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ABSTRACT

Co-translational insertion of selenocysteine (Sec)
into proteins in response to UGA codons is directed
by selenocysteine insertion sequence (SECIS)
elements. In known bacterial selenoprotein genes,
SECIS elements are located in the coding regions
immediately downstream of UGA codons. Here, we
report that a distant SECIS element can also func-
tion in Sec insertion in bacteria provided that it is
spatially close to the UGA codon. We expressed a
mammalian phospholipid hydroperoxide glutathione
peroxidase in Escherichia coli from a construct in
which a natural E.coli SECIS element was located in
the 3'-untranslated region (3'-UTR) and adjacent to
a sequence complementary to the region down-
stream of the Sec UGA codon. Although the major
readthrough event at the UGA codon was insertion
of tryptophan, Sec was also incorporated and its
insertion was dependent on the functional SECIS
element in the UTR, base-pairing potential of the
SECIS flanking region and the Sec UGA codon.
These data provide important implications into
evolution of SECIS elements and development of a
system for heterologous expression of seleno-
proteins and show that in addition to the primary
sequence arrangement between UGA codons and
SECIS elements, their proximity within the tertiary
structure can support Sec insertion in bacteria.

INTRODUCTION

Selenium is a trace element that is vital for many life forms. It
occurs in cells in the form of small compounds and selenium-
containing proteins. In most selenoproteins, selenium is pre-
sent in the form of the amino acid selenocysteine (Sec). Sec is
encoded by UGA codons (1) and recognized as the 21st amino
acid in proteins (2) as it has its own codeword, tRNA (3-5)
and a Sec-specific elongation factor (6-9). UGA also serves

as a signal for termination of protein synthesis. To distinguish
between these two functions of UGA, a designated RNA struc-
ture, Sec insertion sequence (SECIS) element (10,11), is pre-
sent in selenoprotein mRNAs and directs Sec incorporation
into selenoproteins (11,12).

In both prokaryotes and eukaryotes, SECIS elements serve
as cis-elements that recognize specific trans-acting factors and
direct these factors to the ribosome. SECIS elements show
little primary sequence conservation, but possess common
secondary structures (within each domain of life) (13,14).
There is a key difference in the location of SECIS elements
in bacteria versus archaea and eukaryotes. In known bacterial
selenoprotein genes, SECIS elements are located in coding
regions immediately downstream of UGA codons such that
the distance between UGA and the apical loop of SECIS ele-
ments is ~20-25 nt; in contrast, in archaea and eukaryotes,
SECIS elements are present in 3’-untranslated regions
(3’-UTRs) and the distance between the UGA codon and
the SECIS element is highly variable (15). In addition,
bacterial SECIS elements reversibly bind Sec-specific elonga-
tion factor SelB, which in turn recruits selenocysteyl-tRNA%
and inserts Sec at the UGA codon; whereas in eukaryotes
SECIS elements are associated with a SECIS binding protein
(8,16), which in turn binds elongation factor EFSec/SelB.
In archaea, this issue has not been resolved. Previous data
suggested that archaeal SelB was similar to the eukaryotic
counterpart in that it lacked the SECIS binding domain
(17,18); however, a recently reported structure of an archaeal
SelB suggested that this protein might actually bind SECIS
directly, similarly to the bacterial SelB (19).

The differences in location and structural features of SECIS
elements in the major life kingdoms might represent evolu-
tionary preferences. To achieve Sec insertion at high effici-
ency, trans-acting factors must be in close proximity to the
ribosome, which is provided by the presence of SECIS ele-
ments immediately downstream of UGA in bacteria. However,
the coding region location of SECIS elements has disadvant-
ages, as the nucleotide sequences downstream of UGA codons
must satisfy both structural features of SECIS elements and
support insertion of specific amino acids as dictated by pro-
tein function. The compromise between the coding and the
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SelB-binding functions of SECIS elements might limit the
choice of sequences downstream of Sec as well as restrict
selenoprotein diversity. In eukaryotes and archaea, this
problem is addressed by having SECIS elements in 3'-
UTRs. The 3/-UTR location of SECIS elements also has addi-
tional advantages, such as (i) the processivity of Sec insertion.
3’-UTR SECIS elements can stably bind SECIS binding
proteins (20), increasing Sec insertion efficiency; and (ii) util-
ization of one stem-loop structure for insertion of multiple
Sec residues. However, the UTR location of the stem—loop
structure creates a different challenge as Sec insertion may be
slower due to distance factor. Introduction of additional trans-
acting factors that bridge ribosome, Sec insertion machinery
and SECIS elements through protein—protein and protein—
RNA interactions may partially alleviate this problem. The
difference in transcription and translation processes between
bacteria and eukaryotes is another factor that may affect evolu-
tion of SECIS elements. In bacteria, transcription and trans-
lation are coupled; therefore, a distant SECIS element might
not yet be transcribed when the upstream UGA is already
translated. Thus, a distant SECIS element in 3’-UTR might
not be favorable in bacteria, whereas this is not an issue in
eukaryotes due to separation of transcription and translation.

In this report, we expressed a mouse selenoprotein gluta-
thione peroxidase 4 (GPx4; also known as phospholipid hydro-
peroxide glutathione peroxidase, PHGPX) in E.coli using a
bacterial SECIS element located within the 3-UTR. We used
a construct, in which the UGA and the SECIS element were
bridged by base-pair interactions between the regions adjacent
to the SECIS element and the UGA codon. Our data show that
the 3’-UTR SECIS element can function in Sec insertion with
low efficiency in E.coli.

MATERIALS AND METHODS
Constructs

Mouse GPx4 was cloned from an expressed sequence tag
(gi:390827) (Invitrogen) using a 5’ primer 5'-GGAATTCCA-
TATGTGTGCATCCCGCGATG-3' and four overlapping 3
primers 5'-CCTAGTGGTGGTGGTGGTGGTGGAGATAG-
CACGGCAGGTCC-3', 5-TCAGCTAGTCGATCTGCATG-
CCCCTAGTGGTGGTGGTGGTGGTG-3, 5'-GCAACCGA-
TACGTAAACTACACTCAGCTAGTCGATCTGCATGCC-3
and 5'-CGGGATCCATTGGTGCAGACCTGCAACCGAT-
ACGTAAACTACAC-3'. The PCR product was digested with
Ndel and BamHI and ligated into a pET21b vector (Novagen),
which was digested with the same pair of restriction enzymes.

All mutants were based on the GPx4 expression construct
described above. The SECIS mutant, UAA mutant and cysteine
mutant were obtained using QuikChange® XL Site-Directed
Mutagenesis Kit (Stratagene). To generate the SECIS mutant,
primers 5-GTGTAGTTTACGTATCGGATGGAGGTCTG-
GACCAATGGATCC-3" and 5-GGATCCATTGGTCCA-
GACCTCCATCCGATACGTAAACTACAC-3’ were used.
Primers 5'-CGTGGCCTCGCAATAAGGCAAAACTGACG-
3’ and 5-CGTCAGTTTTGCCTTATTGCGAGGCCACG-3’
were used to obtain the UAA mutant. To generate the cysteine
mutant, primers 5'-CGTGGCCTCGCAATGCGGCAAAAC-
TGACGT-3' and 5'-ACGTCAGTTTTGCCGCATTGCGAG-
GCCACG-3’ were used. Additional controls that lacked the
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base-pairing potential, SECIS element and combination of
both were generated using ExSite™ PCR-Based Site-
Directed Mutagenesis Kit (Stratagene). For the former, pri-
mers 5'-p-ATCGGTTGCAGGTCTGCACCAATGG-3' and
5'-CTAGTGGTGGTGGTGGTGGTGGAG-3' were used. For
the second, primers 5'-p-GGATCCGAATTCGAGCTCCGT-
CGAC-3' and 5'-ACGTAAACTACACTCAGCTAGTCGAT-
CTGC-3" were used. The mutant that combined deletions of
SECIS element and base pairing was generated using primers
5'-p-ATCGGTTGCAGGTCTGCACCAATGG-3' and 5'-
ACGTAAACTACACTCAGCTAGTCGATCTGC-3'.

75Se labeling

The GPx4 expression construct and all mutants were expressed
in BL21(DE3) cells with or without co-expression of SelA,
SelB and SelC from the plasmid pSUABC (21). In each case,
10 ml cells were grown to ODggyo 0.6, 0.02 mCi of freshly
neutralized ">Se[selenite] was added, and the cell culture was
supplemented with 50 uM IPTG and 100 mg/l L-cysteine.
Cells were grown for 12 h at 30°C, collected by centrifugation
and broken by sonication. Cell lysates were fractionated on a
Talon™ resin (BD Biosciences). Eluted proteins were
subjected to SDS-PAGE and transferred to a polyvinylidene
difluoride (PVDF) membrane, and the pattern of 3Se radio-
activity was visualized using a PhosphorImager. The same
membrane was also subjected to western blot analysis using
anti-His-tag antibodies, then stripped and re-probed with
anti-GPx4 antibodies.

Protein expression

The strain carrying GPx4-SECIS and pSUABC and the strain
carrying pET21b and pSUABC were grown in 3 liters of
Luria—Bertani medium, cells were collected by centrifugation
and proteins purified according to The QIAexpressionist™
(Qiagen) using an Ni-NTA resin (QIAGEN). The proteins
were visualized on an SDS-PAGE gel by staining with Bio-
Safe™ Coomassie (Bio-Rad).

Mass spectrometry and selenium content analysis

The recombinant GPx4 expressed from a construct carrying a
3/-UTR SECIS element and purified using an affinity column
was thoroughly dialyzed in 0.4 M ammonium bicarbonate
and alkylated with iodoacetamide. Following tryptic digestion,
peptide sequences were determined by tandem mass spectro-
metry sequencing at the Nebraska Redox Biology Center
proteomics/metabolomics facility. The selenium content of
the recombinant GPx4 was analyzed by inductively coupled
plasma-emission spectrometry at the Chemical Analysis Facil-
ity at University of Georgia. Before the selenium analysis, the
sample was dialyzed against phosphate-buffered saline, and
the dialysis buffer was used as background metal ion content
control for selenium determination.

RESULTS
Design of expression constructs

To test whether a distant SECIS element can support Sec
insertion in bacteria, we developed a construct coding for
a full-size, Sec-containing mouse GPx4. In this construct,
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Figure 1. Design of the GPx4 expression construct containing a 3’-UTR SECIS element. The in-frame UGA codon that codes for Sec is shown inred. At the end of the
OREF, six histidine codons were added, followed by the stop signal, UAG (underlined). In addition, a 36 nt segment, which was complementary to the 36 nt
downstream of the Sec UGA codon, was cloned in the 3'-UTR downstream of the UAG codon (highlighted in yellow). Further downstream of this segment, the E.coli
formate dehydrogenase H SECIS element was inserted (highlighted in blue). The red box on the right shows the SECIS mutant used in this study. Letters shown in red
(on the right of the SECIS element) indicate mutations and their positions within the SECIS element. The UAA and cysteine mutants are shown in red boxes on the left.

we placed an E.coli formate dehydrogenase H SECIS element
(highlighted in blue in Figure 1) in the 3’-UTR. This construct
also contained a sequence that coded for six histidines at the
C-terminus of the open reading frame (ORF), followed with
a UAG stop codon (underlined in Figure 1). In the event of
readthrough of the Sec UGA codon, the His-tag could be used
for protein detection and purification by affinity chromato-
graphy. To bring the SECIS element in close proximity to
the UGA codon (shown in red in Figure 1), we inserted a
36 nt 3’-UTR segment (highlighted in yellow in Figure 1),
which was complementary to the sequence downstream of the
UGA codon, between the ORF and the SECIS element. The
strong base-pairing potential of the 3’-UTR 36 nt segment and
the region adjacent to the UGA should position the UGA and
the SECIS element next to each other, approximately as close
as the UGA and the SECIS element in the wild-type formate
dehydrogenase H gene (Figure 1).

We also developed a series of control constructs: (i) A
SECIS mutant: this construct was identical to the construct

described above except that three point mutations were intro-
duced in the stem—loop structure (as shown in the red box in
Figure 1). This mutant SECIS element was previously reported
to have a very low ability to direct Sec insertion (22,23).
(i) A UAA mutant: in this construct, the Sec UGA codon
was mutated to UAA. (iii) A UAA/SECIS mutant: this
construct combined the mutations in constructs ‘i’ and ‘ii’.
(iv) A cysteine mutant: the Sec UGA codon was mutated to
a cysteine codon, UGC. (v) A construct lacking the 3’-UTR
base-pairing region (highlighted in yellow in Figure 1).
(vi) A construct lacking the SECIS element (highlighted in
blue in Figure 1). (vii) A construct lacking both the base-
pairing region and the SECIS element.

The 3'-UTR SECIS element directs Sec insertion
in E.coli

The wild-type and various mutant GPx4 constructs were
transformed into E.coli cells. To monitor Sec incorporation,
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Figure 2. Sec insertion directed by the 3’-UTR SECIS element. Following the
induction of recombinant protein synthesis, BL21(DE3) cells containing
various GPx4 expression constructs were metabolically labeled with "Se.
All cells were labeled in parallel and proteins purified on affinity columns
using identical procedures. Approximately equal amounts of GPx4 were
obtained in each sample, except in mutants containing an in-frame UAA
(no GPx4 was detected) and the cysteine mutant (expression level of the
GPx4 cysteine mutant was much higher than in other samples). The pattern
of 7Se radioactivity of recombinant GPx4 (upper panel) was analyzed using a
PhosphorImager on a PVDF membrane following SDS-PAGE. Lane 1, wild-
type 3’-UTR SECIS element; lane 2, SECIS element mutant; lane 3, UAA
mutant; lane 4, UAA/SECIS mutant; lane 5, cysteine mutant; lane 6, a mutant
lacking the 3'-UTR base-pairing segment; lane 7, a mutant lacking the SECIS
element; and lane 8, a mutant lacking both the 3’-UTR base-pairing segment and
the SECIS element. The membrane was also subjected to immunoblot assays
with antibodies specific for His-tag (middle panel) and GPx4 (lower panel).
Migration of a molecular a weight standard (17 kDa) is shown on the right.

all samples were metabolically labeled with ">Se and recom-
binant proteins isolated using affinity columns (Figure 2).
These procedures were performed in parallel for all samples.
GPx4 expressed from the construct containing the wild-type
SECIS element showed a strong Se signal (Figure 2, lane 1,
upper panel). The "°Se-labeled protein migrated with the size
that was expected of the full-size protein. The enrichment of
GPx4 on the affinity resin specific for His-tag indicated that the
C-terminal tag was part of the protein and that the sequences
downstream of the UGA were coding. The protein that was
expressed from the construct containing a mutant SECIS ele-
ment showed a very weak ">Se signal (Figure 2, lane 2, upper
panel), suggesting that the functional SECIS element was
required for Sec insertion at the UGA codon. However,
when the UGA codon was replaced with UAA (independently
of whether the wild-type or mutant SECIS was used), no °Se
signal was observed, indicating that the Sec insertion was
dependent on the UGA codon (Figure 2, lanes 3 and 4,
upper _Panel). In addition, a cysteine mutant showed a very
weak "°Se signal (Figure 2, lane 5, upper panel), and the
deletion of the base-pairing sequence, SECIS element or both
also resulted in very weak ">Se signals (Figure 2, lanes 6, 7 and
8, upper panel). These data suggested that Sec was inserted
into GPx4 in a 3’-UTR SECIS element-dependent manner and
that Sec insertion was supported exclusively by UGA. The
weak labeling of some samples with '“Se most probably
resulted from non-specific labeling of the protein by random
incorporation of selenium in place of sulfur-containing amino
acids. We used 100 mg/l L-cysteine in the growth medium
(24), however, the non-specific labeling could not be com-
pletely blocked. Nevertheless, the non-specific labeling could
easily be distinguished from the specific insertion of Sec as the
latter occurred at a much higher level (compare lane 1 and
lanes 2, 5-8 in Figure 2).
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To verify that the ">Se signal indeed corresponded to the
recombinant GPx4, all affinity-purified protein samples were
subjected to immunoblot assays with anti-His-tag and anti-
GPx4 antibodies. Both gave signals that coincided with the
75Se signal (middle and lower panels in Figure 2) except the
two UAA mutants, in which no GPx4 could be detected. In
contrast to the ">Se patterns, both immunoblot assays revealed
a similar amount of the full-size GPx4 in the samples expressed
from the constructs containing the UGA codon. As expected,
the cysteine mutant of GPx4 was overexpressed (we normal-
ized its loading on the SDS-PAGE gel shown in Figure 2).
Taken together, these data suggested that there was an addi-
tional major readthrough event other than Sec insertion, which
responded to UGA, but not to UAA, and which was independ-
ent of the base-pairing sequence or the SECIS element.

We repeated the °Se labeling experiments five times, and
in each case, Sec insertion was dependent on the 3’-UTR
SECIS and the UGA codon. We also attempted to express
the selenoprotein by co-expressing SelA (Sec synthetase),
SelB (Sec-specific elongation factor) and SelC (Sec tRNA)
(21), which was reported to increase Sec insertion into
mammalian thioredoxin reductase 1 by 8-fold (21). Again,
dependence of “Se insertion on the 3’-UTR SECIS element
was evident (data not shown).

Opal suppression accounts for the major
readthrough event

To characterize readthrough forms GPx4, we carried out a
large-scale isolation of GPx4 expressed from the construct
with the functional 3'-UTR SECIS element. Approximately
1 mg of the affinity-purified protein (~60% purity, Figure 3A)
was obtained from 1 liter of bacterial culture. This recomb-
inant GPx4 was subjected to selenium quantification, which
found that only ~3% of the protein molecules had this trace
element.

To determine the identity of the major readthrough form, the
recombinant GPx4 was subjected to tandem mass spectro-
metry sequencing. More than 90% of sequence coverage
was obtained (data not shown); however, the fragment con-
taining the readthrough amino acid was missing if either Sec or
Cys (alkylated or unalkylated) were used to calculate peptide
masses. In addition to the assigned peptides, a major double-
charged fragment at 833.4 m/z was detected, which correspon-
ded to the active site tryptic peptide if the UGA was read as
tryptophan. Indeed, the mass-spectrometry fingerprint pattern
of this fragment matched the W-containing peptide sequence
(Figure 3B). UGA suppression by tRNA™™ is known as opal
suppression. It was reported previously (25) and was also
observed in selenoprotein genes (26). Thus, it appears that
GPx4 expression from a construct containing a functional
3’-UTR SECIS element resulted largely in Trp insertion
(97% of the readthrough product, ~1 mg protein per liter of
cell culture), whereas the Sec-containing product accounted
for ~3% of the readthrough protein.

DISCUSSION

It has long been known that bacterial SECIS elements
are located immediately downstream of the UGA codon
(27-30), whereas in eukaryotes and archaea, these structures
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Figure 3. Opal suppression is a major readthrough event. (A) SDS-PAGE
analysis of the recombinant GPx4 expressed from the construct carrying
the functional 3'-UTR SECIS element. Extracts prepared from BL21(DE3)
cells carrying pET21b and pSUABC (lane 1) and the GPx4 construct with the
functional SECIS element and pSUABC (lane 2) were applied to a His-tag
affinity column and proteins bound to the column were eluted and analyzed
by SDS-PAGE. (B) Mass spectrometry analysis of the readthrough product.
The recombinant protein shown in (A) was cut from the SDS-PAGE gel,
digested with trypsin, alkylated with iodoacetamide and subjected to tandem
mass spectrometry sequencing. A double-charged fragment at 833.4 m/z was
identified, which corresponded to a tryptophan-containing readthrough frag-
ment. The ms/ms spectrum of the 833.4 parent ion is shown and the major
daughterions and the parention are labeled. We identified these peaks as Y, B or
A ions (not shown in this figure) resulting from fragmentation of the sequence
GFVCIVTNVASQWGK. The black letters above each peak indicate the amino
acid sequence of the corresponding daughter ion and the red letters indicate
the amino acids lost in the fragmentation.

reside in the 3/-UTR and the UGA codon/SECIS element
distance is not critical (12). In this study, we expressed a
mouse selenoprotein, GPx4, in bacteria with the help of a
3/-UTR SECIS element that was distant to the UGA codon.
The expression construct also contained a 3’-UTR sequence,
which was complementary to the sequence downstream of the
UGA. This resulting base-pairing interaction was expected to
bring the Sec codon and the SECIS element near each other
within the mRNA structure (Figure 1). We found that this
3’-UTR SECIS element directed Sec insertion into GPx4 in
E.coli. Various controls revealed that the Sec insertion was
dependent on the UGA codon, base-pairing region and the
SECIS element.

One important question regarding Sec evolution is whether
SECIS elements in the three domains of life have a common
origin or they evolved independently. The similarities in
Sec biosynthesis (SelD/SPS2) and insertion (tRNAS,
SelB/EFSec) components among bacteria, archaea and euka-
ryotes strongly argue that all systems have a common origin.
Interestingly, the situation in archaea might represent an inter-
esting evolutionary mid-point as most archaeal selenoproteins
have homologs exclusively in bacteria (31), whereas their
SECIS elements are located in the 3’-UTRs (17) as in euka-
ryotes. It is possible that the SECIS elements of selenoproteins
specific for bacteria and archaea have the same ancestors.
However, when and how SECIS elements might have relo-
cated, and whether these events were linked to changes in the
Sec insertion machinery, is not clear. Our results show that
bacterial SECIS elements may be functional in the 3’-UTR
provided that these structures remain spatially close to UGA
codons. Although the method that we used to preserve the
proximity between the SECIS element and the UGA codon
might not necessarily be the one adopted in evolution, the data
show a principal possibility that the relocation can be achieved
without any changes in the rest of the Sec insertion machinery.

We detected weak "°Se signals of the recombinant GPx4
when the SECIS element was mutated or deleted, the base-
pairing sequence was deleted or both the SECIS element and
the base-pairing sequence were deleted. In addition, a weak
Se si%nal was observed in the cysteine mutant. It appears that
these '~Se signals were due to non-specific labeling of GPx4
with ">Se. It is known that selenium can enter sulfur pathways
and be inserted non-specifically into proteins as Sec and
selenomethionine (24).

The efficiency of Sec insertion from our construct was low.
This is not unexpected since (i) the primary sequence con-
straints that organize the interaction between the SECIS
element and the UGA through Sec insertion machinery and
translation apparatus would certainly be more efficient than an
interaction relying on the secondary structure; (ii) the orienta-
tion of the SECIS element relative to the UGA codon as well
as translating ribosomes was likely not optimal; and (iii) the
coupled transcription and translation in bacteria might make
the SECIS element unavailable for translation of some poly-
peptides synthesized from the GPx4 mRNA. The low effici-
ency of Sec insertion by the 3'-UTR SECIS element suggests
that the relocation of the SECIS element into the 3’-UTR is not
favorable in bacteria. However, the data also show that such an
evolutionary event is possible.

We found that the opal suppression by tRNA™ in response
to UGA occurred at a rate much higher than the rate of Sec



insertion. The nonsense codon suppression has long been
known in both bacteria and eukaryotes (32,33). The context
of the sequence that flanks UGA as well as the secondary
structures of the mRNA determine the efficiency of opal sup-
pression (26,34). The high efficiency of opal suppression in
our study suggests that it efficiently competed with the trans-
lation termination process. It would be interesting to determine
what percentage of the opal suppression is observed in natural
selenoproteins in vivo and what the functional consequences
of opal suppression in selenoproteins are.

Expression of heterologous proteins in E.coli has become
a routine procedure in biochemistry and molecular biology.
However, the incompatibility of SECIS elements and their
distinct locations in eukaryotes and archaea on one hand, and
bacteria on the other hand, generally preclude heterologous
expression of selenoproteins in bacteria. A bacterial SECIS
element can be designed downstream of UGA in selenopro-
teins, but it requires changes in amino acid sequences and is
feasible only if Sec is located close to the C-terminus (35-37).
Since Sec is often found in the enzyme active sites (12,38,39),
changes in the flanking sequences are not desirable for func-
tional characterization of these proteins. Our study shows
that, in principle, it is possible to utilize SECIS elements in
non-coding regions to direct Sec insertion in E.coli. Such a
technique may find applications in studies of mammalian and
other selenoproteins. Although, at present, the low efficiency
of Sec insertion and opal suppression pose challenges, these
problems might be alleviated if the technique is improved. For
example, positioning a SECIS element within the 5'-UTR
might increase the efficiency of Sec incorporation as it solves
the transcription/translation coupling problem. At least one
archaeal SECIS element is located in the 5-UTR (40). In
addition, the tryptophan insertion could potentially be sup-
pressed (26) and orientation and spatial proximity between
SECIS element and UGA adjusted.
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