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Abstract

With rapid development of computing technology, Bayesian statistics have increasingly gained 

more attention in various areas of public health. However, the full potential of Bayesian 

sequential methods applied to vaccine safety surveillance has not yet been realized, despite 

acknowledged practical benefits and philosophical advantages of Bayesian statistics. In this paper, 

we describe how sequential analysis can be performed in a Bayesian paradigm in the field of 

vaccine safety. We compared the performance of the frequentist sequential method, specifically, 

Maximized Sequential Probability Ratio Test (MaxSPRT), and a Bayesian sequential method 

using simulations and a real world vaccine safety example. The performance is evaluated using 

three measurements: false positive rate, false negative rate, and average earliest time to signal. 

Depending on the background rate of adverse events, the Bayesian sequential method could 

significantly improve the false negative rate and decrease the earliest time to signal. We consider 

the proposed Bayesian sequential approach to be a promising alternative for vaccine safety 

surveillance.
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1. Introduction

Because vaccine adverse events (AE), especially rare AE, may not be detected during 

pre-licensure clinical trials due to limited sample size, it is crucial to continually monitor the 

safety of vaccines in the larger population after they are approved for use. To ensure that 

any unexpected elevated risks of AE are detected at the earliest possible time, sequential 

analyses are performed as data accumulate. For example, the Centers for Disease Control 

and Prevention (CDC) has routinely performed rapid-cycle sequential analyses to monitor 
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the safety of newly approved vaccines, including seasonal influenza vaccines [1,2,3], 

rotavirus vaccines [4], Tdap vaccines [5], and human papillomavirus vaccines [6].

In a frequentist paradigm, when data are accumulated and analyzed sequentially, the issue 

of multiple testing is raised, and therefore efforts are made to find appropriate stopping 

boundaries to control the overall type I error rate below a pre-specified significance level, 

such as 0.05. Various stopping boundaries have been proposed in a group sequential setting, 

such as the constant Pocock [7] boundary, the conservative O’Brien and Flemming [8] 

boundary, and boundaries that utilize alpha spending functions [9,10]. Those boundaries are 

most suitable for clinical trial studies, wherein there are a small number of discrete analysis 

time points. In post-licensure vaccine safety monitoring, the most commonly used statistical 

method for sequential analysis is Maximized Sequential Probability Ratio Test (MaxSPRT) 

[11], which is similar to group sequential methods, but can continuously analyze data 

without the interim sample size constraint. The stopping boundaries in MaxSPRT are 

determined in advance through exact calculations based on an estimated total length of 

surveillance and a predefined significance level. The limitations of the above frequentist 

sequential analysis (group and continuous) have been discussed in much literature [12–

14]. Most notably, frequentist inference, especially some group sequential inference, on 

the parameter of interest is indirectly estimated by calculating Prob(Data|parameter), and 

the p-value based on this indirect calculation is often misinterpreted. For example, it is 

often wrongly believed that p-value represents probability that the null hypothesis is true. 

Frequentist sequential methods also suffer from the dilemma whether the analysis should 

continue once the stopping boundary is exceeded. According to the statistical inference 

theory, the surveillance should stop as soon as we detect a signal since further analyses 

or statistical tests are not valid due to the fact that no more type I error is to be spent. 

However, in reality in many situations it is desirable to continue the surveillance regardless 

of a signal being detected or not because of minimal effort in accruing data. In addition to 

the above frequentist philosophical limitations, the MaxSPRT method in specific has some 

drawbacks. First, in the design stage, the upper limit of the surveillance length needs to be 

pre-specified, but it is difficult to precisely determine this value due to effects of this value 

on overall Type I error rate, overall power, the minimization of expected time to signal and 

the realistic consideration of surveillance ending time. In most situations, the value of the 

upper limit is selected with some component of arbitrariness, e.g. it was set as 20% more 

than the maximum observed number of AEs in previous years in one of influenza vaccine 

sequential surveillance studies. A wrong choice of upper limit would affect critical value 

(threshold) and thus significantly decrease or increase the designed type I error rate and 

statistical power. Second, although point estimates of the relative risk are usually reported 

using the MaxSPRT method, confidence intervals are difficult to derive and generally not 

reported. Third, if the true relative risk is low and the upper limit is also low, which is the 

case for most rare AEs, the type II error using the MaxSPRT method is considerably high, 

e.g. with a true relative risk of 1.2 and a upper limit of 40, the type II error can be as high as 

80% [11].

The nature of sequential analysis, i.e. continuously updating analyses as data accumulate, 

is more in line with the Bayesian paradigm than with the frequentist approach because 

results from previous interim analyses can be used to form a new prior for the current 
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and future analyses. With a Bayesian approach, we directly measure the probability of the 

parameter of interest greater or lesser than certain values or any other characteristics of 

the parameter (such as CI) from posterior distributions. Bayesian sequential methods have 

been recently adopted for monitoring clinical trials [13,15], and meta-analysis [16], however, 

the full potential of Bayesian sequential methods applied to post-licensure vaccine or drug 

surveillance has not yet been realized.

Our paper is organized as follows. In Section 2, we review the concept, assumptions and 

the basic statistical design and model form used in the frequentist MaxSPRT method for 

monitoring elevated safety risks of AEs following vaccination. In Section 3 we present the 

general Bayesian paradigm and how a sequential Bayesian approach is applied to vaccine 

safety surveillance. In Section 4 we evaluate the performance of the frequentist method 

MaxSPRT and the Bayesian approach through simulations. In Section 5 we provide an 

example of using a sequential Bayesian method to estimate the relative risk of febrile 

seizure following influenza vaccines during 2010–2011 influenza season, and then compare 

Bayesian sequential results with MaxSPRT results. We then conclude in Section 6 and 

discuss pros and cons of using a Bayesian approach in a post-licensure vaccine surveillance 

setting.

2. Frequentist sequential methods in post-licensure safety surveillance

For frequentist sequential methods, both group and continuous sequential methods have 

been proposed to monitor post-licensure vaccine safety, although disagreement exists in 

which method performs best [16,17]. We provide a brief overview of the two methods 

below in the context of vaccine safety surveillance. In both methods the null hypothesis is 

formulized as

H0 :θ = θ0

The composite alternative hypothesis is formulized as

H1 :θ > θ0,

where θ represents the relative risk of an AE following vaccination, and in most cases θ0 is 

set as one. Let Y t be a random variable representing the number of patients who have the AE
after vaccination up to time t. For most rare AEs, it is reasonable to assume that Y t follows a 

Poisson distribution with a mean of θμt, where μt represents the estimated number of patients 

who have the AE during the time interval 0, t  if they had not received vaccination, which 

reflects a known background rate of the AE . μt can be derived from the historical data or 

previous literature. Thus we have that

Y t ∼ Poisson θμt ,

with θ = 1 under the null hypothesis, and θ > 1 under the alternative.
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For both group and continuous sequential methods, we can use the likelihood ratio as the test 

statistic.

Λ = sup L θ ∣ Y t : θ ∈ Θ
L θ ∣ Y t : θ = 1 ,

where Θ is the parameter space under the alternative hypothesis H1 . L θ ∣ Y t  is the 

likelihood function. After substituting the likelihood function with the Poisson density 

function and replacing the sup function with the maximum likelihood estimator θ̂ = yt
μt

, the 

log likelihood ratio test statistic is

ln Λ = μt − yt + ytln yt/μt ,

where yt is the observed number of patients who experienced the AE. For continuous 

sequential methods, t represents the time when every new case is collected, while for group 

sequential methods, t represents the interim time when analysis is performed. Assuming 

N is the maximum surveillance length in terms of expected number of cases, the stopping 

boundary for the continuous MaxSPRT is

T = min(T̂ , N)

where

T̂ = inf t > 0 : ln Λ > = B t ,

which is the time we reject H0 . B t  is a function of time t, which can be a time-invariant flat 

constant proposed in the original MaxSPRT paper [11] or a time-varying boundary which 

changes over time [18, 19]. For group sequential method, the stopping boundary can be 

defined as B(t) = a N/Y t
1 − 2δ [20]. When δ = 0, it gives the O’Brien-Fleming boundary, 

and when δ = 1, it gives a Pocock boundary. Other boundary functions can be defined 

in a similar fashion. Although B t  can be defined differently in continuous and group 

sequential methods, the key difference between the two methods lies in how to define t. 
For the group sequential method, t = 1, …, G, where the sample size at each time point 

n1, n2 − n1, n3 − n2, …, nG − nG − 1 > > 1. When nG − nG − 1 = … = n3 − n2 = n2 − n1 = 1, it becomes the 

continuous sequential method. In reality, due to various reasons, we may not perform 

analysis each time the sample size increases, and may instead analyze data based on 

calendar time, such as weekly.

3. Bayesian sequential approach

Bayesian statistical inference is built upon Bayes’ rule, which can be expressed as

p(θ ∣ y) = p θ p y ∣ θ
p y .
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That is, the posterior distribution of the parameter θ given the observed data y can be 

obtained if we know the prior probability of θ and the conditional probability p y ∣ θ . In 

vaccine safety surveillance, most often the parameter of interest θ represents relative risk or 

risk difference between the exposed group and the control group.

If θ represents relative risk, we propose to use a Gamma distribution as one of the priors, 

because 1) the relative risk is always greater than or equal to zero, and the Gamma 

distribution models a random variable that is restricted to nonnegative values; and 2) Gamma 

and Poisson are conjugate, therefore we can obtain the posterior as a Gamma distribution 

analytically. Assuming the number of AEs Y t during the time interval 0, t  follows the 

Poisson distribution with a mean of θμt,

Y t ∼ Poisson θμt .

If the prior is the Gamma distribution

θ ∼ Gamma α, β ,

then the resulting posterior distribution is

θ ∣ Y t ∼ Gamma α + yt, β + μt .

We can also use other non-negative priors, such as lognormal, chi-squared, or uniform with 

a non-negative range. For those priors, a Markov Chain Monte Carlo (MCMC) algorithm is 

used to obtain the posterior distribution. Note, we can add any covariate or confounders in 

the model, for example, we can define

μt = b1x1t + b2x2t + …b3xnt,

where x1t, x2t represent any confounder, such as age, site, and season.

If the risk difference is the parameter of interest, we can use a Beta-Binomial model 

described in Tang et al. [21]. Specifically, the risk difference can be modeled using the 

following Bayesian approach. We assume the number of patients who experienced an AE Y ijt

follows a Binomial distribution, i.e.

Y ijt ∼ Binomial nijt, pijt ,

where j = 0, 1 indicating the control group and the exposed group respectively, i = 1…k
representing k strata, such as age, sex, site, etc, and t = 1…, T  represents each analysis time 

point. We set the prior as

pijt ∼ Beta αijt, βijt .
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α and β can follow any hyper prior distribution, such as Gamma distribution. The risk 

difference δ is calculated as

δt = E pi1t − E pi0t .

Whether the parameter of interest is relative risk or risk difference, at each interim analysis 

the posterior distribution of θ or δ fully summarizes all current information about this 

parameter, including a measure of central tendency and uncertainties. It is common to use 

the highest density interval (HDI) to form stopping boundaries and decide when to report 

a signal and possibly stop the surveillance [16]. For example, if the relative risk is the 

parameter of interest, we recommend reporting a signal if a highest density interval excludes 

one (Figure 1). That is, we conclude there is an elevated risk of AE at time T , where

T = inf t > 0 :P θ > = ζ1 and θ < = ζ2, 1 < ζ1 < ζ2 ∣ Y t > = 1 − ϵ ,

(1)

ϵ is analogous to type I error rate in the frequentist approach, which can be set as 0.05 or 

0.025. In some studies, especially clinical trial studies, a stopping boundary is also defined 

when

P θ < = ζ1 or θ > = ζ2, ζ1 < 1 < ζ2 ∣ Y t < = ϵ,

(2)

indicating that a large area under the posterior density curve includes one (Figure 2). 

However, in vaccine safety surveillance, because of minimal effort in accruing data, we do 

not stop the surveillance if there’s not enough evidence to show an elevated risk. That is, 

if the above stopping boundary (eq. 1) is not reached at the current analysis time point, the 

surveillance continues to the next analysis. In some situations, we continue the surveillance 

even if the stopping boundary (eq. 1) is exceeded. In reality, eq. 1 serves more as a signal 

detection rule rather than a stopping rule. In a Bayesian sequential paradigm, we do not 

distinguish between continuous and group sequential analyses. The next analysis can occur 

at any time point with just one additional sample or with thousands more new cases. Unlike 

frequentist sequential methods wherein the stopping rule is designed to maintain the overall 

type I error rate at a pre-specified level, with Bayesian methods the decision of stopping is 

completely based on the current posterior distribution of the parameter and is not impacted 

by future unhappened decisions. Therefore, adjusting the overall type I error is never a goal 

of any Bayesian sequential study, not to mention the type I error is a concept only in the 

frequentist method. However, we do want to evaluate and minimize the false positive rate 

regardless of the method we used, which we describe in the following section.

4. Simulations

We simulated data under different scenarios with three background rates to evaluate the 

performance using both the frequentist (MaxSPRT) approach and the Bayesian sequential 

approach described above. Suppose there are three AEs following vaccination under 
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surveillance with three different background rates. We set the background rate of the first 

event as 12.7 per 1000 person-years, which converts to 2.8e-4 in an 8-day risk window. We 

obtained this number based on the rate of febrile seizures following varicella vaccine [22]. 

We set the background rate of the second event as 25.4 per 1000 person-years, which is 

twice as high as the background rate of the first event. We then set the background rate of 

the third event as 6.35 per 1000 person-years, which is half of the background rate of the 

first event. We assumed the number of the events occurring follow three separate Poisson 

processes with different means. We also assumed vaccine doses were evenly distributed 

across 10 time points with 50,000 doses accumulated at each time point. The true relative 

risks were set as 1.2, 1.5, and 2, respectively. 1000 replicates were generated for each 

scenario with a different background rate and a different relative risk. We then applied 

both the MaxSPRT method and the Bayesian sequential method to each set of simulated 

data. For the MaxSPRT method, Type I error rate was pre-specified as 0.05. Critical values 

used to reject the null hypothesis and declare a signal were obtained based on maximum 

surveillance lengths expressed as expected number of events. For the Bayesian method, we 

reported a signal if a 95% highest density interval excluded one. That is, ϵ = 0.05 in eq 

(1). If we failed to report a signal by the end of the analysis, we concluded the risk of 

event following vaccination is not elevated. In each analysis we reported and examined the 

estimated false positive rate (FPR) and false negative rate (FNR). We also compared the 

average earliest time to signal using both methods. For the Bayesian approach, we also 

evaluated the sensitivity of priors with different parameters. We chose a Gamma distribution 

as the prior for evaluation with mode=1 and variance as 0.1, 0.5, 1, 2, and 5 respectively. 

The mode was set as one because we believe there was no elevated risk before we analyzed 

the data.

The simulation results based on 3 different background rates are shown in Tables 1–3, 

respectively. When the background rate is 12.7 per 1000 person-years, the FPR using a 

Bayesian method ranges between 6–10% for priors with different variances, while the FPR 

using the MaxSPRT method is around 0.8%. However, FNRs using a Bayesian method are 

much lower than ones with the MaxSPRT (26–30% vs. 62%) when the relative risk is 1.2. 

When the relative risk is 1.5, the difference in the FNR using the two methods is minimal, 

with the Bayesian approach slightly lower(0.1% vs. 0.3%). When the relative risk is further 

increased to 2, there’s no difference in the estimated FNR between the two methods (0%). 

When the background rate is doubled to 25.4 per 1000 person-years (Table 2), the FPR 

using a Bayesian method ranges from 9% to 11%, while FPR using the MaxSPRT method 

is 0.6%. However, the FNR using a Bayesian approach is lower than using the MaxSPRT 

method (6% vs. 29%) when the relative risk is 1.2. No difference was found when relative 

risk is 1.5 or 2. When the background rate is decreased to 6.35 per 1000 person-years, 

we found similar results. FPRs are higher (6–10%) for the Bayesian method than for the 

MaxSPRT method (2%), while FNRs are lower for the Bayesian method (48%−56%) than 

for the MaxSPRT method (79%) with a relative risk of 1.2. When the relative risk is set as 

1.5, the FNR using a Bayesian method ranges from 2–3% while the FNR for the MaxSPRT 

approach is more than 13%. No difference in the FNR exists when the relative risk is 

increased to 2.
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With regards to the average earliest time to signal, the Bayesian method performed better 

regardless of the relative risk and the background rate. The difference is most prominent 

(32% earlier for the Bayesian method) when the background rate is higher (25.4 per 1000 

person-years) and the RR is lower (1.2), which means on average 70,400 doses and 47 

cases might be avoided if we use the Bayesian approach in this scenario. For the Bayesian 

method with a Gamma prior, with the increase of the variance of the prior, the FPR increases 

while the FNR and earliest time to signal decrease (Figure 3), but not by a substantial 

amount, especially for the FNR. For example, when the background rate is 12.7 per 1000 

person-years, the FPR is 5.5% with a variance of 0.1 in a gamma prior; the FPR increases to 

9.6% with a variance of 5. The FNR is 2.9% with a variance of 0.1 and decreases to 2.6% 

with a variance of 5 when RR is 1.2. In addition, when the variance is greater than 1, the 

variance has very minimal impact on FPR, FNR, or earliest time to signal.

5. An example

We illustrate here the Bayesian sequential analysis method applied to the real-world vaccine 

safety data. We also present and compare results with those from the frequentist MaxSPRT 

method. The increased risk of febrile seizure following the administration of influenza 

vaccines is of concern for children younger than 5 years old. The CDC-sponsored Vaccine 

Safety Datalink established surveillance activity to monitor whether influenza vaccines 

are positively associated with an elevated risk of febrile seizure in young children. The 

sequential monitoring was conducted during the 2010–2011 influenza season for children 

aged 6 – 59 months who received their first dose of the trivalent inactivated influenza 

vaccine. A statistical signal of febrile seizure was found using a frequentist approach [23]. 

We re-analyzed the data using both MaxSPRT and Bayesian methods. For the Bayesian 

method, we chose to use a Gamma prior for the same reasons we described above:

Y p ∼ Gamma α, β ,

and we set α as 2.618 and β as 1.618 to ensure both the mode and the variance to be 1. 

Similarly as the above, the resulting posterior distribution is

θ ∣ Y t ∼ Gamma α + yt, β + μt ,

where yt and μt are the observed number of cases and the expected number of cases at 

week t, respectively. Table 4 shows signals generated using both the MaxSPRT method and 

the Bayesian method. The first signal generated by the Bayesian approach occurred during 

the week of October 10, 2010 (week 11) after 54,904 doses of influenza vaccines were 

administered, while the MaxSPRT produced a signal during the week of October 24, 2010 

after 88,592 doses of influenza vaccines were administered, which was two weeks later 

and 33k more doses. Figure 4 shows the posterior curves for the parameter of relative risk 

during week 7, 10, 13, 16, and 20. It shows strong evidence that the parameter of relative 

risk moved to higher values as the time passed. The estimated relative risk stabilized around 

2.98.
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6. Conclusions and discussion

In this study, we presented a Bayesian sequential approach used for continuously monitoring 

vaccine safety. We demonstrated how the Bayesian approach can be applied to vaccine 

safety surveillance in a sequential setting through both simulations and a real-world data 

example. We compared Bayesian and frequentist MaxSPRT results using both simulations 

and an example. We found the Bayesian approach can provide better performance in terms 

of the FNR and average earliest time to signal. On the other hand, the FPR using the 

Bayesian approach was slightly higher than using the MaxSPRT approach, especially when 

the background rate is low. Note that there is a tradeoff between the FPR and the FNR and 

earliest time to signal. Any single measurement does not fully assess the performance. We 

also need to notice that the Bayesian method has the flexibility to balance the FNR and the 

FPR to achieve desirable results. For example, in the above simulations, if we choose 97.5% 

instead of 95% credible interval as a signal reporting criterion, with a background rate of 

12.7 per 1000 person-years, the FPR would be reduced to 3%, and the FNR is still much 

lower than its frequentist counterpart (39% vs. 62%, Table 5). When we use the frequentist 

approach for sequential monitoring, the FPR (type I error) is usually pre-set at below 0.05. 

This is based on the implicit default assumption that false positive results are far more 

costly than false negative ones [24]. Much attention and efforts are often directed towards 

minimizing the FPR with little attention on the fact that the FNR may be dramatically 

increased. In vaccine safety, we believe the FNR is as important as the FPR, especially for 

rare and serious outcomes, such as Guillain-barrÃ© syndrome (GBS) and death. A large 

FNR indicates that we are not able to capture most real AE signals. Fortunately, for the 

MaxSPRT method this only occurs when the relative risk is below 1.5. When the relative 

risk is large enough, such as 2, both methods can well capture true signals. It is worth 

noting that the MaxSPRT method is designed on the assumption of continuous testing, 

which means a statistical test needs to be performed whenever a new case is observed. 

However, in reality it is not feasible nor desirable to have very frequent analyses. Therefore, 

in our simulations we simulated data and performed analyses in a way that is more likely 

to represent real world vaccine safety surveillance. This also explains why the FPR in the 

MaxSPRT method is much lower than the pre-defined Type I error rate (0.05).

In the past, one obstacle to adopting Bayesian sequential methods in vaccine safety is that 

extensive computer resources are required during Bayesian MCMC optimization routines 

[25]. However, with recent computing technology improvement and Bayesian software 

development, implementation of Bayesian sequential methods are neither difficult nor time-

prohibitive.

One of the criticism in using a Bayesian approach is that subjective information is 

incorporated through priors and different priors may lead to different conclusions. There 

is much debate in the literature on whether the Bayesian method should be subjective or 

more objective [26,27]. Since posterior distributions are actually weighted results between 

the prior and the likelihood, we can assess sensitivity of results to different priors. Emerson 

et al. [28] recommended that sensitivity analyses be performed and a contour plot be 

presented under varying prior parameters and important measures. Because the purpose of 

this paper is mainly for demonstration and comparison between Bayesian and frequentist 
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sequential methods for hypothesis testing, for the purposes of brevity and to be consistent 

with frequentist null hypothesis we chose priors with a mode=1, that means we assume the 

relative risk is most likely to be one. Under such a prior that favors no elevated risk, if we 

are still able to find strong evidence of an increased risk, then other priors that less favor no 

elevated risk would not change the direction of the results. This provides further support and 

credibility to positive signal reports. We did examine how the variance parameter of the prior 

affected the results, and we found larger variance would increase the FPR and decrease the 

FNR, because as the variance increases more weight is given to the parameter with values 

larger than one instead of closely centering around one.

Our study had several limitations. The first was that the simulation was based on only 

three background rates (6.35, 12.7, and 25.4 per 1000 person-years). We used 12.7 per 

1000 person-years to represent febrile seizure background rate, and we then doubled it to 

25.4 and also decreased by half to 6.35. Although febrile seizure is a relatively uncommon 

medical outcome, there are other very rare outcomes such as GBS which might be less than 

1 per 100,000 person-years. Future simulation work might be needed for rare outcomes with 

very low background rates. Another potential limitation was that we compared the Bayesian 

approach with the original flat boundary MaxSPRT method. A variant MaxSPRT with a 

time-varying boundary was recently introduced [29] and claims to reduce the time to signal. 

However, because most if not all vaccine safety sequential studies used the flat boundary 

MaxSPRT, we believe it is more meaningful to use the original MaxSPRT as a benchmark. 

In addition, we believe even if the Bayesian approach is not the best performed method, 

it has advantages, such as continuous surveillance, that other frequentiest methods can not 

provide.

The Bayesian sequential approach is an attractive alternative to the frequentist MaxSPRT 

method in vaccine safety surveillance. Although the FPR using the Bayesian method may be 

slightly higher than 0.05 with a 95% credible interval criterion depending on the background 

rate, the FNR is significantly decreased (e.g. from 80% to 50% or from 60% to 30%) for 

low relative risks, such as 1.2. In vaccine safety, we understand that high false positives 

can lead to additional work in terms of checking data quality and medical chart reviews, 

but with rare outcomes and often low relative risks, it is also important to lower the FNR 

so that we are able to capture most true AE signals in our routine surveillance. We favor 

using Bayesian sequential methods in vaccine safety surveillance because of following 

three main benefits: 1) the Bayesian approach provides full posterior distribution(s) of the 

parameter(s) of interest instead of only point estimates and test statistics, which means more 

information can be obtained from the posterior distribution, including interval estimates; 2) 

the philosophical awkwardness or the dilemma of whether the surveillance should continue 

once the stopping boundary is exceeded can be avoided in a Bayesian paradigm. In our 

perspective, it is extremely important to continue the surveillance as long as new data 

continue to be accrued; 3) the Bayesian method can model any parameter (such as risk 

difference) or any algebraic formulation of parameters, not restricted to only relative risk. 

In addition, it can directly incorporate confounders in the model, while in the frequentist 

MaxSPRT method, confounding variables can only be stratified and included through 

baseline value estimation. However, since the Bayesian sequential approach does not specify 
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a Type I error rate, it may not be suitable for clinical trial analysis wherein a strict false 

positive rate is required.
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Figure 1: 
A stopping rule using highest density interval (HDI). The gray area shows the probability of 

the parameter value in the interval of ζ1, ζ2  (interval excludes 1 ) is 1 − ϵ.
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Figure 2: 
A stopping rule using highest density interval (HDI). The gray area shows the probability of 

the parameter value in the interval of ζ1, ζ2  (interval includes 1) is 1 − ϵ.
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Figure 3: 
Impact of FPR, FNR and average earliest time to signal by variances in a Gamma prior for 

different scenarios with RR=1.2 and background rate (BR)=12.7, 25.4, and 6.35 per 1000 

person-years. The unit for time is the number of analysis time points.
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Figure 4. 
Posterior distribution curves of relative risks of febrile seizure following influenza vaccines 

during 2010–2011 season (the analysis signaled in week 11).
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