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Abstract

Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially 

all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell 

epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved 

in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. 

The specific T cell epitopes recognized in an individual are determined by genetic factors such 

as the MHC molecules the individual expresses, in parallel to the individual’s environmental 

exposure history. The complexity and importance of T cell epitope mapping have motivated 

the development of computational approaches that predict what T cell epitopes are likely to be 

recognized in a given individual or in a broader population. Such predictions guide experimental 

epitope mapping studies and enable computational analysis of the immunogenic potential of a 

given protein sequence region.
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INTRODUCTION

T cells scan MHC ligands presented to them on the surface of nucleated cells (expressing 

MHC class I molecules) and on professional antigen-presenting cells and other cells of the 

lymphoid lineage (expressing both MHC class I and II molecules). This allows T cells to 

detect antigens derived from pathogens as well as the presence of abnormal self-antigens 

expressed by cancer cells (Figure 1a). Complexes of MHC molecules and their ligands 

are generated by antigen-processing and -presentation pathways consisting of a series of 

enzymatic events involving specialized organelles and processes, which are distinct for 
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MHC class I and MHC class II. As a first approximation, class I molecules sample the 

interior of each cell, while class II molecules provide a window to what proteins and 

peptides are present in the extracellular environment. MHC ligands that trigger a T cell 

immune response are referred to as epitopes. T cells recognizing an epitope can exert 

direct effector functions such as the production of inflammatory or regulatory cytokines, 

cytotoxicity, and providing help to B cells regulating the development and maturation of 

antibody responses. Upon recognition of an epitope, T cells proliferate to form an effector 

population that can detect the same epitope on other cells and can form long-lived memory 

populations that enable the host to rapidly respond to subsequent encounters of the same 

epitope (1). Thus, T cell epitope recognition is a critical step in the formation and recall of 

adaptive immune responses.

The identification of epitopes enables tracking, phenotyping, and stimulating T cells. 

Epitopes can be used to detect the magnitude and cytokine polarization of epitope-specific 

T cell responses in an input sample based on cytokine secretion assays such as ELISPOTs 

or ELISAs. They can be used in flow cytometry and mass cytometry assays to detect 

and phenotype epitope-specific T cells based on intracellular cytokine-staining assays, or 

to isolate and characterize them in single-cell RNA-seq assays and emerging technologies 

such as CITE-seq. These experimental techniques have provided an improved mechanistic 

understanding of T cells involved in different disease contexts. Furthermore, detection of 

epitope-specific T cells has been used in diagnostic applications (2) and to deimmunize 

proteins used as biological drugs (3–5). Additional interest in T cell epitopes has arisen in 

the context of cancer immunotherapy, where the number of potential T cell epitopes in a 

tumor has been proposed as a marker of success for checkpoint blockade treatments, and 

where tumor-specific epitopes are being used to induce tumor-specific T cell responses (6). 

These practical applications of T cell epitopes have continued to drive efforts to improve 

methods to identify them.

There are three main categories of assays that have been used to dissect the mechanistic 

steps involved in T cell epitope formation and recognition (Figure 1b). The first is assays 

measuring MHC binding in vitro. This directly determines which peptides have the potential 

to be presented to T cells and can provide quantitative affinity data (7–9). The second 

is assays detecting MHC ligands presented on cells by elution of such ligands and their 

detection by mass spectrometry. This allows us to factor in the influence of antigen 

processing in the generation of the ligand before and after MHC binding (10–14). Third 

is assays measuring T cell epitope recognition of an epitope. This directly reads out the type 

and magnitude of T cell responses to epitopes in a specific individual (15–19).

A key challenge in identifying T cell epitopes is that their recognition varies substantially 

between individuals. One factor driving this variability is that the genes encoding for 

MHC molecules (called HLA in humans) are the most polymorphic in the human 

genome. Different MHC molecules have distinct binding specificities, which results in 

them presenting different MHC ligands to T cells. As a result, different individuals in the 

human population will present different epitopes, and pathogens will find it difficult to 

evade recognition completely. In addition to MHC polymorphism, what T cell epitopes 

are recognized is also shaped by the exposure history of an individual. Reencounter of 
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an epitope will favor activation of memory cell responses, rather than induce de novo 

responses. Overall, this means that what specific T cell epitopes are recognized in a given 

individual will be impacted by both genetic and environmental factors.

Given the importance and complexity of T cell epitope mapping, there has been a continued 

interest to develop computational prediction methods that aid in the identification of T 

cell epitopes. These prediction methods have evolved from the identification of amino 

acid motifs in peptides that correspond to their MHC binding residues, to the advent of 

quantitative MHC binding affinity predictions using machine learning approaches, to the 

current state-of-the-art predictions that utilize custom neural network architectures that are 

capable of integrating information from MHC binding and MHC ligand elution data across 

multiple MHC molecules (Figure 1c).

This review focuses on the development of computational methods for T cell epitope 

prediction, how these methods have been shaped by the experimental data available, the 

best practices in practical applications, and remaining challenges to the field. We restrict our 

scope to T cells recognizing peptide epitopes presented by classical MHC class I and class 

II molecules. This is not to diminish the importance of nonpeptidic or posttranslationally 

modified epitopes, but it reflects that essentially all current T cell epitope predictions target 

conventional peptide epitopes.

A BRIEF HISTORY OF THE DISCOVERY OF T CELL EPITOPES AND THEIR 

MHC RESTRICTION

Several Annual Review of Immunology articles have covered the topics of antigen 

processing and presentation, their relationship to MHC molecules and epitope generation, 

and epitope recognition by the T cell receptor (TCR) repertoire (7, 8, 10–21). Here, the 

history of how the mechanisms of T cell epitope recognition were discovered is briefly 

recapped to introduce the vocabulary still in use today and the different experimental 

methods that form the basis of T cell epitope discovery. Two different Nobel prizes were 

awarded to recognize the seminal observation that immune responsiveness is regulated by 

genes encoded in the MHC locus, which are associated with high allelic polymorphism: 

one to Snell, Daussett, and Benacerraf in 1980 “for their discoveries concerning genetically 

determined structures on the cell surface that regulate immunological reactions,” and one 

to Doherty and Zinkernagel in 1996 “for their discoveries concerning the specificity of the 

cell mediated immune defense” (22, 23). In this context, it was stated that T cell recognition 

is MHC restricted, as conventional T cells recognize a particular combination of a given 

antigen and a specific MHC. The molecular basis for this MHC restriction was much 

debated. Some investigators thought that this must reflect the fact that T cells carried two 

receptors, one for MHC and one for antigen; others argued that it was most likely that a 

single receptor recognized the combination of both (24). In the 1970s, parallel investigations 

by Gell, Benaceraff, and Ishizaka compared the capacity of B cells and T cells to distinguish 

between native and denatured forms of the same antigen (25). They found that antibodies 

derived from animals immunized with native antigen reacted strongly against native antigen 

but failed to react with denatured antigen. In contrast, T cells broadly cross-reacted with 
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both forms, suggesting that while antibodies are very dependent on the 3D structure of 

antigen for recognition, T cell cross-reactivity is dictated solely by the primary amino acid 

sequence of a protein. The point was proven by observations from Grey, Kappler, and 

Marrack for CD4 (26, 27) and expanded by the Townsend group for CD8 T cells (14, 28), 

showing that T cells recognize a peptide fragment derived from their antigen of specificity, 

the epitope. Soon after, Unanue’s and Grey’s groups demonstrated specific binding of 

epitopes to purified MHC in vitro, and showed that the binding pattern to different alleles 

matched their known MHC restriction (29, 30).

THE CONCEPT OF MHC MOTIFS AND THE EXPERIMENTAL METHODS TO 

DETERMINE THEM

In the late 1980s several groups developed approaches to predict which peptides might be 

epitopes. DeLisi & Berzofsky (31) proposed that T cell epitopes might be predicted on the 

propensity to form amphipathic α helices, and Rothbard and colleagues proposed a short 4- 

to 5-residue hydrophobic stretch as a predictor (32). While neither of these approaches held 

up well with larger data sets, they opened the field for further development of new prediction 

approaches. In retrospect, the missing insight was that separate predictors for different 

class I and class II allelic variants are necessary, as each MHC allele is associated with a 

different binding specificity. This became increasingly clear through studies showing that 

MHC variants have different epitope binding capacity, which predicted T cell responsiveness 

(33), and that peptide binding specificity is determined by the presence of specific amino 

acid patterns (34). Systematic studies revealed that while certain positions in the peptide 

could be substituted with almost any amino acid, other positions would only tolerate limited 

substitutions with closely related amino acids in terms of side chain properties. These 

positions were termed main anchor residues of the epitopes. It was further shown that these 

anchor residues were found with similar spacing in different epitopes restricted by the same 

MHC. Therefore, these residues were termed anchor positions, and the sum of the anchor 

positions spacing and specificity was called the MHC ligand motif.

The physical basis of MHC ligand motifs was first hinted at by earlier data from McDevitt 

and coworkers (35), which had shown that the MHC residues polymorphic in different 

allelic variants clustered in hypervariable regions reminiscent of what was previously 

shown for antibody molecules. It was hypothesized that these hypervariable regions formed 

epitope-binding sites in the MHC molecule and that the anchor positions within MHC 

peptide ligands were bound to this site. This was shown to be exactly the case when Wiley 

and associates solved the crystal structures of HLA A2 first (36) and HLA DR1 shortly after 

(37). The MHC molecules in these structures were found to have characteristic pockets that 

explained the spacing and residue specificity of the MHC ligand motifs.

The definition and refinement of MHC motifs received a significant boost through the 

advent of experimental techniques to isolate naturally processed and presented MHC 

ligands. Studies by Nathenson, Rammensee, and Bevan had shown that the exact natural 

ligand recognized by T cells could be recovered from purified MHC (38–41). Rammensee’s 

group took this observation one step further, by sequencing by Edman degradation pooled 

Peters et al. Page 4

Annu Rev Immunol. Author manuscript; available in PMC 2024 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



class I ligands, and showing that they were remarkably homogeneous in size and that 

certain main anchor positions were conserved and associated with limited chemical diversity 

(42). Elution of natural class I ligands provided a powerful method to define class I MHC 

ligands motifs that was simple, conceptually elegant, and technically powerful, resulting in 

definition in a brief time of tens of motifs for different allelic variants. This methodology 

proved effective for class I MHC, but less so for class II molecules, which have a peptide-

binding groove that is open at both sides. As a result, the anchor positions of MHC class 

II–bound peptides are not in frame, rendering sequencing of pooled ligands more difficult 

to interpret. To overcome the limitations of pooled ligand sequencing, eluted peptides 

were separated by chromatography and individual ligands identified by mass spectrometry 

approaches (43, 44), resulting in the direct identification of peptide ligands presented on 

cells—a technique that has continued to be improved in throughput and sensitivity to this 

day, providing a true wealth of information and insight into the natural ligands of MHC 

molecules.

MHC BINDING PREDICTIONS BASED ON MOTIFS AND OTHER HEURISTIC 

APPROACHES

The era of computational T cell epitope predictions was initiated in 1989 by Sette and 

colleagues (45), who described a computer program that used MHC allele–specific motifs to 

identify potential ligands in a protein sequence. By the mid-1990s, the motifs associated 

with many class I and class II MHCs were defined at a variable level of resolution. 

The simplest canonical motifs were based on the determination of the main anchor 

residues and their relative spacing. It became apparent, however, that such motifs were an 

oversimplification, with only about a third of peptides containing the canonical motif being 

able to bind MHC, and many ligands binding MHC not containing the exact motif. This 

was reconciled by taking into account additional auxiliary (or secondary) anchor positions 

that could influence binding, albeit in a less pronounced fashion than the primary anchor 

positions (46). Several approaches were developed that aimed at producing a quantitative 

score, related to the predicted binding affinity or to the probability of binding. Essentially 

these methods were based on a matrix that for each position assigned a heuristic numerical 

value corresponding to the expected impact of the peptide carrying that specific amino acid. 

The various values for each position were then combined to derive a final score for a given 

peptide/MHC combination. Popular scores were the SYFPEITHI score, which was based on 

the analysis of ligand elution data (47), and the average relative binding (ARB) matrices 

(48), which were based on measured binding data from single substitution analogs of known 

ligands.

THE ADVENT OF MACHINE LEARNING TO PREDICT MHC BINDING

Driven by the success of the heuristic predictions, more advanced supervised machine 

learning approaches were soon proposed. Such approaches consist of training an algorithm 

based on labeled input data, such as sets of peptides with measured binding affinities, to 

generate a function that approximately reproduces the input data by learning patterns that 

are not defined a priori and that are capable of predicting how new data should be labeled 
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(49). The first such method applied to MHC binding predictions was the BIMAS (50) model 

proposed by Parker et al. (50), in which coefficients of a matrix defining the contribution of 

different residues in a peptide to binding to HLA-A*02:01 were fitted by linear regression 

to experimentally measured half-lives (Figure 1c). This matrix model implicitly assumes 

independent contributions of each residue in a peptide to the overall binding affinity, and 

it provided robust predictions of the affinity of previously untested peptides. A website 

hosted at the US National Institutes of Health (NIH) (unfortunately retired in 2019) made 

predictions for HLA-A*02:01 and several other alleles publicly available, along with the 

underlying prediction matrices, which set an important positive precedent for making 

computational predictions accessible and reproducible for the community at large.

More complex prediction models for MHC class I peptide binding that allowed for nonlinear 

interactions were also proposed, including artificial neural networks (ANN) (51–54), hidden 

Markov models (HMM) (55, 56), and QSAR (quantitative structure-affinity relationship)-

based regression models (57). While these early models demonstrated reasonable success in 

reproducing the data used for their development, their usefulness for epitope discovery was 

often limited due to their low allelic coverage (most methods were trained and evaluated 

on data covering one or two MHC molecules) and the low number of data points available 

for model construction. Specifically, the low number of data points was a critical problem 

for complex prediction methods that require determining many parameters, which makes 

them prone to overfitting and overestimation of model performance on a small data set. In 

contrast, the performance of the simple model underlying the BIMAS predictions held up 

remarkably well given the limited input data available used to generate them. The originally 

unexpected finding that simple linear methods outperformed more complex nonlinear 

predictions was further dissected in the development of the stabilized matrix method (SMM) 

(58), which explicitly separated linear contributions of each residue in a peptide to binding, 

and nonlinear pair-interaction terms quantifying the impact of two specific residues at 

different positions, and which used regularization to avoid overfitting. This approach showed 

that some pair-interactions are reproducibly found in data sets that are large enough, but that 

their strength is at least an order of magnitude lower than the direct contributions to binding 

of individual peptide residues.

There is a physical explanation for why simple linear models of peptide–MHC interactions 

can provide accurate predictions of measured binding affinities: Peptides conventionally 

bind to MHC molecules in an extended conformation, where every residue in an MHC-

bound peptide has a defined position in the MHC binding groove. Thus, as a first 

approximation, each amino acid in a peptide contributes independently to the overall 

peptide binding affinity. This largely fixed structural configuration of peptide binding also 

explains why computational approaches that explicitly model the 3D structure of MHC–

ligand complexes and their physicochemical interactions have not provided prediction 

performances superior to those of sequence-based machine learning approaches for MHC 

binding (59), in contrast to the success (or even requirement) of 3D modeling for other 

ligand interactions, such as those inducing conformational changes in ligand-binding 

proteins (60).

Peters et al. Page 6

Annu Rev Immunol. Author manuscript; available in PMC 2024 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EPITOPE DATABASES AS A SOURCE OF DATA TO TRAIN MACHINE 

LEARNING ALGORITHMS

The performance of machine learning algorithms increases with the amount of data available 

to train them, which makes data set assembly an essential step in tool development. Epitope 

databases that compile records from publications and other data sources in a consistent 

format make this task much easier. Several pioneering databases were initiated starting in the 

1990s. Among those still available today are the HIV molecular immunology database, led 

by the Korber lab, which catalogs T cell and B cell epitopes in HIV viruses (61); and the 

SYFPEITHI database, led by the Rammensee lab, which catalogs eluted MHC ligands, pool 

sequencing motifs, and T cell epitopes from any source (47); and the MHCBN database, 

led by the Raghava lab, which in addition to MHC binding and T cell epitope data also 

contains transporter associated with antigen processing (TAP) binding data (62). In 2003, 

the Immune Epitope Database (IEDB) (63) was initiated as a repository for epitope-related 

data curated from the literature as well as for data generated by large-scale T cell and B cell 

epitope discovery contracts funded by the NIH. As of today, the IEDB is led by the Sette and 

Peters labs, contains over 2,000,000 experiments curated from over 20,000 references (64), 

and is accompanied by a companion site providing access to epitope prediction and analysis 

tools (65), many of which were developed in the Nielsen lab. The most recent major addition 

to epitope-related databases is SysteMHC (66), which captures MHC ligand elution data 

identified by mass spectrometry and provides access to both raw data from multiple labs 

and (re)analyzed data run through a consistent pipeline (67). All of these database efforts 

compile data from different sources in a consistent format, which enables the training and 

evaluation of machine learning predictions.

THE VALUE OF BENCHMARKING TO UNRAVEL DIFFERENCES IN 

PREDICTION METHOD PERFORMANCES FOR MHC BINDING TO GUIDE 

TOOL DEVELOPERS AND USERS

With a proliferation of different prediction methods, the field was challenged by a lack 

of objective metrics allowing comparisons of their performance. A systematic attempt to 

address this issue was a benchmark of publicly available prediction methods conducted 

by us using data assembled in the course of the initial construction of the IEDB. This 

benchmark utilized a data set of quantitative peptide binding to a panel of mouse, human, 

macaque, and chimpanzee MHC molecules, most of which were previously unpublished 

(68). For three prediction methods, the underlying algorithms were directly available to us, 

so cross validated performances of the algorithms could be obtained. These algorithms were 

ARB, SMM, and NetMHC, the latter being referred to as ANN (artificial neural network) 

in the paper, as it was a neural network designed based on the NetMHC algorithm (69) 

but retrained on benchmark data. Two main conclusions were drawn from this study: First, 

all three methods when retrained on the large benchmark data set outperformed the earlier 

published web servers. This demonstrated that the size of the data set used for training 

plays a critical role in determining the predictive power of a given prediction method, 

suggesting that not only machine learning algorithmic advances but also persistent retraining 
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on newly available data sets is required for tools to have optimal predictive power. Second, 

the NetMHC-based method performed best overall, with highest performance in 30 out of 46 

data sets that could be compared between all three methods, while the SMM approach had 

the highest performance on 16 data sets, and the heuristic ARB method did not score highest 

on any data set.

Interestingly, NetMHC showed the most dominant outperformance on smaller data sets. 

This conflicts with the assumption that its ability to predict nonlinear interactions is the 

basis of its superior performance, as predicting nonlinear interactions should depend highly 

on having large training data sets available. In fact, no method has been able to identify 

quantitative nonlinear contributions to MHC binding beyond what has been published for 

SMM. Closer examination of how NetMHC performed well in predicting binding when 

trained on small data sets revealed that a key advantage was the way it presented peptides 

to the neural network. The naive approach to encode a peptide of length N is to generate a 

binary vector with N × 20 entries corresponding to the N positions in the peptide and the 20 

canonical amino acids. NetMHC does not use binary vectors but rather encodes peptides 

using BLOSUM matrices that implicitly provide information on amino acid similarity 

to the network. This allowed the NetMHC algorithm to extrapolate patterns of binding 

to residue types not found in the training set. Motivated by this, a Bayesian Prior was 

added to the SMM method that essentially teaches it how similar different amino acids 

are, which significantly improved the ability of the algorithm to predict MHC binding on 

small data sets [SMM-PMBEC (70)]. Overall, these observations indicate that there is not 

a simple dichotomy between linear versus nonlinear predictions that explains differences in 

prediction performance for MHC class I binding predictions, but that additional factors, such 

as the encoding of biological knowledge in the peptide presentation, are key to generating 

high-performance predictions.

For MHC class II, similar efforts were dedicated to the development of peptide-binding 

prediction methods, but the challenge was substantially greater due to the open binding 

groove of MHC class II molecules. This allows peptides to protrude outside of the binding 

groove and makes alignment of binding peptides essential to identifying the common 

binding core. The list of machine learning frameworks proposed to resolve this challenge 

is long and includes HMM (71), SVM (72, 73), Gibbs sampling (74), and ANN (75, 

76) among others. A decade ago, benchmarking studies showed that machine learning–

based models achieved the highest predictive power (77, 78) and that overall prediction 

performance was lower than for MHC class I, but that it could be improved by making 

consensus predictions, similar to what was done for MHC class I before (79). Over the 

years, the ANN-based framework NNAlign (76) used to develop the NetMHCII (and 

NetMHCIIpan; see below) methods (80–82) has been continuously refined (83–88). And 

MHC class II binding predictions have broadly caught up to where MHC class I binding 

predictions were a decade ago They achieve area-under-the-curve (AUC) values of 0.87 

(80), while for MHC class I AUC can be as high as >0.98 when identifying binders from 

peptide sets that were not preselected, but such data sets are increasingly rare (89), as most 

peptides tested experimentally for binding today are preselected based on predicted binding 

to avoid obvious nonbinders.

Peters et al. Page 8

Annu Rev Immunol. Author manuscript; available in PMC 2024 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DEVELOPMENT OF PAN-MHC BINDING PREDICTION METHODS

The experimental data available for different MHC molecules are highly uneven, with 

some alleles being very well studied, such as HLA-A*02:01, while many other alleles 

have never been studied in binding assays at all. Given that the frequency of HLA alleles 

can vary substantially between different ethnicities, and given that there is an interest in 

rarely expressed alleles that are associated with specific diseases, it is desirable to generate 

accurate predictions for all HLA alleles. However, with over 10,000 allelic variants of 

HLA molecules described in the IMGT-HLA database (90), the conventional approach of 

generating large data sets for each allele and training allele-specific prediction algorithms on 

each data set is not feasible. To resolve this, pan-specific prediction methods were proposed 

that can predict binding for MHC molecules not characterized experimentally. The first 

method to successfully do this was TEPITOPE (91), which could predict binding to 51 

prevalent HLA-DR alleles. TEPITOPE is based on the construction of virtual matrices that 

characterize the binding profile of a given HLA-DR molecule by comparing residues in its 

sequence that are forming a binding pocket to pockets from other MHC molecules where the 

binding specificity has been defined. This approach achieved solid prediction performances 

and demonstrated for the first time that the specificity of an MHC molecule that has never 

been experimentally characterized can be computationally predicted.

The first computational method to implement pan-specific predictions for MHC class 

I molecules was NetMHCpan (92). This method was inspired by the work of Brusic 

and coworkers (93), who complemented the peptide binding information used to train 

a prediction model with information about the amino acids defining the MHC binding 

groove, which allowed utilizing binding data generated from different MHC molecules to 

train a single neural network. NetMHCpan expanded this to make predictions for MHC 

molecules that had never been tested and demonstrated that this could greatly improve 

the ability to make accurate predictions for alleles characterized with limited or even no 

binding data. Later, other pan-specific approaches for MHC class I such as ADT (94), 

KISS (95), and PickPocket (96) were proposed, each implementing different representations 

of the MHC binding environment to allow for the development of pan-specific prediction 

models. Independent benchmarking subsequently demonstrated the superior performance 

of NetMHCpan for prediction of peptide binding, MHC ligands, and CD8 epitopes (97). 

For MHC class II, later approaches similar to that of NetMHCpan described above were 

proposed, including MultiRTA (98), MHCIIMulti (99), and NetMHCIIpan (100), each of 

which represented the MHC binding environment along with the peptide in a machine 

learning approach to enable true pan-specificity covering all class II proteins of known 

sequence.

PREDICTING NATURALLY PROCESSED AND PRESENTED MHC LIGANDS

For a peptide epitope to be recognized by T cells, it has to bind to an MHC molecule. 

Prior to that, it has to be generated by the antigen-processing and -presentation pathway. 

Several studies have been performed to predict steps in the MHC class I antigen-processing 

pathway, including proteasomal cleavage (101, 102) and TAP transport efficiency (103, 

104). These studies showed that the steps involved in antigen processing have specificities 
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that can be learned from experimental data and applied to identify MHC ligands. However, 

the specificity of proteasome cleavage and TAP transport is much less selective than 

MHC binding. Several methods have integrated the prediction of different steps in antigen 

processing and presentation to allow for improved prediction of MHC class I ligands and 

T cell epitopes (105–108). These approaches were able to achieve consistent but minor 

improvements in predictive power for epitope identification compared to state-of-the-art 

methods for MHC binding alone (109). Comparing the specificity of the proteasome, 

TAP and MHC suggested a simple explanation for this: MHC molecules appear to have 

(co)evolved to be able to bind peptides that are efficiently generated by the proteasome 

and transported by TAP. This means that incorporating the specificity of these antigen-

processing steps into a prediction algorithm does not significantly improve the specificity of 

the results (102).

While the impact of the antigen-processing machinery on the sequence composition of MHC 

class I ligands is masked by the overlapping MHC binding specificity, in contrast, it does 

have an apparent impact on the peptide length distribution of presented MHC ligands. While 

binding assays reveal that different HLA class I molecules favor distinct peptide lengths, 

ligand elution profiles show a much narrower distribution of peptide lengths, strongly 

favoring peptides of length 9 (110, 111). This narrower distribution can be explained by the 

peptide length preference resulting from antigen-processing steps, which limits the ligands 

available for binding to MHC (111), which has been previously postulated (112–114).

For MHC class II, a different set of cellular and biochemical processes are operational 

in determining how the antigen-processing machinery shapes the ligand repertoire. These 

processes have also been studied and characterized in detail (10, 18, 115, 116), but until 

recently, they had not been incorporated into computational prediction methods. Large-scale 

data sets of MHC class II–restricted eluted ligands made it apparent that there is indeed a 

sequence motif characteristic of N-terminal and C-terminal residues of processed ligands, 

consistent with the termini being generated through proteolytic cleavage with specific motifs 

(117, 118), and that incorporation of these cleavage signals benefits the prediction of MHC 

class II ligands. However, T cell epitopes are typically discovered by testing synthetic 

peptides, and for class II–restricted peptides, their ends can be normally extended or 

trimmed without impacting T cell recognition. This is because the epitope core residues 

directly interacting with the MHC molecule are also neighboring or close to the residues 

that contact the TCR (although examples of TCR interaction with the residues flanking the 

binding core have been described, such as in Reference 119). Thus, the termini of MHC 

class II T cell epitopes are not well defined, which is also apparent from MHC class II 

ligand elution data, which often results in ladders of peptides (44) that share a common core 

of typically nine residues binding the MHC molecule. This multitude of possible peptide 

ligands that the antigen-processing machinery can generate for any given binding core might 

explain why it has not been feasible to use the antigen-processing motifs to significantly 

improve T cell epitope prediction. Overall, there is symmetry in that both MHC class I and 

class II antigen processing follow deterministic steps that can be successfully predicted in 

isolation, but incorporating these steps into T cell epitope predictions as a separate selective 

step does not result in notable performance gains beyond MHC binding.
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COMBINING MHC BINDING AND ELUTION DATA TO IMPROVE PREDICTION 

PERFORMANCE

The elution of MHC ligands naturally processed and presented by antigen-presenting cells 

and their identification by mass spectrometry have rapidly advanced in recent years, and 

it is now possible to routinely generate data sets with thousands of MHC ligands. As 

described above, efforts to learn motifs unrelated to MHC binding that enable identification 

of naturally processed and presented ligands and can be transferred to T cell epitope 

predictions have been disappointing. However, large-scale ligand elution data are still highly 

useful to improve the prediction of MHC binding overall. The analysis and interpretation of 

MHC eluted ligand data to improve MHC ligand prediction can be challenging if the ligands 

are eluted from cells expressing multiple MHC molecules and thus do not have well-defined 

MHC restriction. Experimental approaches to address this include the use of mono-allelic 

cell lines, such as in Abelin et al. (120), or the use of cell lines expressing a secreted form 

of specific MHC molecules, which was pioneered by the Hildebrand group (121). However, 

the use of such cell lines is not always possible, and computational approaches have been 

proposed to deconvolute data gathered in the context of multiple MHC molecules. Bassani-

Sternberg et al. (122) demonstrated how the unsupervised Gibbs clustering approach 

developed by Andreatta et al. (123) could be elegantly used to deconvolute MHC class I 

ligand data. Later, Gfeller and colleagues extended this approach and suggested a framework 

for deciphering and annotating HLA-I motifs based on co-occurrence of alleles across large 

MHC ligand data sets (124). Other studies applied binding prediction methods to infer the 

MHC restriction of each ligand (125). Independent of the approach utilized, the analyses 

result in long lists of MHC ligands and their putative MHC restriction.

The availability of large MHC ligand data sets allowed training machine learning algorithms 

that demonstrated high performance in particular for the prediction of other MHC eluted 

ligands but also to a lesser extent for T cell epitopes (120, 126, 127). While this shows 

that MHC ligand data are a rich source of information, there are downsides in that the 

numbers of alleles covered are still comparably low (although this is rapidly changing), 

and more importantly, MHC ligand elution data are not quantitative in contrast to MHC 

binding data. Given that these two types of data measure overlapping characteristics, it is 

desirable to develop prediction algorithms that can benefit from both MHC binding and 

MHC ligand elution data. This was implemented in NetMHCpan version 4.0 by Jurtz et 

al. (127), which took MHC binding data covering 130 MHC class I alleles and MHC 

ligand elution data covering 55 alleles and combined these to train a single neural network 

with a novel architecture that outputs both predicted binding affinity and likelihood of 

being an eluted ligand for a given peptide, which enables the combined training. This 

approach had better performance than models trained on each data set separately for 

both for class I and class II (117, 127). An alternative approach for integrating MHC 

binding and MHC ligand data was implemented in the MHCFlurry tool (128), where the 

discordance between the qualitative eluted ligand and quantitative binding affinity data 

was handled using measurement inequalities in the machine learning cost function. This 

approach also demonstrated improved performance in particular for prediction of ligand 
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elution data, further supporting that combining MHC binding and elution data generates 

superior prediction models.

A recently proposed novel approach to utilize MHC ligand elution data from cell lines 

expressing multiple MHC molecules is to make the assignment of MHC restriction to 

individual peptides a concurrent step in the training of a pan-allele ligand predictor, 

which was implemented as an extension of the NNAlign framework described above. This 

extension is capable of taking a mixed training set composed of single-allele (peptides 

assigned to single MHCs) and multiple-allele data (peptides with multiple options for 

MHC assignments) as inputs and fully deconvoluting the individual MHC restriction of 

all sequences while simultaneously training a pan-specific MHC binding predictor covering 

the binding specificities of all the MHCs present in the training set (129). This promises to 

be the next conceptual advance for prediction of both MHC class I and class II, as it allows 

compiling even larger combined data sets from both MHC binding and MHC ligand elution 

experiments. It has to be stressed again that integrating MHC ligand elution data sets does 

not seem to provide insights into fundamentally distinct properties of ligands in contrast to 

binding, but that the main advantage is simply the increase in the amount of data that can 

be used for training, which provides for a more refined understanding of the MHC binding 

motif.

IDENTIFYING T CELL EPITOPES USING MHC BINDING PREDICTIONS

The ultimate goal of most MHC binding and MHC ligand processing predictions is the 

identification of T cell epitopes. These applications require translating how differences in 

predicted MHC binding affinity or in the probabilities of being an MHC ligand relate to 

T cell recognition. The first systematic assessment that compared MHC class I binding 

affinity to T cell epitope recognition revealed that an affinity measurement of IC50 < 500 

nM is a useful threshold to identify ~90% of class I restricted T cell epitopes (130). While 

this first assessment was largely based on data for HLA-A*02:01, a much larger data set 

of T cell epitopes covering diverse MHC alleles has become available from the Immune 

Epitope Database (IEDB) (64). Analysis of the IEDB data set confirmed the usefulness of 

500 nM as a general threshold that captured about 85% of all epitopes when epitopes from 

all alleles were considered together (131). However, it also revealed significant variability 

of this threshold’s performance when epitopes restricted by individual HLA alleles are 

considered separately. The frequency of peptides that are predicted to bind at <500 nM 

varies substantially between MHC alleles, reflecting the difference in permissiveness of their 

binding motifs. Alleles that have a high frequency of binding peptides showed clustering 

of T cell epitopes at the higher end of the binding range, while alleles that had few 

predicted binders showed more T cell epitopes at lower affinity ranges. Incorporating these 

findings into epitope candidate selection can be achieved by using HLA allele–specific 

binding affinity cutoffs. However, concerns about study bias and the desire to have epitope 

candidates for different HLA alleles equally represented support a different approach of 

using a percentile ranking system. Such percentile ranks are established by predicting IC50 

values for peptides from a large set of protein sequences for each MHC allele of interest, and 

establishing buckets that identify the top 0.1 percentile of IC50 values, the 0.1–0.2 percentile, 

and so on. Any predicted IC50 value can then be transformed into percentile values using 
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these buckets. Based on the analysis of MHC class I–restricted epitope data, we would 

consider 2% to be a minimum predicted binding affinity (covering >95% of epitopes), 1% 

covering >80% percent of all epitopes, and 0.5% a threshold for high-affinity binders that 

are enriched for T cell epitopes. These thresholds were confirmed to be applicable for the 

identification of MHC class I–restricted neoepitopes in cancer cells (132, 133), and in a 

large-scale comparison of different prediction methods to identify epitopes derived from 

vaccinia virus (134).

For MHC class II molecules, an IC50 < 1,000 nM threshold was established using the same 

methodology used to establish the 500 nM threshold for class I (135). A thorough evaluation 

of MHC class II allele–specific thresholds using percentile cutoffs or IC50 values remains to 

be performed.

THE IMPACT OF MHC/HLA POLYMORPHISM: WHICH ALLELES TO 

CONSIDER

As different MHC alleles can have very different binding specificities, it is necessary to 

define which alleles are considered when making T cell epitope predictions. Importantly, 

the answer to this question will strongly depend on the application. If a study is testing 

candidate epitopes that are intended to cover a broader human population, it is necessary to 

cover a sufficient number of alleles expressed by most individuals in that population. This 

can be achieved by covering representative alleles of different supertypes of HLA molecules. 

Such supertypes of HLA molecules have been defined based on grouping together MHC 

alleles that share similar binding specificity, and they include ten major MHC class I (136) 

and ten MHC class II (137) supertypes. Alternatively, peptides can be assessed for their 

ability to cover a panel of alleles that represent all MHC molecules expressed in a significant 

frequency worldwide. While the supertype concept is useful to explain broad MHC binding 

patterns, we prefer to pick peptides predicted to bind to specific MHC alleles. We have 

found that approximately 25–30 HLA alleles for both class I (138) and class II (139) provide 

coverage for the most common allelic variants expressed in most well-studied ethnicities.

For MHC class II, we found that promiscuous peptides, defined as those capable of binding 

multiple common HLAs, are often dominant and account for approximately 50% of the 

total response (140). We further found that due to the high cross-reactivity between alleles, 

predicting peptides on the basis of the median MHC binding for a limited set of HLA alleles 

representative of main binding patterns was most effective in predicting responses of patient 

populations exposed to various pathogens or allergens (141). In the case of HLA class I, 

development of a similar single predictor has not yet been achieved, perhaps because of the 

more limited cross-reactivity across the main class I supertypes.

In contrast, if the goal of a study is to define epitopes for a specific human individual, 

the MHC alleles expressed by that host should be the focus. This is where the value of 

pan-allelic prediction approaches that are able to make predictions for all MHC alleles 

(including understudied ones) has greatly improved the ability to perform such personalized 

predictions. This is of particular importance in cancer for the discovery and evaluation of 

neoepitopes, which are inherently personal to a specific host (142, 143).
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PREDICTIONS OF T CELL IMMUNOGENICITY

Prediction of which peptides are not just MHC binders or eluted ligands, but are 

immunogenic, meaning they trigger a T cell response, is highly desirable but also 

highly challenging. T cell receptors are generated in stochastic processes, and substantial 

differences in TCR repertoires exist between individuals. Despite the stochasticity of the 

TCR repertoire, it is possible (and likely) that at least on average, some residues or residue 

combinations in an MHC ligand that face the TCR are more likely to induce a response 

than others. For MHC class I, it was indeed possible to derive a score based on amino acid 

composition that separates MHC-binding peptides of similar affinity into immunogenic and 

nonimmunogenic peptides (144). However, while this separation was statistically significant, 

it was far from perfect. Similar results were obtained for MHC class II (145).

OUTLIERS ARE REAL. AND THEY ARE OUTLIERS

The advent of high-throughput MHC ligand identification by mass spectrometry has not 

only improved the ability to predict such ligands, but it has also led to the discovery of a 

number of highly unusual peptide ligands that would not have previously been expected to 

be presented but that have been reproducibly identified by different groups. This includes 

peptides that are not simple cleavage products of protein sequences but appear to have been 

spliced together after protein expression (146, 147). Another unexpected finding has been 

the identification of peptides binding to MHC class I molecules that extend past the expected 

termini, several of which have been confirmed by X-ray crystallography (148–152). For 

C-terminally extended peptides, which appear to be more common, it was shown that certain 

amino acids following the C-terminal anchor residues in a peptide are capable of inducing 

structural changes in MHC molecules that open up the C-terminal pocket and allow for 

extension of the peptide out of the pocket (150, 152, 153). Comprehensive profiling of HLA 

class I alleles in Reference 153 revealed that the ability to bind such C-terminal extended 

ligands is shared by at least 8 of 54 studied alleles. Traditional MHC binding prediction 

approaches will likely miss unconventional peptide ligands such as these, and this has to 

be taken into consideration when applying them for epitope discovery. At the same time, it 

is important to not throw out the baby with the bathwater: The majority of T cell epitopes 

discovered so far do not require peptide splicing or changes in the structural conformation 

of MHC molecules. When algorithms are used to down select which peptides to test for 

T cell recognition of the most likely targets, it is appropriate to prioritize conventional 

candidates, while keeping in mind that such candidates do not represent the totality of 

possible recognized targets.

THE IMPACT OF EXPOSURE HISTORY, SEQUENCE CONSERVATION, AND 

CROSS-REACTIVITY ON T CELL EPITOPE RECOGNITION IN HUMANS

Humans are continuously exposed to foreign antigens, resulting in the generation of a 

pool of memory T cells whose epitope specificity was shaped by prior exposures. These 

memory T cells can rapidly re-expand when they encounter the epitope again. Importantly, 

an epitope may be contained in a different antigen than the original one, and it can still 

be recognized even if not 100% conserved. For example, preexisting T cell immunity to 
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the pandemic 2009 influenza strain was found in blood samples from individuals gathered 

years prior, which confirmed that T cells could recognize epitopes in the more conserved 

proteins of the pandemic strain (154). Such cross-reactive responses were shown to be 

predictive of protection from symptomatic disease (155). Similarly, in the case of dengue 

virus, individuals that were infected by viruses with two different serotypes show a skewing 

toward recognition of epitopes that are conserved, and therefore cross-reactive between the 

two strains, compared to individuals that have been infected only once (139). In the case of 

pollen allergens, where the exposure history of individuals cannot be readily ascertained, 

epitopes conserved across different pollen allergens have a higher likelihood of being 

recognized (156), suggesting again that repeated exposures to the same epitopes drives the 

dominant T cell specificity.

Conservation of epitopes can also dampen their recognition by T cells. It is expected that 

epitopes that are found conserved in proteins from the host will not be recognized by T cells, 

as such self-reactive T cells should have been negatively selected during maturation. For 

humans, such reduced recognition of self-peptides could indeed be confirmed, but to a much 

lesser degree than expected (157), confirming that negative selection is not a straightforward 

yes/no process (158). In addition to tolerance of self-proteins due to negative selection, 

epitopes highly conserved across bacterial species, including those making up the human 

microbiome, could also be less recognized to avoid chronic inflammatory processes. Indeed, 

there is evidence for increased tolerance of epitopes from Mycobacterium tuberculosis that 

were conserved across the microbiome to be less frequently recognized (157), although 

this finding could not be universally confirmed in other systems (159). Importantly, T cell 

epitope recognition is heavily shaped by the antigens in which an epitope is found. This 

can be incorporated into T cell epitope prediction schemes (160): If the goal is to identify 

epitopes recognized in a viral species, peptides contained in only one isolate need to be 

avoided. If the goal is to identify epitopes that could be used as diagnostics for specific 

infections, epitopes conserved in other antigens need to be avoided. And so on. Several tools 

to assess the conservation and sequence overlap of epitopes exist to facilitate such study 

designs in the IEDB (161, 162).

CURRENT CHALLENGES FOR THE FIELD

While a lot of progress has been made in the development of T cell epitope predictions, a 

number of challenges remain. Some of these are incremental, but nevertheless important: 

The utility of HLA allele–specific thresholds needs to be further explored when applied to 

the de novo prediction of epitopes. More generally, for MHC class II–restricted epitopes 

some groups have reported poor results of epitope predictions (163), which are at odds 

with our experience and need to be more thoroughly investigated. Broadly speaking, the 

performance of all algorithms needs to be (re)assessed for the ability to identify T cell 

epitopes in data sets that are large-scale, cover multiple alleles, and were generated in a 

consistent fashion. This will enable clear recommendations for what methods and thresholds 

to use for predictions in practice.

In addition to the need for incremental changes, several new challenges have emerged 

that could significantly shape the T cell epitope prediction field in the future. Three of 
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these that we consider particularly important are the following. (a) First is integration 

of RNA expression data into epitope predictions. It is obvious that a peptide that is not 

expressed cannot be recognized. But the relevant thresholds and kinetics of expression that 

impact which antigens are most visible to the immune system remain to be determined. 

(b) Second are TCR-specific epitope predictions. New technologies have enabled routine 

sequencing of epitope-specific TCRs, and such data are now becoming available in the 

IEDB and other databases (164). Several pioneering methods have established that it is 

possible in principle to determine what epitope is recognized by a given TCR in a controlled 

setting (165,166). The ultimate goal of such methods is the de novo identification of an 

epitope given a TCR sequence from a T cell of unknown specificity. With enough data 

available, it should be possible to achieve this. (c) Third is prediction of neoepitopes that 

arise from somatic mutations in cancer cells as targets of T cell responses. In this context, 

factors not previously considered for traditional epitope predictions become relevant, such 

as clonality and expression level of the mutation. Common to all of these challenges is 

the need to provide community-accepted data sets and metrics that allow comparison of 

different prediction approaches in an unbiased fashion. If one thing is for certain, it is that 

this challenge will remain.
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Figure 1. 
Overview of the biological process, experimental assessment, and computational prediction 

of T cell epitope recognition. (a) Overview of the main cellular mechanisms involved in 

antigen processing, presentation, and recognition of T cell epitopes that have been included 

in computational predictions. (Left) MHC class I–restricted T cell epitopes primarily arise 

from intracellular antigens that are cleaved by the proteasome and transported into the ER by 

TAP, where they can bind to MHC class I molecules that get transported to the cell surface, 

where they can be recognized by CD8+ T cells. Proteins and peptides are depicted as beads-
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on-a-string, with red circles indicating amino acids that are C-terminal residues of peptides 

presented by MHC molecules. In contrast, MHC class II–restricted T cell epitopes (right) are 

primarily derived from extracellular proteins taken up by professional APCs that are cleaved 

in lysosomal vesicles, where they can bind to MHC class II molecules, be transported to 

the cell surface, and be recognized by CD4+ T cells. Dark purple circles indicate amino 

acids at the C-terminal end of the core binding to MHC-II. (b) Three main categories 

of experimental assays have been utilized to characterize the steps involved in antigen 

processing and recognition of T cell epitopes. (Left) MHC binding assays that determine the 

affinity of a synthetic peptide to a specific MHC molecule. (Middle) MHC ligand elution 

assays that isolate and identify peptides bound to MHC molecules on the cell’s surface as 

a result of natural antigen processing and presentation. (Right) T cell epitope recognition 

assays, in which the ability of T cells to interact with and/or respond to a candidate epitope 

is determined. (c) Approaches to the computational prediction of T cell epitopes, starting 

with pioneering use of MHC motifs such as SYFPEITHI (left) (47), in which allowed 

amino acids at anchor positions (blue bolded) and at auxiliary anchor positions (purple) were 

identified based on a heuristic analysis. This was followed by machine learning approaches 

that were explicitly trained on quantitative data such as BIMAS (middle) (50), where 

numeric values would be assigned for each of the 20 conventional amino acids (rows) at 

each position in a 9-residue peptide (columns), so that they best reproduce measured binding 

affinities for a set of peptides that were previously tested (the training data). Finally, current 

neural networks approaches have custom architectures that allow training on combined data 

from multiple MHC alleles and from both MHC binding and elution data, such as the recent 

NetMHCpan version 4.0 (right) (127). Abbreviations: APC, antigen-presenting cell; ER, 

endoplasmic reticulum; TAP, transporter associated with antigen processing; TCR, T cell 

receptor.
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