Skip to main content
. 2024 Feb 20;14(9):6443–6461. doi: 10.1039/d3ra06927c

Table 6. Reported carbonation studies using different rock minerals.

Main mineral Concentration (g L−1) Temperature (°C) Pressure Volume of reaction (L) CO2 intake % leaching Carbonation yield and CO2 fixed Residence time Ref.
Serpentine 150 Room temperature 8 atm ∼6.2 14–18% CO2 17.3 (Mg) 17.9%, 0.215 g CO2 per g solid 6 h 48
Olivine 100 185 6.5 MPa 0.045 18.2% CO2 34 (Mg) 74.8%, N.Q. Up to 6 h 63
Serpentine/lizardite 50–150 22 10.5 atm 0.3 (reactor size) 18.2% CO2 N.Q. 30%, 0.55 g CO2 per g solid 2.25 h 61
Lizardite 150 100–150 20–150 ∼0.3 100% CO2 N.Q. 30%,a N.Q. Up to 6 h 64
Lizardite 150 Room temperature 0.4–1.6 bar ∼5.0 14–18% CO2 ∼15.8% 33.3%, 0.08 g CO2 per g solid 6 h 60
Olivine ∼200 Up to 190 40–100 bar 0.01 100% CO2 N.Q. 100%, N.Q. Up to 6 h 59
Rich Mg-bearing silicates 100 185 20.7–38.6 bar 0.6 (reactor size) 100% CO2 N.Q. 71%, N.Q. 5 h 57
Olivine 150 Room temperature (mineral dissolution) – 35–40 °C (carbonation) 3 bar (dissolution) – ambient pressure (carbonation) 0.17 1 g per L HCO3 0.4% (Mg) 6.9%, N.Q. 5 days (mineral dissolution) + 12 h (carbonation) This study (not optimized)
Wollastonite 2 Room temperature 2 bar 2 100% CO2 N.Q. N.Q., 0.14 g CO2 per g solid 22 days 68
a

MgCO3 yield.