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Abstract

Internet addiction symptomatology (IAS) is characterized by persistent and involuntary patterns of compulsive Internet use, leading 
to significant impairments in both physical and mental well-being. Here, a connectome-based predictive modeling approach was 
applied to decode IAS from whole-brain resting-state functional connectivity in healthy population. The findings showed that IAS 
could be predicted by the functional connectivity between prefrontal cortex with the cerebellum and limbic lobe and connections of 
the occipital lobe with the limbic lobe and insula lobe. The identified edges associated with IAS exhibit generalizability in predicting 
IAS within an independent sample. Furthermore, we found that the unique contributing network, which predicted IAS in contrast 
to the prediction networks of alcohol use disorder symptomatology (the range of symptoms and behaviors associated with alcohol 
use disorder), prominently comprised connections involving the occipital lobe and other lobes. The current data-driven approach 
provides the first evidence of the predictive brain features of IAS based on the organization of intrinsic brain networks, thus advancing 
our understanding of the neurobiological basis of Internet addiction disorder (IAD) susceptibility, and may have implications for the 
timely intervention of people potentially at risk of IAD.
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Introduction
In the last few decades, the Internet has become an indispensable 
part of human life. On the one hand, the Internet has brought 
convenience to human life and efficient work; while on the other 
hand, due to the increased dependence on the Internet, there is a 
consequent risk of addictive behavior (Chou et al., 2005; Alimoradi 
et al., 2019). Internet addiction symptomatology (IAS) refers to an 
individual’s loss of control over Internet use, leading to serious 
negative consequences, such as psychological problems, tense 
human relationships, sleeplessness and suicidal impulse (Akin 
and İSkender, 2011; Chi et al., 2019). Further insight into the 
neurocognitive underpinnings of IAS could provide information 
facilitating the prevention and treatment of Internet addiction 
disorder (IAD).

Recent neuroscientific research has demonstrated poten-
tial associations between IA and the functional and structural 
changes in the brain networks of affected individuals, which are 
critical for emotion regulation, inhibitory control and reward pro-
cessing (Choi, 2017; Sharifat et al., 2018; Patil et al., 2021). For 

instance, those with IAS exhibited decreased activity and altered 
resting-state functional connectivity (rsFC) of several areas in the 
cognitive control network, such as the dorsolateral prefrontal cor-
tex (DLPFC) and the anterior cingulate cortex (ACC) (Li et al., 2015; 
Dieter et al., 2017; Wang et al., 2017), both of which are function-
ally associated with inhibitory control and emotion processing (Li 
et al., 2015; Patil et al., 2021). Furthermore, similar results have 
been found in structural studies, and a decreased gray matter vol-
ume in the DLPFC and ACC was observed in IAS, which possibly 
accounted for the reduced inhibitory control (Solly et al., 2022). 
Moreover, impaired inhibitory control is believed to be responsible 
for the development and maintenance of IAS (Dong et al., 2012a; 
Choi et al., 2014). At the large-scale network level, IAS is associated 
with imbalanced interactions among the default mode network, 
fronto-parietal network and salience network (Wang et al., 2017). 
In addition, an activity change in the reward system (e.g. the stria-
tum) is an important feature of addictive behaviors (including 
IAS) (Koob and Le Moal, 2008; Dong et al., 2011; Koob and Volkow, 
2016). Taken together, previous neuroimaging evidence indicates 
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that IAS has an effect on the distribution networks at the sys-
tem level of the brain, not just on isolated regions. Meanwhile, 
previous studies have mostly focused on individuals who met 
the diagnostic criteria for IAS, also known as IAD, and the results 
were produced by comparing patients with IAD and healthy con-
trol groups (Patil et al., 2021). Excessive use of the Internet can 
increase the propensity for IAS and the risk of developing IAD. 
Individuals with a heightened susceptibility to IAS may serve as 
a transitional group between healthy adults and individuals who 
have progressed to full-blown addiction. Clearly, healthy individ-
uals who score higher on the IAS test may be more susceptible to 
IAD (Li et al., 2015); therefore, it is of great importance to investi-
gate the neural mechanisms underlying individual differences in 
healthy subjects with a predisposition to IAS.

Recently, connectome-based predictive modeling (CPM) has 
emerged to link brain features and individual behavior (Shen et al., 
2017). CPM is a novel data-driven method for constructing predic-
tive models of individual behavior from functional connectivity 
during the resting state, allowing for a more accurate detection 
of individual variability (Shen et al., 2017). Previous studies have 
confirmed that this approach can be successfully used to pre-
dict individual personality traits and functional cognition (Yoo 
et al., 2018; Ren et al., 2021; Horien et al., 2022; Anderson and 
Barbey, 2023). In addition, CPM generally implements a built-in 
cross-validation procedure that includes estimating the model 
with training samples and testing the performance of the model 
with novel subjects. Therefore, predictive models enable the pre-
diction of specific psychological behaviors, thus contributing to 
clinical practice and the need for physicians to make individu-
alized assessments of symptom severity in order to find more 
targeted treatment options (Feng et al., 2019). Furthermore, pre-
dictive models have greater practical value than the commonly 
used group statistical methods because all available brain fea-
tures are integrated into the predictive model with whole-brain 
analyses, in a way that contributes to enhanced statistical power 
and avoids multiple comparisons (Feng et al., 2018).

In light of the existing body of research, this study employed 
the CPM approach to investigate the neural predictive model 
for IAS. To ensure the specificity of the observed relationships 
between rsFC and IAS, several variables were controlled during 
the feature selection and model evaluation stages. A significant 
risk factor for addictive behaviors, namely negative emotion, was 
controlled based on prior findings (Santangelo et al., 2022). Addi-
tionally, gender, age and head motion parameters [mean frame-
wise displacement (FD)] were included as control variables in 
our predictions, considering their documented associations with 
functional connectivity (Feng et al., 2018). Furthermore, to identify 
unique prediction networks specific to IAS, we aimed to assess the 
divergence between the sets of functional connections associated 
with IAS and alcohol use disorder symptomatology (AUDS, the 
range of symptoms and behaviors associated with alcohol use dis-
order). This comparative analysis sought to determine the degree 
to which the network of functional connections related to IAS dif-
fers from that of AUDS. In this way, we can also determine whether 
the CPM model can similarly predict tendencies toward a different 
addiction.

Material and methods
Participants
Two samples of participants were recruited for the present 
study. Both samples were recruited from Southwest University 
in Chongqing, China, and both completed the survey measures 

described below and underwent rsfMRI. It is important to note 
that all participants were right-handed, mentally healthy individ-
uals with no history of mental illness. Written informed consent 
was obtained from each participant and they were compensated 
for their participation. The study protocol was approved by the 
Institutional Review Board of the Southwest University Brain 
Imaging Center.

Dataset 1 was obtained from a large sample dataset called 
the Gene Brain Behavior project (GBB). The project-related recruit-
ment information and data presentations have been reported pre-
viously (Chen et al., 2019). A total of 689 participants from the GBB 
project were assessed for IAS and underwent resting-state scans. 
Of those who completed the IAS test, 512 participants completed 
state anxiety assessment, 671 participants completed depres-
sion assessment, 458 participants completed perceived stress 
assessment, 330 participants completed positive affect and nega-
tive affect assessment and 248 participants completed loneliness 
assessment. The missing values of behavior were supplemented 
by the random forest method. After the exclusion of subjects 
with excessive head movement (mean FD power > 0.3) during 
resting-state functional magnetic resonance imaging (fMRI), 677 
participants were included in the subsequent analysis (mean age: 
19.94 ± 7.13 years old; range: 16–25 years old; 191 males and 486 
females).

To validate the predictive performance of the functional con-
nectome on IAS, the Dataset 2 called the Southwest University 
Longitudinal Imaging Multimodal Project (SLIM) was used (Liu 
et al., 2017). A total of 115 participants completed resting-state 
scans and IAS measures (mean age: 21.89 ± 0.93 years old; range: 
19–24 years old; 49 males and 66 females).

The AUDS data also come from SLIM. A total of 206 partic-
ipants completed resting-state scans and AUDS measures, and 
excluded 1 participant with excessive head movement (mean FD 
power > 0.3). 205 participants were included in the subsequent 
analysis (mean age: 21.95 ± 1.01 years old; range: 19–25 years old; 
89 males and 116 females). Of those who completed the AUDS 
test, 196 participants completed state anxiety assessment, 196 
participants completed depression assessment, 199 participants 
completed perceived stress assessment, 196 participants com-
pleted positive affect and negative affect assessment and 199 
participants completed loneliness assessment.

Assessment of IAS
IAS was assessed using the Internet Addiction Tendency Scale 
in GBB, which was developed based on the definition that IAS is 
a type of psychological dependence on Internet use, including 
Internet-based relationship addiction, Internet-based entertain-
ment addiction and Internet-based information collection addic-
tion. The scale consists of 47 items and each item is scored 
on a 4-point Likert scale ranging from 1 (strongly disagree) to 4 
(strongly agree). The higher scores on the scale indicate higher 
levels of IAS. The internal reliability of the scale in the original 
study was 0.87 (Chen and Huang, 2007).

IAS was assessed using the Internet Addiction Test (IAT) in 
SLIM. The IAT is a 20-item questionnaire that explores an individ-
ual’s Internet usage habits, their attitudes towards the Internet 
and the impact of Internet use on various aspects of their lives, 
such as compulsive use, withdrawal symptoms and related prob-
lems at school, work and sleep (Young, 2018). The validity and 
reliability of the IAT as a tool for assessing IAS have been con-
firmed (Widyanto et al., 2011). Each item in the questionnaire 
allows for a scaled selection ranging from 1 (‘not at all’) to 5 
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(‘always’), and higher total scores indicate a greater inclination 
towards addictive Internet usage. Individuals with higher IAT 
scores may be at a heightened risk of developing IAD.

Negative emotion assessment
The negative emotion assessment included five questionnaires:

The Beck Depression Inventory (BDI)
The BDI is employed to assess the degree of depression among par-
ticipants. This inventory consists of 21 questions that individuals 
respond to based on their experiences over the past week. Each 
question offers four answer options, arranged in a manner that 
reflects increasing severity of depressive symptoms (Beck, 1979).

The State Anxiety Inventory
The State Anxiety Inventory (SAI), developed by Spielberger in 
1983, was utilized to evaluate the levels of individual’s anxious 
feelings (Spielberger, 2012). This inventory consists of 20 items, 
including sample statements such as ‘I am nervous’, ‘I feel upset’ 
and ‘I feel scared’. Participants were instructed to rate each item 
on a 4-point scale, reflecting the frequency of these feelings in 
general, ranging from ‘Almost Never’ to ‘Almost Always’. Higher 
scores on the inventory indicate elevated levels of anxiety.

Perceived stress
The Perceived Stress Scale (PSS) was utilized to evaluate the par-
ticipants’ level of perceived stress in their daily life (Cohen et al., 
1983). The PSS consisted of 10 self-assessment items, each rated 
on a 5-point Likert scale ranging from 0 to 4. The sum of these 
items yielded a stress scale score ranging from 0 to 40 points. 
A higher score on the stress scale indicated a higher level of 
perceived stress experienced by each individual in their daily life.

Positive and Negative Affect Scale
The Positive and Negative Affect Scale (PANAS) is a self-report 
questionnaire comprising 10 items to assess positive affect and 
another 10 items to measure negative affect (Watson et al., 1988). 
Each item is rated on a 5-point scale, ranging from 1 (not at all) to 
5 (very much). For the purposes of this study, we focused solely on 
the total score of negative affect, referred to as PANAS_NA_Score.

University of California, Los Angeles Loneliness Scale
The University of California, Los Angeles (UCLA) Loneliness Scale 
(LS) is a self-report questionnaire consisting of 20 items, devel-
oped by Russell (Russell et al., 1980). Its purpose is to assess an 
individual’s subjective experience of loneliness and social isola-
tion. Participants rate each statement on a 4-point Likert scale 
ranging from 1 (never) to 4 (often), indicating the frequency with 
which they relate to each statement. Higher scores on the scale 
indicate higher levels of loneliness, while lower scores indicate 
lower levels of loneliness.

Considering the multidimensional construct of negative emo-
tion, the principal component method was used for exploratory 
factor analysis. The results showed that there was only one fac-
tor with an eigenroot greater than 1 (characteristic root = 2.87), 
and the total interpretation rate of variance was 72.12%. The 
factor loading of each index was as follows: state anxiety, 0.78; 
depression, 0.636; perceived stress, 0.786; negative affect, 0.818; 
and loneliness, 0.756. The results demonstrate that the five 
subindexes can be combined into one principal component, 
which is the comprehensive index of negative emotion. The com-

prehensive index of negative emotion was the sum of the products 
of the standard scores of the five subindexes and their corre-
sponding factor loading.

Assessment of AUDS
AUDS was evaluated using the Michigan Alcoholism Screening 
Test (MAST) (Selzer, 1971). The MAST is a comprehensive and 
standardized assessment tool specifically designed to measure 
the severity of alcohol dependence. It consists of 25 questions, 
each requiring a yes or no response. Each item is assigned a score 
of either 0, 1, 2 or 5 points, resulting in a total score ranging from 
0 to 53. The total score is derived by summing the scores of all 
individual items. In this way, the MAST provides a reliable and 
quantifiable measure of alcohol dependence.

MRI data acquisition
Functional and structural data were obtained using a Siemens 3 T 
Trio scanner (Siemens Medical Systems, Erlangen, Germany) at 
the Brain Imaging Center of Southwest University.

Resting-state fMRI data were obtained using a Gradient Echo-
type Echo Planar Imaging (GRE-EPI) sequence: repetition time 
(TR) = 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90

∘
, 

field of view (FOV) = 220 × 220 mm2, slices = 32, thickness = 3 mm, 
interslice gap = 1 mm and voxel size = 3.4 × 3.4 × 4 mm3. High-
resolution, three-dimensional T1-weighted structural images 
were obtained using a magnetization prepared rapid acquisition 
gradient-echo (MPRAGE) sequence: TR = 1900 ms, TE = 2.52 ms, 
FA = 9

∘
, slices = 176, FOV = 256 × 256 mm2, thickness = 1 mm, and 

voxel size = 1 × 1 × 1 mm3.

Preprocessing of MRI data
The resting-state fMRI data were preprocessed using the data 
processing assistant for resting-state fMRI software (http://www.
restfmri.net/forum/DPARSF) (Yan and Zang, 2010). First, it takes 
time for the gradient field to stabilize and for the subject to adapt 
when he or she enters the MRI machine; thus, functional images 
were excluded from the first 10 time points and the remaining 
232 images were included in the image analysis. Next, the usual 
preprocessing procedures, including correction of the slice timing, 
realignment, spatial normalization to the Montreal Neurologi-
cal Institute (MNI) template and resampling, were carried out. 
Additionally, nuisance variables, including the global mean sig-
nal, white matter, cerebrospinal fluid and 24 motion parameters 
for head movement, were regressed out to the effect of the sub-
ject’s head movements and other brain tissue signals. All images 
were spatially normalized to the MNI template and resampled 
into 3 mm cubic voxels, followed by spatial smoothing with a 
full-width at half maximum of the Gaussian kernel of 4 mm. 
Finally, the smoothed data were filtered using a band-pass fil-
ter (0.01–0.1 Hz) to reduce the effect of physiological noise due to 
respiration and heartbeat.

rsFC feature extraction
In the current study (Figure 1), network nodes were defined by 
using a functional brain atlas that includes 268 nodes all over the 
brain, including the cerebellum and brainstem (Shen et al., 2010). 
The atlas was derived from a graph theory-based parcellation 
algorithm, which maximized the similarity of the voxelwise time 
series within each node. Compared to the nodes defined by the 
automatic anatomic labeling atlas, the 268-node atlas comprises 
nodes with a more coherent time series (Shen et al., 2013).

http://www.restfmri.net/forum/DPARSF
http://www.restfmri.net/forum/DPARSF
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Fig. 1. The schematic flow of the prediction method using patterns of resting-state brain connectivity.

To construct the whole-brain rsFC matrices, the Graph Theo-
retical Network Analysis (GRETNA) toolbox was used to compute 
the time course of each node by averaging the blood oxygen level-
dependent signal of all of its constituent voxels at each time point 
(Wang et al., 2015). The network edges were defined as the correla-
tions (Pearson’s r) between time courses of each pair of nodes (i.e. 
functional connectivity between each pair of nodes). Fisher’s r-to-
z transformation was then conducted to improve the normality 
of the correlation coefficients, resulting in a 268 × 268 symmetric 
connectivity matrix that represented the set of edges/connections 
in each participant’s resting-state connectivity profile.

Connectome-based predictive modeling
After extracting the rsFC characteristics, the CPM approach 
was used to construct the neural predictive models for IAS. To 
evaluate the prediction performance, the leave-one-out cross-
validation (LOOCV) method was employed, which allowed exam-
ining whether the rsFC strength can predict IAS for each individ-
ual. In each LOOCV iteration, data from n − 1 participants (the 
training set) were used to build a predictive model, which was 
then used to predict the scores of the remaining participants 
(the testing set). For the training dataset, the IAS scores and the 
edges in the connectivity matrix were normalized. Next, Pear-
son’s correlation coefficients between the IAS scores and each 
edge in the rsFC matrix were calculated. The edges that were sig-
nificantly correlated with the IAS scores (P < 0.01) were selected 
and divided into positive (i.e. positively related to the IAS scores) 
or negative (i.e. negatively related to the IAS scores) networks 
(Rosenberg et al., 2016). The rsFC strength was then calculated 
by summing all selected edges in a positive or negative network. 
Finally, linear regression models that fit positive and negative rela-
tionships between the IAS scores and rsFC strength, respectively, 
were estimated. During the testing procedure, each participant’s 
positive and negative network strengths were normalized using 
the parameters acquired during the training procedure, and then 

the trained models were used to predict the participant’s IAS score 
in the testing set.

After LOOCV, the performance of the predictive models was 
evaluated by Pearson’s correlation coefficient (r) between the 
actual IAS scores and the predicted IAS scores for the posi-
tive and negative models, respectively. Permutation tests were 
used to evaluate the significance of the positive and negative 
predictive models. In each iterations, IAS scores were assigned 
randomly to different subjects as a way to shuffle the true 
brain-behavior mapping. Then, the same procedure for esti-
mating the predictive models was applied to compute the r-
values between the actual and predicted rating scores. The 
null hypothesis distributions of the r-values for the positive 
and negative models formed after completing 1000 permuta-
tions were determined. The P-value was the proportion of the 
permutation-generated r-values greater than the true predictive 
r-values. The significance level of the permutation test was set
at 0.05.

Control analyses
To ensure the specificity of the observed associations between 
rsFC and IAS, several variables were controlled for in this study. 
First, considering that negative emotion has been identified as a 
significant risk factor for addictive behaviors (Santangelo et al., 
2022), we included negative emotion as a control variable. Addi-
tionally, gender, age and mean FD were controlled for, as these 
factors have also been found to be related to functional connec-
tivity (Feng et al., 2018). In these analyses, new predictive networks 
were constructed by employing those edges whose partial Pear-
son correlation with IAS scores while controlling for confounding 
variables passed the P < 0.01 threshold (see also Shen et al., 2017). 
The performance of the prediction model was assessed using 
the partial Pearson correlation coefficient (r) between actual IAS 
scores and predicted IAS scores after controlling for confounding
variables.
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Contributing network in the prediction of IAS 
scores
Each LOOCV iteration selected a slightly different edge in the 
rsFC matrix. To characterize the neural substrates of the con-
tributing network, the network was defined as the set of edges 
that were present in every iteration of the LOOCV described ear-
lier. Afterwards, the 268 nodes were grouped into 10 macroscale 
brain regions, including the prefrontal cortex (46 nodes), motor 
lobe (21 nodes), insular lobe (7 nodes), parietal lobe (27 nodes), 
temporal lobe (39 nodes), occipital lobe (25 nodes), limbic lobe 
(36 nodes), cerebellum (41 nodes), subcortical lobe (17 nodes) 
and brainstem (9 nodes) (Shen et al., 2010). The number of edges 
between each pair of macroscale regions was then calculated. In 
addition, to generate a simple interpretation of the importance 
of each node within the contributing network, the node strength 
was calculated (He et al., 2021). The node strength is the sum of 
the weights of links connected to a node and is a commonly used 
metric to weigh the importance of each node in the contributing
network.

Validation analysis with different 
cross-validation schemes
The main results were further validated with a 10-fold cross-
validation. All of the participants were divided into 10 subsets, 
nine subsets of which served as the training set (90% of partici-
pants) and the remaining subset served as the testing set (10% of 
participants). The training set was normalized and used to train a 
linear predictive model, which then was used to predict the scores 
of the normalized testing data. The parameters acquired from the 
training data were used to normalize the testing data. This pro-
cedure was repeated 10 times so that each subset was used as 
the testing set once. Finally, the r-values between the true and 
predicted scores were calculated across all participants. Since the 
entire dataset was randomly divided into 10 subsets, the predic-
tion performance might depend on the division of data. To address 
this issue, the 10-fold cross-validation was repeated 100 times 
and the results were averaged to produce a final prediction per-
formance. A 1000 times permutation test was then applied to test 
the significance of the prediction performance.

External generalizability
We examined the external predictive efficacy of the IAS-related 
edges identified in the discovery sample by assessing their signif-
icance in predicting IAS within an independent validation sam-
ple of 115 participants (Dataset 2). The evaluation of results 
across different samples provides a robust method to determine 
the generalizability of CPM-based findings (Shen et al., 2017). To 
accomplish this, we calculated the summed negative IAS net-
work strengths for each participant in the validation sample. 
These strengths were obtained by aggregating the relevant edges 
identified through the CPM process in Dataset 1. Subsequently, 
these network strengths were inputted into regression models to 
generate predicted IAS values, similar to the approach used in 
Dataset 1. The regression model parameters (slopes and inter-
cepts) employed to generate predicted IAS values in Dataset 2 
were derived from leave-one-out iterations performed on Dataset 
1 to generate predicted IAS values for each subject left out. In 
Dataset 1, a total of 677 iterations of each model type were 
executed to generate predicted IAS values for a distinct left-out 
subject within that sample. The average of these model parame-
ters was utilized to construct the regression models for predicting 
IAS values in Dataset 2.

Table 1. The descriptive statistics of behavioral measurements in 
Dataset 1

Outcomes N Mean SD Range

Cronbach’s 
alpha 
coefficients

IAS 677 101.07 20.41 46–167 0.86
Depression 671 6.93 6.35 0–40 0.86
State anxiety 512 40.39 9.30 20–72 0.92
Perceived stress 458 17.07 4.72 0–33 0.75
Negative affect 330 19.57 5.72 10–46 0.87
Loneliness 248 41.76 7.48 21–62 0.86

To evaluate the effectiveness of these predictions, similar to 
Dataset 1, we established a correlation between the predicted IAS 
scores and the observed IAS scores. If the predicted IAS scores, 
generated solely using information from Dataset 1, exhibit a sig-
nificant relationship with the observed IAS scores in the external 
validation dataset, it would offer robust evidence supporting the 
generalizability of our findings.

Comparing the sets of functional connections 
related to IAS to those related to AUDS
Finally, to identify unique prediction networks specific to IAS, 
we set out to assess the extent to which the set of func-
tional connections related to IAS different from the set of 
functional connections related to AUDS. To do this, we con-
structed the neural predictive models of AUDS, comparing the 
sets of functional connections related to IAS to those related
to AUDS.

Results
Behavioral performance
Table 1 describes the descriptive statistics of behavioral mea-
surements in Dataset 1. For details on Dataset 2, please see 
Supplementary Table S1. 

Prediction analysis using cross-validation
Based on the construction of the positive and negative predictive 
models related to IAS, it was found that the brain features (i.e. 
rsFC) in the negative network could successfully be used to predict 
the IAS scores in the independent subjects (correlation between 
the actual and predicted scores: r = 0.202, Pperm = 0.001, permu-
tation test, Figure 2). What is inconsistent with our hypothesis 
is that the functional connectivity in the positive network could 
not reliably the predict IAS scores (correlation between the actual 
and predicted scores: r = − 0.06, P > 0.05). After controlling for 
head motion, age, gender, negative emotion scores, negative net-
works still significantly predicted IAS scores (correlation between 
the actual and predicted scores: rpartial = 0.122, Pperm = 0.035,
Figure 2).

Contributing networks in the prediction of IAS 
scores
In all iterations of LOOCV, the number of predictive model edges 
varied from 392 to 478, with 127 edges appearing in each iteration 
defined as the contributing network after controlling for con-
founding variables (head motion, age, gender, negative emotion 
scores). Based on the macroscale regions, the contributing net-
work that predicted the IAS scores primarily included connections 
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Fig. 2. The performance of the predictive model. (A) The correlation between the actual and predicted IAS scores. (B) The permutation distribution of 
the correlation coefficient (r) for the prediction analysis. (C) The correlation between the actual and predicted IAS scores after controlling for head 
motion, age, gender and negative emotion scores. (D) The permutation distribution of the correlation coefficient (r) for the prediction analysis after 
controlling for head motion, age, gender and negative emotion scores.

Fig. 3. Functional connections predicting IAS scores after controlling for head motion, age, gender and negative emotion scores. The left graph shows 
the connections within and between each macroscale regions. The right graph depicts the connections plotted as number of edges within and 
between each pair of macroscale regions. PFC, prefrontal cortex; Mot, motor lobe; Ins, insular lobe; Par, parietal lobe; Tem, temporal lobe; Occ, occipital 
lobe; Lim, limbic lobe; Cer, cerebellum; Sub, subcortical lobe; Bsm, brainstem.

of the prefrontal cortex with the cerebellum and limbic lobe, con-
nections of the occipital lobe with the limbic lobe and insula lobe 
(Figure 3).

Additionally, the node strength was used to measure the impor-
tance of each node. The node strength was calculated as the sum 

of the link weights connected to that node. The link weights were 
defined as the correlation coefficients between the contributing 
network and the IAS scores. The sum of the absolute values of 
the correlation coefficients between all of the edges of the node 
in the contributing network and IAS scores was defined as the 
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Fig. 4. The node strength of the contributing network after controlling for head motion, age, gender and negative emotion scores. The correlation 
coefficients between the contributing network and the IAS scores were used as the weights of links, and then the node strength was computed by 
summing the absolute values of the correlation coefficients. Higher node strength represented a greater contribution to the prediction of IAS.

Table 2. Ten nodes with the greatest node strength selected by the prediction model

No. Node strength Node name Network L/R Lobe MNI coordinates

1 1.18 MCC Somato-motor L Limbic −7.8, −22.4,46
2 0.95 LOC Visual L Occipital −36, −84.2, −3.9
3 0.90 Insula Subcortical L Insula −37.7, −12.9, −1.4
4 0.79 VLPFC Frontal-parietal L Prefrontal −53.1,18.4,10.6
5 0.79 Lobule Crus2 n/a R Cerebellum 41.9,−64,−49.2
6 0.74 Inferior frontal gyrus Frontal-parietal L Prefrontal −46.1,28.2,26.8
7 0.72 Middle frontal gyrus Default mode R Prefrontal 23.9,30.7,36.4
8 0.66 MCPC Somato-motor R Limbic 7.8,−23.1,44.9
9 0.64 Lingual gyrus Visual R Occipital 17.9,−83.4,−11.3
10 0.61 Inferior frontal gyrus Frontal-parietal L Prefrontal −46.2,7.9,28.6

Abbreviations: L, left hemisphere; R, right hemisphere; MNI, Montreal Neurological Institute; n/a, not available.

node strength (because all correlation coefficients have negative 
values). Regions with higher node strength were mainly located 
in median cingulate cortex (MCC), lateral occipital cortex (LOC), 
insula and ventrolateral prefrontal cortex (VLPFC) (Figure 4 and 
Table 2).

Validation with different cross-validation 
schemes
To validate the performance of the predictive model, the 10-fold 
cross-validation approach was used. The significant results were 
replicated. The IAS scores in the independent subjects were pre-
dicted by the functional connectivity in the negative network (cor-
relation between the actual and predicted scores: rpartial = 0.11, 
Pperm = 0.01, permutation test, Figure 5). Similarly, the functional 
connectivity in the positive network could not reliably predict the 

IAS scores (correlation between the actual and predicted scores: 
r = −0.02, P > 0.05).

External generalizability
Subsequently, we proceeded to evaluate the generalizability of 
the networks that predicted IAS in Dataset 1, which consisted of 
677 participants, to an independent dataset of 115 participants 
(Dataset 2). Regression models were applied to the external gener-
alizability dataset to determine whether the predicted IAS scores 
generated by models utilizing the set of edges identified in Dataset 
1 exhibited a significant relationship with the observed IAS scores 
within the generalizability dataset. Notably, the findings revealed 
a noteworthy prediction of IAS for the negative network (r = 0.22, 
P = 0.017, as depicted in Figure 6). These outcomes indicate that 
the set of edges identified within the negative network possesses 
robustness in predicting individual variations in IAS.
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Fig. 5. The validation performance of the predictive model after controlling for head motion, age, gender and negative emotion scores. The left graph 
shows the correlation between the actual and predicted IAS scores. The right graph depicts the permutation distribution of the correlation coefficient 
(r) for the prediction analysis.

Fig. 6. The correlation between the actual and predicted IAS scores in 
external validation.

Comparing the sets of functional connections 
related to IAS to those related to AUDS
Finally, to identify unique prediction network specific to IAS, 
we sought to examine the differentiation between the sets of 
functional connections linked to IAS and AUDS.

To compare these networks, we constructed the neural pre-
dictive models of AUDS. After controlling for head motion, age, 
gender, negative emotion scores, negative networks still signifi-
cantly predicted AUDS scores (correlation between the actual and 
predicted scores: rpartial = 0.16, Ppartial = 0.03). In all iterations of 
LOOCV, the number of predictive model edges varied from 977 
to 1675, with 411 edges appearing in each iteration defined as 
the contributing network (Supplementary Figure S1). The node 
strength of the contributing network was showed in Supplemen-
tary Figure S2.

The findings reveal a minimal level of overlap between the 
networks. Among the 127 connections present in the negative 
IAS network, only two edges are shared with the negative AUDS 
network. This indicates that the set of functional connections 
predicting IAS largely differs from those predicting AUDS. Addi-
tionally, considering the macroscale regions, the unique con-
tributing network that predicted IAS scores prominently consisted 
of connections between the occipital lobe and other lobes, such 
as the insula lobe, limbic lobe and temporal lobe (as shown in
Figure 7).

Discussion
With the popularity of the Internet, IAS has gradually emerged 
as a widespread public health problem threatening the physi-
cal and mental health of the population (Skopje et al., 2017). 
To date, no effort has been made to develop a model that can 
predict IAS at the individual level. Given the general consen-
sus among researchers that each individual’s rsFC pattern is as 
unique and reliable as a fingerprint and underlies individual vari-
ation in personality characteristics and cognitive performance, 
brain characteristics provide promising candidates for predictive 
models that are important for the prevention and diagnosis of 
IAD (Braun et al., 2018). In this study, the CPM approach was 
used to build negative network based on whole-brain functional 
connectomes that predicts IAS at the individual level. CPM fur-
ther indicated that the set of connections in the negative network 
related to IAS identified in one sample generalized (Dataset 1) to 
predict IAS in an independent sample (Dataset 2), demonstrating 
the replicability of this effect. Furthermore, our analysis revealed 
that the unique contributing network, which predicted IAS in con-
trast to the prediction networks of AUDS, prominently comprised 
connections involving the occipital lobe and other lobes, namely 
the insula lobe, limbic lobe and temporal lobe.

As previously mentioned, intrinsic functional connectivity 
spanning distributed networks can be used to predict individ-
ual IAS. Importantly, interindividual differences in IAS can be 
explained mainly by the functional connectivity of the prefrontal 
cortex with the cerebellum and limbic lobe, connections of the 
occipital lobe with the limbic lobe and insula lobe. The activ-
ity within these neural systems has been implicated in cogni-
tive, affective, motor and visual components of IAS. Our find-
ings indicate that these apparently disparate processes do not 
work in isolation but interact extensively to maintain IAS. Sup-
porting evidence from the animal studies indicates that the 
addictive behavior has an irreversible impact on the brain chem-
istry and neural pathways (O’Brien and Gardner, 2005; Kupnicka
et al., 2020).

This study demonstrated that the contributing prediction net-
work of IAS included critical regions involved in cognitive pro-
cessing of brain functioning, such as the MCC, LOC, insula and 
VLPFC. Prior studies have revealed that the MCC is involved in 
the anticipation and processing of rewards as well as reward-
related decision-making (Liu et al., 2011). The addiction behavior 
involves long-term, persistent dysregulation of the activity in the 
brain reward systems mediating natural rewards and recruit-
ment of brain stress (Koob, 2013; Ruisoto and Contador, 2019).



Q. Feng et al.  9

Fig. 7. The unique contributing network that predicted the IAS scores compared to prediction networks of AUDS. The left graph shows the connections 
within and between each macroscale regions. The right graph depicts the connections plotted as number of edges within and between each pair of 
macroscale regions. PFC, prefrontal cortex; Mot, motor lobe; Ins, insular lobe; Par, parietal lobe; Tem, temporal lobe; Occ, occipital lobe; Lim, limbic 
lobe; Cer, cerebellum; Sub, subcortical lobe; Bsm, brainstem.

Therefore, an impaired reward system function may be responsi-
ble for the development and maintenance of addictive behaviors. 
LOC, known as a high-level visual area, plays a crucial role in 
object perception and object size perception (Larsson and Heeger, 
2006). Previous studies have additionally reported a decrease in 
the cortical thickness of the LOC in individuals with IGD (Wang 
et al., 2018). It has been postulated that individuals with IAS, 
who have been extensively engaged with the Internet, need to 
diligently attend to even subtle changes on their screens. Pro-
longed hypertension of visual attention can lead to impairments 
in visual functions (Dong et al., 2012a). Accordingly, alterations 
in the functional connectivity of this region may be associ-
ated with impairments in the attentional processing of visual
information.

In addition to the MCC and LOC, the VLPFC and insula 
were mainly involved in the prediction of IAS. The VLPFC is 
related to decision-making that includes uncertainty or risk 
(McClure et al., 2004). The VLPFC interprets cognitive and 
motivational information and conducts inhibitory signaling of 
responses that must be cancelled or blocked to facilitate deci-
sion making, leading toward goal-directed behavior (Sakagami 
and Pan, 2007). The observed alterations in functional con-
nectivity of the VLPFC in individuals with IAS may indicate 
inhibitory control or regulatory impairments that are poten-
tially linked to addictive behaviors. This inhibitory dysfunction 
can be affected by environmental contingencies and cues (e.g. 
craving for the Internet) and consequently contributes to the 
maintenance of Internet abuse. The insula has been recog-
nized as a key brain region responsible for integrating interocep-
tive states and self-awareness, leading to conscious emotional 
experiences. This integration is particularly crucial for decision-
making processes involving risk and reward, as demonstrated 
in studies on drug craving and relapse (Naqvi et al., 2014). The 
observed alterations in the functional connectivity of the insula 
can potentially undermine the ability to effectively integrate 

information pertaining to risk and value during decision-
making. Thus, these changes may impair the decision-making 
capacity related to assessing risks and rewards in individuals
with IAS.

Finally, our results demonstrated that the set of functional con-
nections that predict IAS are largely distinct from the set of func-
tional connections that predict AUDS. Based on the macroscale 
regions, compared to prediction networks of AUDS, the unique 
contributing network that predicted the IAS scores primarily 
included connections of the occipital lobe with the other lobe, 
including insula lobe, limbic lobe and temporal lobe. The occipital 
lobe, known as the primary visual processing center in the brain, 
encompasses the major portion of the visual cortex. It is primarily 
responsible for visual functions (Kojima and Suzuki, 2010). Pre-
vious research has indicated the significant involvement of the 
occipital lobe in IAS (Dong et al., 2012b). Tasks related to Inter-
net gaming have been found to activate the occipital gyrus, which 
constitutes the visual processing center (Liu et al., 2016). Notably, 
studies have reported decreased regional homogeneity in tempo-
ral, occipital and parietal brain regions among individuals with 
IAS, with these regions being associated with visual and audi-
tory functions (Dong et al., 2012a). In our study, we found that 
the unique predictive network for IAS scores primarily involved 
connections between the occipital lobe and other brain lobes. 
This underscores the important and distinctive role played by the 
occipital lobe in predicting IAS when compared to the prediction 
networks for AUDS. Indeed, IAS has the problem of excessive use 
of electronic products, and the occipital lobe is more involved than 
AUDS.

Notably, our research is in part representative of progress in 
neuroscience and advances the application of machine-learning 
methods that use functional brain connections as feature val-
ues to build neuroimaging-based behavior prediction. The CPM is 
designed to uncover critical brain features that can be applied to 
improve the accuracy of diagnosis and the success of treatment 
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for IAS in clinical practice (Yang et al., 2023). Within this frame-
work, a growing number of studies have developed predictive 
models based on brain imaging features to distinguish those with 
IAD from healthy controls or to predict symptom severity. There-
fore, the rsFC-based predictive model for IAS could be used to 
intervene in potentially at-risk populations in a timely manner 
and to generate effective therapeutic measures for IAD.

Nevertheless, there are limitations of the present study. First, 
while the main confounding factors such as age, sex, head move-
ment and negative emotion were controlled in this study, other 
behaviors variably associated with IAS (e.g. objective time spent 
online) should be measured and controlled in future studies. 
Second, all measures of behavior are also limited by subjective 
self-reporting rather than objective measures of performance. 
Third, our predictive model was constructed with a healthy pop-
ulation, and future research should be performed so that the 
results can be generalized to patients with IAD by applying a 
machine-learning technique that can classify those with IAD and 
healthy individuals. Finally, heavy chronic alcohol use introduces 
its own neurotoxicity and effects on brain connectivity (Rao and 
Topiwala, 2020) that could suppress or interfere with detection of 
parallels in prediction of AUDS with prediction of IAS.

Despite these limitations, this study first demonstrated that 
the functional connectivity of distributed networks effectively 
predicts IAS at the individual level. Importantly, the brain regions 
of the prediction network involve cognitive, affective, motor and 
visual processes, and deficits in these processes are closely related 
to addictive behaviors. Furthermore, we found the important and 
unique role of the occipital lobe in predicting IAS. In a word, our 
research provides a deeper understanding of the neural mecha-
nisms of IAS within novel frameworks and has potential clinical 
applications in the prevention and intervention of IAD.
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