminal amino acids of E7 (49). The E6^E7 fusion protein 
binds to and stabilizes both E6 and E7 proteins in the presence of GRP78 and HSP90 (49). 
A recent study has also shown that E6AP overexpression stabilizes E7 protein in a 
proteasome-dependent manner (50). While these previous reports suggest that E7 
protein can be stabilized through various mechanisms, it is still unknown how E7 protein 
overcomes its degradation mediated by the SCF ubiquitin ligase complex containing 
CUL1 and UBE2L3. Our findings reveal a novel mechanism of E7 protein stabilization by 
degrading CUL1 and UBE2L3, the important components of the SCF ubiquitin ligase 
complex.

The SCF ubiquitin ligase complex is characterized by a substrate recognition factor for 
connecting the substrate to the E3 ubiquitin ligase complex. The adaptor is a limiting 
factor for the targeted process and substrates. The SCF ubiquitin ligase complex has a 
central role in cell cycle regulation. Deregulated cell cycle control is a hallmark of cancer. 
The F box protein adaptor targets negative cell cycle regulators, such as cyclins (A, D, and 
E) (51), p21 (18), p27 (19), and p57 (52), for ubiquitination and degradation (53). Hence, it 
promotes cell cycle progression during S and G2 phases (53). Several studies have shown 

FIG 6 Marchf8 knockout restores CUL1 and UBE2L3 protein levels in HPV+ mouse oral cancer cells. CUL1 and UBE2L3 protein levels in mouse normal 

immortalized (NiMOE), HPV− transformed (HPV− MOE), and HPV+ transformed (mEERL) oral epithelial cells were determined by western blotting (A). β-actin was 

used as an internal control. The relative band intensities were quantified using NIH ImageJ (B). mEERL cells were transduced with lentiviruses containing Cas9 

and one of two sgRNAs against Marchf8 (sgR-Marchf8-2 and sgR-Marchf8-3) or scrambled sgRNA (sgR-scr). MARCHF8, CUL1, UBE2L3, and HPV16 E7 proteins 

were detected by western blotting (C). Relative band intensities were quantified using NIH ImageJ (D). The data shown are means ± SD of three independent 

experiments. All experiments were repeated at least three times, and the data shown are means ± SD. Student’s t-test determined P-values. *P < 0.05, ***P < 

0.001.
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that CUL1 is upregulated in many cancers and is associated with poor patient prognosis 
in various cancers, including gastric, breast, renal cell carcinoma, colorectal, and hepato­
cellular carcinoma (54–58). Additionally, CUL1 augments cancer cell proliferation, 
adhesion, migration, and metastasis (54–59). On the other hand, the SCF ubiquitin ligase 
complex binds to RNA-binding proteins of the fragile X protein family FMRP, FXR1, and 
FXR2 in HPV-negative HNC cells (60). The SCF ubiquitin ligase complex binding to these 
RNA-binding proteins led to their degradation and suppressed tumorigenesis (60). 
Additionally, our results show that CUL1 overexpression in HPV+ HNC cells hinders cell 
proliferation and delays tumor growth in vivo.

Ubiquitination and degradation of p53 by E6 and E6AP are hallmarks of HPV-associ­
ated cancer progression. UBE2L3, an E2 conjugating enzyme, is essential in the E6AP 
E3 ubiquitin ligase complex for ubiquitinating p53 (61). However, UBE2L3 upregulation 

FIG 7 CUL1 and UBE2L3 overexpression suppresses HPV+ HNC tumor growth in vivo. mEERL cells overexpressing Cul1 or Ube2l3 were generated by lentiviral 

transduction of the Cul1 or Ube2l3 genes, respectively, and blasticidin selection. CUL1, UBE2L3, and HPV16 E7 proteins were detected by western blotting 

(A). Relative band intensities were quantified using NIH ImageJ (B). β-actin was used as an internal control. The data shown are means ± SD of three independent 

experiments. Student’s t-test determined P-values. *P < 0.05, **P < 0.01, ***P < 0.001. mEERL/vector (C), mEERL/Cul1 (D), or mEERL/Ube2l3 (E) cells were injected 

into the rear right flank of C57BL/6J mice (n = 10 per group). Tumor volume was measured twice a week (C–F). Survival rates of mice were analyzed using a 

Kaplan-Meier estimator (G). The time to event was determined for each group, with the event defined as a tumor size larger than 2,000 mm3. The data shown 

are means ± SD. P-values of mice injected with mEERL/Cul1 and mEERL/Ube2l3 cells compared with mice injected with mEERL/vector cells were determined for 

tumor growth (F) and survival (G) by two-way analysis of variance. Shown are representative of two independent experiments.
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by AhR activation in HeLa cells inhibits cell proliferation and enhances apoptosis (62, 
63). This result may be caused by E7 degradation as UBE2L3 and CUL1 ubiquitinate and 
degrade E7 proteins in cervical cancer cells (17). In contrast, UBE2L3, associated with the 
SCF ubiquitin ligase complex, promotes non-small cell lung cancer by ubiquitinating and 
degrading p27kip1 and glycogen synthase kinase 3β (GSK-3β) (64, 65). Thus, CUL1 and 
UBE2L3 might have double-edged functions for tumor promotion in lung cancer while 
suppressing HPV+ cancers through E7 degradation.

We report here that MARCHF8 plays a vital role in HPV16 E7 protein stabilization 
in HPV+ HNC cells by degrading CUL1 and UBE2L3 (Fig. 8). As E7 is required for 
viral replication, this finding suggests that MARCHF8 contributes to HPV infection and 
persistence. Likewise, recent studies have shown that MARCHF8 supports infection of 
several human viruses, including HCV, dengue, and Zika (66). Particularly, MARCHF8 
induces the polyubiquitination of the HCV nonstructural2 protein that mediates binding 
to ESCRT0 and assembling viral envelope (67, 68). Additionally, MARCHF8 facilitates HIV 
infection by ubiquitinating and degrading tetherin independent of Vpu (69). In contrast, 
MARCHF8 is also known as an antiviral restriction factor (66). MARCHF8 targets several 
viral envelope glycoproteins to inhibit infections of HIV, vesicular stomatitis virus, rabies 
virus, lymphocytic choriomeningitis virus, severe acute respiratory syndrome coronavi­
rus (SARS-CoV), chikungunya virus, and Ross River virus (70–72). Moreover, MARCHF8 
also restricts influenza A virus infectivity by inhibiting the incorporation of the virus 
glycoproteins into the progeny virions (73) and targeting the M2 protein for ubiquitin-
dependent degradation (74). These findings suggest that MARCHF8 plays a dual role in 
virus infection as a proviral and antiviral factor.

As E7 is required for HPV replication and carcinogenesis, destabilizing E7 proteins by 
targeting MARCHF8 may effectively prevent and treat HPV-associated cancers. Addition­
ally, we have recently shown that MARCHF8 ubiquitinates and degrades death recep­
tors to impede apoptosis of HPV+ HNC cells and that MARCHF8 knockout significantly 
suppresses tumor growth in vivo (31). Taken together, our findings suggest MARCHF8 as 
a potential therapeutic target for HPV+ HNC. Figure generated using Biorender icons.

FIG 8 The schematic model of MARCHF8-mediated HPV16 E7 stabilization by degrading CUL1 and 

UBE2L3. The HPV16 oncoprotein E6 activates the MARCHF8 promoter activity through the MYC/MAX 

transcription factor complex and upregulates MARCHF8 in the HPV+ HNC cells (31). MARCHF8 protein 

ubiquitinates and degrades CUL1 and UBE2L3 proteins, leading to the prevention of HPV16 E7 protein 

degradation.
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MATERIALS AND METHODS

Cell lines

293FT cells were obtained from Thermo Fisher (Waltham, MA). HPV+ HNC (SCC2, SCC90, 
and SCC152) and HPV− HNC (SCC1, SCC9, and SCC19) cells were purchased from 
the American Type Culture Collection (Manassas, VA). These cells were maintained in 
Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS) 
and penicillin/streptomycin (Thermo Fisher) as described (12, 75–77). The N/Tert-1 cell 
(78) expressing HPV16 E6 (N/Tert-1-E6), E7 (N/Tert-1-E7), and E6 and E7 (N/Tert-1-E6E7) 
were previously established (79, 80) and cultured in keratinocyte serum-free medium 
containing epidermal growth factor (EGF), bovine pituitary extract, and penicillin/strep­
tomycin (Thermo Fisher). The MOE cell lines, NiMOE, mEERL (HPV+), and MOE/shPtpn13 
(HPV−), were obtained from John Lee (34) and maintained in E-medium (DMEM and 
F12 media containing 0.005% hydrocortisone, 0.05% transferrin, 0.05% insulin, 0.0014% 
triiodothyronine, 0.005% EGF, and 2% FBS) as previously described (81).

Lentivirus constructs and production

The human CUL1 and UBE2L3 coding sequences were amplified from pcDNA-HA-UBE2L3 
(Addgene, #27561) and pcDNA-myc3-CUL1 (Addgene, #19896), respectively, and cloned 
into the pLenti6/V5-D-TOPO backbone (Addgene, #22945). The mouse Cul1 and Ube2l3 
coding sequences were amplified from cDNA prepared from NiMOE cells and cloned 
into the pLenti6/V5-D-TOPO backbone (Addgene, #22945). The primer sequences used 
in amplifying human and mouse CUL1 and UBE2L3 coding sequences are listed in 
Table 1. The shRNAs targeting human MARCHF8 were ordered from Sigma-Aldrich (St. 
Louis, MO). The sgRNAs targeting Marchf8 were designed using the web-based software 
ChopChop (chopchop.cbu.uib.no) (82) and cloned into the lentiCRISPR v2-blast plasmid 
(Addgene, #83480) using ligating duplex oligonucleotides containing BsmBI restriction 
sites purchased from Integrated DNA Technologies (IDT, Coralville, IA). The shRNAs and 
sgRNAs used are listed in Tables 2 and 3. Lentiviruses containing human and mouse 
CUL1, UBE2L3, and shRNA or sgRNA against MARCHF8 were produced using 293FT 
cells with packaging constructs, pCMV-VSV-G (Addgene, #8454) and pCMV-Delta R8.2 
(Addgene, #12263). The lentiviruses were harvested 48 hours post-transfection and 
concentrated by ultracentrifugation at 25,000 rpm for 2 hours. In addition, cells were 
incubated with lentiviruses for 48 hours in the presence of polybrene (8 µg/mL) and 
selected with blasticidin (8 µg/mL).

TABLE 1 List of the oligonucleotidesa

Name Sequence Experiment

Human GAPDH Fwd 5´-GGAGCGAGATCCCTCCAAAAT-3´ RT-qPCR
Human GAPDH Rev 5´-GGCTGTTGTCATACTTCTCATGG-3´ RT-qPCR
Human UBE2L3 Fwd 5´-CAACTTTCCAGCAGAGTACCC-3´ RT-qPCR
Human UBE2L3 Rev 5´-TGCCCCTTTTCGTCGATGTTT-3´ RT-qPCR
Human Cullin1 Fwd 5´-AGCCATTGAAAAGTGTGGAGAA-3´ RT-qPCR
Human Cullin1 Rev 5´-GCGTCATTGTTGAATGCAGACA-3´ RT-qPCR
HPV16 E7 Fwd 5´-GTGACAGCTCAGAGGAGGAGGATG-3´ RT-qPCR
HPV16 E7 Rev 5´-ACGCACAACCGAAGCGTAGAGTCA-3´ RT-qPCR
Human UBE2L3 Fwd 5´-CACGTGGGATCCATGGATATCTATCCAT-3´ Cloning
Human UBE2L3 Rev 5´-CACGTGACCGGTTTAGTCCACAGGTCGC-3´ Cloning
Human Cullin1 Fwd 5´-CACGTGGGATCCATGGAATTCAGGATCCCCATG-3´ Cloning
Human Cullin1 Rev 5´-CACGTGACCGGTTTAAGCCAAGTAACTG-3´ Cloning
Mouse Ube2l3 Fwd 5´-TCTAGAGGATCCAATGGCGGCCAGCAGG-3´ Cloning
Mouse Ube2l3 Rev 5´-TTACTAACCGGTACGTTAGTCCACAGG-3´ Cloning
Mouse Cullin1 Fwd 5´-TCTAGAGGATCCAATGTCATCAAACAGG-3´ Cloning
Mouse Cullin1 Rev 5´-TACTAACCGGTACGTTAAGCCAAGTAAC-3´ Cloning
aFwd, forward primer; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Rev, reverse primer.

Full-Length Text Journal of Virology

February 2024  Volume 98  Issue 2 10.1128/jvi.01726-2314

http://chopchop.cbu.uib.no
https://doi.org/10.1128/jvi.01726-23


BrdU staining

1 × 106 SCC152 and SCC2 MARCHF8 knockdown and scrambled cells were seeded per 
10 cm2 Petri dish in DMEM supplemented with 10% FBS and penicillin/streptomycin. 
Cells were incubated with a medium containing 10 mM BrdU for 16 hours. Cells were 
trypsinized and stained using a BrdU staining kit (Thermo Fisher) according to the 
manufacturer’s instructions. Cell viability was determined by staining cells using the 
Zombie NIR kit (BioLegend). Stained cells were analyzed using an LSRII flow cytometer.

Immunoprecipitation (IP) and western blotting

Whole-cell lysates were prepared in 1× radioimmunoprecipitation assay buffer (Abcam, 
Waltham, MA) containing protease inhibitor cocktail (Roche, Mannheim, Germany) 
according to the manufacturer’s instructions. The protein concentration was measured 
by the Pierce BCA Protein Assay Kit (Thermo Fisher). IP was performed using the Pierce 
Classic Magnetic IP/Co-IP Kit (Thermo Fisher). Briefly, 25 µL of protein A/G magnetic 
beads were incubated with 5 µg of specific antibodies (Table 4) for 2 hours. One to 
two milligrams of the whole cell lysates were incubated with antibody-coupled beads 
overnight at 4°C. In addition, 10 μg–20 μg of protein was used to perform western 
blotting with antibodies listed in Table 4 as previously described (83). NIH ImageJ 
software was used to determine band intensities and normalized to the β-actin band 
intensity.

RT-qPCR

RNeasy Plus Mini Kit (Qiagen, Germantown, MD) was used to extract total RNA. First-
strand cDNA was synthesized from 2 µg of total RNA using Superscript II reverse 
transcriptase (Roche, Mannheim, Germany). qPCR was performed in a 20 µL reaction 
mixture containing 10 µL of SYBR Green Master Mix (Applied Biosystems), 5 µL of 1 mM 
primers, and 100 ng of cDNA template using a Bio-Rad CFT Connect thermocycler. 
Data were normalized to glyceraldehyde 3-phosphate dehydrogenase. IDT synthesized 
primers used in qPCR can be found in Table 1.

Mice and tumor growth

C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor, ME) and main­
tained by the USDA guidelines. 5 × 105 mEERL cells were subcutaneously injected 

TABLE 2 List of the shRNAs

Name Sigma-Aldrich TRC clone ID Sequence

Human MARCHF8 shRNA1 TRCN0000073233 5´-CTTGAGCTGAATGAGAGAATA-3´
Human MARCHF8 shRNA2 TRCN0000073234 5´-CCACTAACAGAGCCCAACTTT-3´
Human MARCHF8 shRNA3 TRCN0000073235 5´-CAGTGTAAAGTGTATGTGCAA-3´
Human MARCHF8 shRNA4 TRCN0000073236 5´-CTGGTCCTTGTATGTGCTCAT-3´
Human MARCHF8 shRNA5 TRCN0000073237 5´-CCTCCTTCTCTCGCACTTCTA-3´

TABLE 3 List of the sgRNAsa,b

Name Sequence

Mouse Marchf8 sgRNA1 Fwd 5´-CACCGAGGTGAGTATATGGGCCGTGAGG-3´
Mouse Marchf8 sgRNA1 Rev 5´-AAACCCTCACGGCCCATATACTCACCT-3´
Mouse Marchf8 sgRNA2 Fwd 5´-CACCGTATTAACGTCTGACCATGTGAGG-3´
Mouse Marchf8 sgRNA2 Rev 5´-AAACCCTCACATGGTCAGACGTTAATA-3´
Mouse Marchf8 sgRNA3 Fwd 5´-CACCGACTACCAGCTTCGTCCAGAAAGG-3´
Mouse Marchf8 sgRNA3 Rev 5´-AAACCCTTTCTGGACGAAGCTGGTAGT-3´
aFwd, forward oligo; Rev, reverse oligo.
bThe bolded letters indicate the sgRNA sequence, while the unbolded letters indicate the overhang sequence.
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into the rear right flank of 6- to 8-week-old mice (n = 10 per group). Tumor volume 
was measured twice weekly and calculated using the equation: volume = (width2 × 
length) / 2. Mice were euthanized when tumor volume reached 2,000 mm3, as previously 
described (84). Animals were determined as tumor-free when no measurable tumor was 
observed 12 weeks post-injection. Survival curves were generated by the Kaplan-Meier 
method with a tumor volume of 2,000 mm3 as an endpoint.

Statistical analysis

Data were analyzed using GraphPad Prism (San Diego, CA) and were presented as 
mean ± standard deviation. Statistical significance was determined using an unpaired 
Student’s t-test. P-values <0.05 are considered statistically significant. Distributions of 
time-to-event outcomes (e.g., survival time) were summarized with Kaplan-Meier curves 
and compared across groups using the log-rank test with α = 0.01.
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