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In Brief
The human platelet lysate and
releasate proteome was
examined using an ultrasensitive
protocol. By comparing
releasates from resting and
thrombin-treated platelets, 202
proteins were found to be
significantly released after high-
dose thrombin stimulation.
Unbiased scanning for
posttranslational modifications
within releasate proteins
highlighted O-glycosylation as
being a major component.
Elastin microfibril interface
domain-specific O-fucosylation
was detected on the protein
MMRN1 and was demonstrated
to be important for its secretion.
Highlights
• Human platelet lysate and releasate proteomes were characterized in detail.• >200 proteins were significantly released after high-dose thrombin stimulation.• O-Glycosylation was detected as a dominant modification of the secreted proteins.• A new form of domain-specific O-fucosylation was detected on the protein MMRN1.
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RESEARCH
Analysis of the Healthy Platelet Proteome
Identifies a New Form of Domain-Specific
O-Fucosylation
Callum B. Houlahan1 , Yvonne Kong2, Bede Johnston1, Michelle Cielesh3,
The Huong Chau4 , Jemma Fenwick1,2 , Paul R. Coleman1, Huilin Hao5,
Robert S. Haltiwanger5, Morten Thaysen-Andersen4,6, Freda H. Passam1,2,* , and
Mark Larance3,*
Platelet activation induces the secretion of proteins that
promote platelet aggregation and inflammation. Howev-
er, detailed analysis of the released platelet proteome is
hampered by platelets’ tendency to preactivate during
their isolation and a lack of sensitive protocols for low
abundance releasate analysis. Here, we detail the most
sensitive analysis to date of the platelet releasate prote-
ome with the detection of >1300 proteins. Unbiased
scanning for posttranslational modifications within
releasate proteins highlighted O-glycosylation as being a
major component. For the first time, we detected O-
fucosylation on previously uncharacterized sites
including multimerin-1 (MMRN1), a major alpha granule
protein that supports platelet adhesion to collagen and is
a carrier for platelet factor V. The N-terminal elastin
microfibril interface (EMI) domain of MMRN1, a key site
for protein–protein interaction, was O-fucosylated at a
conserved threonine within a new domain context. Our
data suggest that either protein O-fucosyltransferase 1,
or a novel protein O-fucosyltransferase, may be respon-
sible for this modification. Mutating this O-fucose site on
the EMI domain led to a >50% reduction of MMRN1
secretion, supporting a key role of EMI O-fucosylation in
MMRN1 secretion. By comparing releasates from resting
and thrombin-treated platelets, 202 proteins were found
to be significantly released after high-dose thrombin
stimulation. Complementary quantification of the platelet
lysates identified >3800 proteins, which confirmed the
platelet origin of releasate proteins by anticorrelation
analysis. Low-dose thrombin treatment yielded a smaller
subset of significantly regulated proteins with fewer
secretory pathway enzymes. The extensive platelet pro-
teome resource provided here (larancelab.com/platelet-
proteome) allows identification of novel regulatory
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mechanisms for drug targeting to address platelet
dysfunction and thrombosis.

Platelets are circulating cells that activate and aggregate
after contact with damaged vascular endothelium to promote
thrombus formation during hemostasis. It is also well estab-
lished that platelets play a role in inflammation and vascular
repair (1). Activation, by both chemical and mechanical stimuli,
leads to the release of granule contents including soluble
proteins, cleaved membrane proteins, and vesicle-bound
proteins (2), which subsequently activates a variety of
signaling pathways. Released proteins (i.e., the “releasate”)
include those synthesized within the parent megakaryocyte
cytoplasm, proteins endocytosed from plasma, as well as
proteins synthesized from platelet mRNA (3, 4).
Thrombin activates platelets via the protease-activated re-

ceptors PAR1 and PAR4 (F2R and F2RL3) (5–8). PAR1 me-
diates platelet activation at low thrombin concentrations
(<0.05 U/ml), whereas PAR4 requires a comparatively higher
thrombin concentration (>0.1 U/ml) to activate platelets (9, 10).
Differential release of proangiogenic and antiangiogenic fac-
tors has been shown with selective stimulation of either PAR1
or PAR4 (6). However, Holten et al. (11) identified no qualitative
differences upon activation with specific PAR1 and PAR4
agonists. After activation, platelets can release the contents of
α-granules, dense granules, tertiary granules, and lysosomes
(12). Platelet α-granules contain adhesive proteins such as
fibrinogen, von Willebrand factor, multimerin-1 (MMRN1), and
fibronectin, which enable effective thrombus formation.
Growth factors (e.g., platelet-derived growth factor subunit A,
vascular endothelial growth factor C) and chemokines (e.g.,
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Ultrasensitive Platelet O-Glycosylation Proteome
CCL5, CXCL3) are also released to regulate the immune
response and tissue repair. Platelet lysosomes contain pro-
teases, glycosidases, and acid hydrolases that have bacteri-
cidal activity (2) and may also play a role in receptor cleavage
and fibrinolysis (13, 14).
Unbiased mass spectrometry (MS)-based proteomics can

provide unique insights into cellular protein structure, modi-
fications, and function. Many groups have performed platelet
proteomic analysis to understand their protein composition
and regulation (2, 15, 16). While most proteomic studies have
been performed on total platelet lysates or subcellular com-
partments (17), the analysis of platelet releasate is much
more challenging due to the low concentration of secreted
factors. In 2004, Coppinger et al. (18) was the first to char-
acterize human platelet releasates after thrombin activation
(0.5 U/ml) reporting >300 different proteins using 2D-PAGE.
With a novel protein labeling approach a subsequent study
identified 124 releasate proteins, following high-dose
thrombin (1 U/ml) and collagen (5 μg/ml) stimulation (19).
Using different methods Parsons et al. (20) detected 894
released proteins after a similar high-dose thrombin stimulus
(1 U/ml). The differences in these releasate proteomes pri-
marily reflect variance in platelet isolation, platelet stimulation
and protein analysis methods. An overlooked aspect of these
released proteins is their decoration with posttranslational
modifications (PTMs), including O-glycosylation, N-glyco-
sylation, and proteolytic cleavage, which are important for
protein function (21).
Important questions remain as to the regulation and

composition of proteins in healthy human platelets. For
example, no study has provided an unbiased view of the
PTMs present on platelet releasate proteins. Here, we have
addressed these questions using a robust platelet isolation
method, coupled to the latest quantitative proteomics and
glycomics methodologies for the best sensitivity and accu-
racy. Subsequent unbiased PTM analysis revealed a wealth of
detail in the releasate proteome and highlighted O-glycosyl-
ation as a common modification with a large number of unique
modification sites identified for the first time. The discovery of
O-fucosylation of MMRN1 at T216 within its elastin microfibril
interface (EMI) domain provides a novel putative substrate for
either POFUT1 or a novel platelet POFUT. This ultrasensitive
human platelet proteome is shared with the community
(larancelab.com/platelet-proteome) to enable future studies in
human platelet biology.
EXPERIMENTAL PROCEDURES

Patient Blood Collection

Human ethics was from the University of Sydney (approval number
2014/244) and our study abides by the Declaration of Helsinki prin-
ciples. Venepuncture was performed using a 19-gauge needle and
light tourniquet. Blood was collected using 16 × 100 mm 8.5 ml
vacutainer glass whole blood acid-citrate-dextrose (ACD) tubes
2 Mol Cell Proteomics (2024) 23(2) 100717
(Becton Dickinson, Cat# 366645) and gently mixed following collec-
tion. Blood was collected from healthy volunteers free from medica-
tion for the past 10 days ranging from 22 to 60 years old (median age
32 years old).

Platelet Isolation From Whole Blood

Platelets were isolated from whole blood within 3 to 4 h post-
venepuncture. Whole blood was fractioned by centrifugation (200g for
20 min, brake = 0) to separate platelet-rich plasma from red blood cell
(RBC) and white blood cell (WBC) fractions. All centrifugation steps
were performed at room temperature. Platelet-rich plasma was rested
for 30 min in a water bath at 37 ◦C before the addition of 20% (v/v)
prewarmed (37 ◦C) ACD (Cat# C3821, Sigma-Aldrich). Platelets were
separated from plasma by centrifugation (800g for 10 min, brake = 4).
The platelets were resuspended in prewarmed (37 ◦C) modified
Hepes/Tyrodes (HTGlc) buffer (129 mM NaCl, 0.34 mM Na2HPO4,
2.9 mM KCl, 12 mM NaHCO3, 20 mM Hepes, 5 mM glucose, 1 mM
MgCl2; pH 7.4). Resuspended platelets were rested for 20 min in a
37 ◦C water bath, following the addition of 10% (v/v) prewarmed
(37 ◦C) ACD and 0.02 U/ml apyrase. Platelets were pelleted by
centrifugation (800g for 5 min, brake = 4) before resuspension in
prewarmed HTGlc buffer at the working concentration of 400 × 103/μl.
Addition of prostaglandin E1 (Cat# P5515, Sigma-Aldrich) (2 μM) took
place immediately before all centrifugation steps to minimize platelet
activation. Platelet concentration was maintained below 106/μl during
washing stages. Platelet concentration was measured using a Sysmex
KX-21N haemocytometer.

Separation of Platelet Releasate and Lysate for Proteomics

Washed platelets (400 × 103/μl) were divided into 250 μl aliquots. To
a resting control, 0.02 U/ml apyrase was added, while other aliquots
were activated with thrombin (T6884, Sigma-Aldrich) at a final activity
of 0.2 U/ml for maximal stimulation or 0.025 U/ml for submaximal
stimulation. All samples were incubated in a 37 ◦C water bath for
5 min. Following incubation, D-phenylalanyl-N-[(1S)-4-[(amino-
iminomethyl)amino]-1-(2-chloroacetyl)butyl]-L-prolinamide dihydro-
chloride (Cat# ab141451, Abcam) was added at 25 nM to the
thrombin-stimulated sample and 2 μM prostaglandin E1 was added
immediately prior to centrifugation of the resting sample. The super-
natant at this point was regarded as the “platelet releasate” and was
aspirated and stored under argon at −80 ◦C. The remaining platelet
protein was regarded as the “platelet lysate.” Pellet lysate was ob-
tained via resuspension in sodium deoxycholate (SDC) lysis buffer (4%
(w/v) sodium deoxycholate in 0.1 M Tris–HCl (pH 8) and heating at
95 ◦C for 10 min. Protein concentration was determined by bicin-
choninic acid assay (Cat# 23227, Thermo Fisher Scientific). Platelet
lysates were aliquoted and stored under argon at −80 ◦C.

Flow Cytometry Analysis of Washed Platelet Contamination and
Platelet Preactivation

The expression of key platelet membrane-specific proteins αIIbβ3
and P-selectin (CD62p) was used to assess platelet preactivation prior
to thrombin stimulation. Platelet preactivation was measured,
following platelet releasate and lysate storage and within 5 h post-
venepuncture. Washed platelets were suspended in HTGlc buffer at a
concentration of 10 × 103/μl and stained with either mouse antihuman
αIIbβ3 (PAC-1) antibody conjugated with FITC (BD Biosciences, Cat#
340507) or mouse antihuman CD62p antibody conjugated with allo-
phycocyanin (BD Biosciences, Cat# 550888). PAC-1 detects the
active confirmation of αIIbβ3. Platelet activation was achieved via the
addition of thrombin (0.025 or 0.2 U/ml) to washed platelet preparation
for 10 min at room temperature and was cancelled via addition of
25 μM D-phenylalanyl-N-[(1S)-4-[(aminoiminomethyl)amino]-1-(2-
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Ultrasensitive Platelet O-Glycosylation Proteome
chloroacetyl)butyl]-L-prolinamide dihydrochloride. Washed un-
stained, stained resting, and stained thrombin-activated platelets
were analyzed by flow cytometry using a Becton Dickinson Accuri
C6 flow cytometer to confirm expression of αIIbβ3 and CD62p. Data
analysis was achieved using FlowJo software (FlowJo, LLC, https://
www.flowjo.com/).

For analysis of WBC and RBC contamination in washed platelet
preparations, samples were stained with antihuman CD45 IgG con-
jugated to PerCP-Cy5.5 (Becton Dickinson Biosciences, Cat#
340953,) and mouse anti-human CD235a (Glycophorin A) IgG conju-
gated to FITC (Cat# 349103, BioLegend), respectively. Both samples
were additionally stained with mouse antihuman CD41 IgG conjugated
with FITC (Cat# IMO649U, Beckman Coulter). Unstained washed
platelets were used as the control and cell fluorescence was recorded
by flow cytometry using a Accuri C6 flow cytometer. CD41+ cells were
gated as platelets (supplemental Fig. S1). Since platelets are signifi-
cantly smaller in size than RBCs and WBCs and have significantly less
granularity than WBCs, events beyond the upper limits of platelet side
scatter (granularity) and forward scatter (size) were regarded as either
WBCs or RBCs (supplemental Fig. S1). Events above these upper
limits which were CD45+ were regarded as WBCs, and CD235a+
events were regarded as RBCs. Event counts of each subpopulation
were used to derive a ratio of platelets to WBCs and platelets to RBCs
at a higher sensitivity than which was achievable using a cell counter.

Determination of Flow Cytometry Cut-Offs for Preactivation and
Thrombin Doses

The laboratory has an established routine platelet isolation protocol
by sequential centrifugation steps as described previously (22) and
detailed below. Using this method, we have determined the % staining
for mouse anti-human CD62p allophycocyanin and antihuman αIIbβ3
IgG (PAC-1) FITC in the resting platelet population compared with
unstained resting platelets (n = 30). The average % + 2 SD of this
historical group was used as a cut-off for inclusion of resting platelet
preparations from healthy donors included in this study. Samples that
exhibited CD62PP >25% and PAC-1 >15% were excluded from
further analysis. These percentages for CD62P and PAC-1 are in line
with a previous study of platelet isolation for proteomic analysis (23).

For establishing sub-maximal (“low”) and maximal (“high”) thrombin
dose, platelets were isolated from five healthy donors. Platelet ag-
gregation was recorded over 10 min to doses of thrombin: 0.02, 0.03,
0.05, and 0.2 U/ml. Light transmission aggregometry was evaluated as
described using an AggRAM 1484 (24). Experiments were conducted
in 300 μl aliquots of washed platelets (400 × 103/μl) buffered in HTGlc.
The washed platelet suspension was mixed by magnetic stirrer. After
the addition of thrombin, platelet aggregation was recorded for 10 min.
The maximum aggregation was determined as the peak light trans-
mission. Based on the aggregation response for this group of in-
dividuals and the batch of thrombin used in this study, we determined
submaximal (low) dose of thrombin as 0.025 U/ml and maximal (high)
dose of thrombin as 0.2 U/ml.

Protein Sample Preparation for Mass Spectrometry–Based
Proteomics

Proteins (5 μg for lysates, 1 μg for releasates, and 70 μg for plasma)
were denatured, reduced, and alkylated by resuspension in 4% (w/v)
SDC, 10 mM tris-2-carboxyethyl-phosphine, 40 mM chloroacetamide,
and 100 mM Tris–HCl (pH 8), followed by heating to 95 ◦C for 10 min.
Samples were then diluted to a final concentration of 1% (w/v) SDC
using water and digested for 16 h with trypsin 1:50 (w/w) (Sigma Cat#
T6567) at 37 ◦C at 1000 rpm in a Thermomixer-C (Eppendorf). Sam-
ples were mixed 1:1 (v:v) with 99% ethyl acetate in 1% (both v/v)
trifluoroacetic acid and vortexed until all the precipitated SDC was
resuspended. StageTips purification of peptides was performed as
described (25). Peptides were reconstituted with 5% (v/v) formic acid
in water at ~0.2 μg/μl and stored at 4 ◦C until LC-MS/MS analysis.

Proteome Analysis with LC-MS/MS and Data Analysis

Peptide samples (0.5 μg) were injected onto a 50 cm × 75 μm C18
(Dr Maisch, 1.9 μm) fused silica analytical column with a 10 μm pulled
tip, coupled online to a nanospray electrospray ionization (ESI) source.
Peptides were resolved over a gradient from 5% to 35% acetonitrile
(ACN) over 70 min with a flow rate of 300 nl/min. Peptides were ion-
ised by ESI at 2.4 kV. Tandem mass spectrometry (MS/MS) analysis
was performed using a Fusion Lumos tribrid mass spectrometer
(Thermo Fisher Scientific) with either higher energy collisional disso-
ciation (normalized collision energy [NCE] = 30), or electron-transfer
higher energy collisional dissociation (EThcD, charge state filtering
z = 3–8, calibrated charge-dependent electron transfer dissociation
parameters and higher-energy collisional dissociation (HCD) NCE =
15). MS/MS spectra were attained in a data-dependent acquisition of
the top 20 most abundant ions in each MS1 full scan. RAW data files
were analyzed using the integrated quantitative proteomics software
and search engine MaxQuant (26) (version 1.6.3.4, https://maxquant.
org/). A false discovery rate (FDR) of 1% using a target-decoy–
based strategy was used for protein and peptide identification. The
database used for identification contained the UniProt human data-
base (downloaded fifth of May 2020) alongside the MaxQuant con-
taminants database. Mass tolerance was set to 4.5 ppm for precursor
ions and 20 ppm for fragments. Trypsin was set as the digestion
enzyme with a maximum of two missed cleavages. Oxidation of Met,
deamidation of Asn/Gln, pyro-Glu/Gln, and protein N-terminal acety-
lation were set as variable modifications. Carbamidomethylation of
Cys was set as a fixed modification. The Max label-free quantitation
(LFQ) algorithm was used for LFQ (27).

Unbiased (Open) PTM Search

Data from all high thrombin-treated platelet releasates was com-
bined with Proteome Discoverer 2.5 (Thermo Fisher Scientific, https://
www.thermofisher.com/) into an mzML file and searched using Byonic
(Protein Metrics v3.11.3) (28). Initially the search was performed
against the whole human proteome database without PTMs. The
identified 1529 proteins were converted into a focused database
(supplemental File 1) used for untargeted PTM detection using
“wildcard” (open) searches PTMs (29). An FDR of 2% using a target-
decoy–based strategy was used for protein and peptide identification.
MS1 and MS2 mass tolerance was set to 4 ppm and 20 ppm,
respectively. Trypsin was set as the digestion enzyme with a
maximum of two missed cleavages. Oxidation of Met (common2),
deamidation of Asn/Gln (common1), pyro-Glu/Gln(rare1), and protein
N-terminal acetylation (rare1) were set as variable modifications.
Carbamidomethylation of Cys was set as a fixed modification. Total
common max and total rare max were both set to 1. The wildcard
search was applied to “unmodified” peptides with a range from −40 to
1000 Da on any amino acid. Acceptance criteria for plotting of the
glycopeptide peptide spectral matches was Log probability >8 and to
be modified on any of the following amino acids: S,T,Y,K,R,-
D,E,N,Q,P,M, and W.

O-Glycan Focused PTM Search

To look for fragment ions specific for O-glycan cleavage data from
all high thrombin-treated platelet releasates was combined and
searched using Byonic (v3.11.3) (28). The platelet releasate focused
database (supplemental File 1) containing 1529 proteins was used. An
FDR of 2% using a target-decoy–based strategy was used for protein
and peptide identification. MS1 and MS2 mass tolerance was set to
4 ppm and 20 ppm, respectively. Trypsin was set as the digestion
Mol Cell Proteomics (2024) 23(2) 100717 3
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Ultrasensitive Platelet O-Glycosylation Proteome
enzyme with a maximum of two missed cleavages. Oxidation of Met
(common2), deamidation of Asn/Gln (common1), pyro-Glu/Gln(rare1),
protein N-terminal acetylation (rare1), hydroxylation of Asn, and tryp-
tophan C-mannosylation (rare3) were set as variable modifications.
Additional variable modifications all set to rare1 for O-glycosylation (as
observed in the open-search and/or as Byonic mammalian O-glycan
defaults) were included: Fuc(1), HexNAc(1)Fuc(1), Hex(1)Fuc(1), Hex-
NAc(1)Hex(1)Fuc(1), HexNAc(1)Hex(1)Fuc(1)NeuAc(1), HexNAc(1)
Hex(1)NeuAc(2), Hex(2)Fuc(1), Hex(3), Hex(1), HexNAc(1), Hex(1)
Pent(2), Hex(1)+15.9949, HexNAc(1)Hex(1)NeuAc(1), HexNAc(2)Hex(2)
NeuAc(2), Hex(1)Pent(3), HexNAc(2)Hex(2)NeuAc(1), HexNAc(1)Hex(1)
NeuAc(3), Hex(1)NeuAc(1), HexNAc(2)Hex(2)Fuc(1)NeuAc(1). Carba-
midomethylation of Cys was set as a fixed modification. Total com-
mon max was set to 1 and total rare max was set to 2. Acceptance
criteria for all glycopeptides was Log probability >3. In addition,
glycopeptide peptide spectral matches from HCD spectra were all
assigned as having ambiguous glycosylation site localisation due to
the difficulty in their interpretation. EThcD spectra were labeled as
having unambiguous glycosylation site localization only after manual
validation of MS/MS spectra. It should be noted that Byonic does not
indicate if insufficient information is available for glycosylation site
localization.

SDS-PAGE and Coomassie Staining

Protein samples were reduced and denatured in SDS and beta-
mercaptoethanol at 95 ◦C for 10 min before loading onto precast 4
to 20% polyacrylamide gels (Cat# 4561094, Bio-Rad Laboratories).
Electrophoresis was performed for 1.5 h at a voltage of 100 V
alongside Novex prestained protein standards (Cat# LC5800, Invi-
trogen). Following electrophoresis, gels stained with Coomassie Bril-
liant Blue R-250 Staining Solution (Cat# 161-0436, Bio-Rad
Laboratories) for 1 h with gentle agitation. Gels were imaged using a
near IR fluorescence scanner (Odyssey CLx Imaging System, Li-Cor).

O-Glycome Sample Preparation

Quantitative O-glycomics analysis of the platelet releasate fractions
and bovine fetuin (sample handling and LC-MS/MS control, Sigma-
Aldrich) were performed using an established porous graphitized
carbon (PGC)-LC-MS/MS as previously described (30, 31). Briefly,
20 μg total protein from each platelet releasate sample (and from
bovine fetuin) was reduced with 10 mM aqueous DTT for 45 min at 56
◦C and carbamidomethylated with 25 mM aqueous iodoacetamide for
30 min in the dark at 20 ◦C. The alkylation reaction was quenched with
30 mM aqueous DTT (final concentrations stated). The proteins were
spotted onto an activated 0.45 μm polyvinylidene difluoride membrane
(MerckMillipore), dried, stained with Direct Blue, and excised. The
excised spots were transferred to separate wells in a flat-bottomed
polypropylene 96-well plate (Corning Life Sciences), blocked with
1% (w/v) polyvinylpyrrolidone in 50% (v/v) aqueous methanol, and
washed with MilliQ water. The N-glycans were exhaustively released
using 2 U recombinant Elizabethkingia miricola peptide:N-glycosidase
F expressed in Escherichia coli (Promega) per 20 μg protein in 10 μl
water per well and incubated for 16 h at 37 ◦C. A second round of
peptide:N-glycosidase F–based N-glycan release was performed the
next day to ensure complete removal of all N-glycans from the protein
samples to avoid cross contamination of N-glycans in the subsequent
O-glycan samples. The O-glycans were subsequently released by
incubation with 20 μl 0.5 M sodium borohydride in 50 mM aqueous
potassium hydroxide for 16 h at 50 ◦C. The reduction reaction was
then quenched using 2 μl glacial acetic acid and the released and
reduced O-glycans were transferred into fresh 1.5 ml Eppendorf
tubes. Dual desalting of the reduced O-glycans was performed using
firstly strong cation exchange resin (AG 50W-X8 Resin, Bio-Rad)
(where the O-glycans were not retained), followed by PGC resin
4 Mol Cell Proteomics (2024) 23(2) 100717
(where O-glycans were retained) custom packed as microcolumns on
top of C18 discs (Merck Millipore) in P10 solid-phase extraction for-
mats. Following microcolumn equilibration and sample loading and
washing, the O-glycans were eluted from the PGC–solid-phase
extraction microcolumns using 0.05% trifluoroacetic acid/40% ACN/
59.95% water (all v/v), dried and resuspended in 20 μl water. Samples
were centrifuged at 14,000g for 10 min at 4 ◦C and the clear super-
natant fractions were carefully transferred to high recovery glass vials
(Waters) to avoid debris and particulates in the LC-MS/MS injection
vials.

O-Glycan Profiling With PGC-LC-MS/MS

The O-glycans were profiled using a well-established PGC-LC-MS/
MS method (30, 31). In brief, the O-glycan samples were injected on a
HyperCarb KAPPA PGC-LC column (particle/pore size, 3 μm/250 Å;
column length, 30 mm; inner diameter, 0.181 mm, Thermo Hypersil)
heated to 50 ◦C. The O-glycans were separated over a 60 min linear
gradient of 0 to 45% (v/v) pure ACN (solvent B) in 10 mM aqueous
ammonium bicarbonate (solvent A) on a 1260 Infinity Capillary HPLC
system (Agilent) operating with a constant flow rate of 20 μl/min. The
separated O-glycans were introduced directly into the mass spec-
trometer, ionized using ESI and detected in negative-ion polarity mode
using a linear trap quadrupole Velos Pro ion trap mass spectrometer
(Thermo Fisher Scientific). The acquisition settings included a full MS1
scan acquisition range of m/z 300 to 2000, resolution of m/z 0.25 full-
width half maximum and a source voltage of +3.2 kV. The automatic
gain control for the MS1 scans was set to 5 × 104 with a maximum
accumulation time of 50 ms. For the MS/MS events, the resolution
was set to m/z 0.25 full-width half maximum, the automatic gain
control was 2 × 104 and the maximum accumulation time was 300 ms.
Data-dependent acquisition was enabled for all samples. The three
most abundant precursors in each MS1 full scan were selected for
fragmentation using resonance activation (ion trap) collision-induced
dissociation at a NCE of 33%. Dynamic exclusion of precursors was
inactivated. All MS and MS/MS data were acquired in profile mode.
The mass accuracy of the precursor and product ions was typically
better than 0.2 Da. The LC-MS/MS instrument was tuned and cali-
brated, and its performance bench marked using well-characterized
bovine fetuin O-glycan standards analyzed at the same time as the
samples of interest. The generated LC-MS/MS raw data files (made
publicly available via GlycoPOST (32), accession number
GPST000211) were browsed, interrogated, and manually annotated
using Xcalibur v2.2 (Thermo Fisher Scientific, https://www.
thermofisher.com/), GlycoMod (33), and GlycoWorkBench v2.1 (34)
as previously described (35). Briefly, glycans were identified based on
the monoisotopic precursor mass, the match between the observed
and theoretical MS/MS fragmentation pattern in silico generated using
GlycoWorkBench, and the relative and absolute PGC-LC retention
time of each glycan. Additional support for some structures was ob-
tained using PGC-LC retention time matching of observed platelet O-
glycans to known bovine fetuin O-glycans (36). Further, the reported
platelet O-glycan structures were backed by observations of identical
or similar O-glycan structures in the mammalian glycobiology litera-
ture. The relative abundances of the confidently identified O-glycans
were determined from area-under-the-curve measurements based on
extracted ion chromatograms performed for all relevant charge states
of the monoisotopic precursor m/z using Xcalibur v2.2 (Thermo Fisher
Scientific).

MMRN1 Plasmids and Site-Directed Mutagenesis

Mammalian expression vectors were constructed for MMRN1
analysis, which include pcDNA3.1-hMMRN1-Myc-His6 (WT),
pcDNA3.1-hMMRN1 T216A-Myc-His6 (made by gene synthesis,
Genscript) For the generation of pcDNA3.1-hMMRN1 T1055A-Myc-
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His6, the T1055A mutation was introduced by PCR using CloneAmp
HiFi PCR Premix (Takara Bio Inc) with mutagenic primers
5′-ATGGGGGCGCGTGCATAAATGGAAGAACTAGCTTTACC-3′ and
5′-TATGCACGCGCCCCCATTTTGGCACGGATGC-3′, using the
parental plasmid pcDNA3.1-hMMRN1-Myc-His6 as a template. PCR
products were digested with DpnI for 1 h at 37 ◦C to remove the
parental plasmid before transformed into DH5α-competent cells
(Invitrogen). All mutated plasmids were confirmed by sequencing.

MMRN1 Secretion Assay

To compare MMRN1 secretion in HEK293T WT, POFUT1 KO (37),
or POFUT2 KO (38) cells, cells were seeded at 1 × 106 cells per well in
6-well dishes with 2 ml Dulbecco's modified Eagle's medium con-
taining 10% calf serum. Cells were cultured overnight for attachment.
The medium was changed to 1 ml Opti-MEM (Invitrogen) before
transfection. Cells were transiently transfected using PEI (6 μl PEI per
1 μg plasmid) with 2 μg/well pcDNA3.1-hMMRN1-Myc-His6, 1 μg/well
pSecTag-mNOTCH1 EGF1-18-Myc-His6, 1 μg/well pSecTag-
hAdamTS9 TSR2-8-Myc-His6, or empty vector, together with
0.1 μg/well IgG plasmid as secretion control. Two days later, culture
medium samples were collected. One hundred microliters of medium
(250 μl for mNOTCH1 EGF1-18 transfected POFUT1 KO cells) were
precipitated with acetone and loaded onto 4 to 20% SDS-PAGE
(Invitrogen), transferred to a nitrocellulose membrane. The mem-
brane was incubated with anti-Myc antibody (Clone 9E10, Invitrogen,
1:2500), and subsequently with IDRye 800–conjugated goat anti-
mouse IgG antibody (LI-COR, 1:2500) and IDRye 680–conjugated
goat anti-human IgG antibody (LI-COR, 1:2500). The Western blot
bands were visualized and quantified using Odyssey System (LI-COR).

For comparing MMRN1 WT with either T216A, or T1055A mutants
in HEK293T cells, 1 × 106 cells were seeded in 6-well dishes with 2 ml
Dulbecco's modified Eagle's medium containing 10% calf serum.
Following overnight attachment, the medium was replaced with 1 ml
Opti-MEM. Cells were transiently transfected using PEI (6 μl PEI per
1 μg plasmid) with 2 μg/well pcDNA3.1-hMMRN1-Myc-His6,
pcDNA3.1-hMMRN1 T216A-Myc-His6, pcDNA3.1-hMMRN1 T1055A-
Myc-His6, or empty vector, together with 0.1 μg/well IgG plasmid as
secretion control. Two days later, culture medium samples were
collected. 200 μl of medium were acetone-precipitated and subjected
to Western blot analysis, following the same methods as described
above.

Experimental Design and Statistical Rationale

All proteomics data were collected across five patients (n = 5),
which provides sufficient power to detect significantly secreted pro-
teins from platelets after activation. MMRN1 secretion assays were
performed three times with independent transfections (n = 3). Data
was analyzed using R (version 4.03, https://www.r-project.org/) and
plotted using Tableau (version 2020.4, https://www.tableau.com/
products/desktop). Outliers greater than 1.5 times the interquartile
range were excluded for some plots to aid visualization. Fold changes
were calculated based on median values on a per group basis. Sta-
tistical significance was determined using a repeated-measures one-
way ANOVA for activation (resting versus low/high-dose thrombin),
each dose was analyzed separately. Outputs were corrected for
multiple testing using the Benjamini–Hochberg correction, with sig-
nificance being set at p <0.05 for an FDR of 5%.

RESULTS

Ultrasensitive Platelet Proteome Profiling

To examine the platelet proteome with high fidelity, we have
employed a platelet isolation method that reduces aberrant
platelet activation and minimizes cellular/plasma contamina-
tion (Fig. 1, A and B and supplemental Fig. S1A). Based on our
thrombin-stimulation dose-response curve for these platelet
preparations (supplemental Fig. S1B) we defined two doses of
thrombin to achieve both low- (0.025 U/ml) and high- (0.2 U/
ml) thrombin stimulation. To confirm platelet activation, we
analyzed PAC-1 (Fig. 1C and supplemental Fig. S1C) and
P-selectin (supplemental Fig. S1D) expression of these cells
using flow cytometry. High-dose thrombin yielded >98%
P-selectin+ and ~92% PAC-1+ cells. In contrast, low-dose
thrombin yielded >40% P-selectin+ and ~30% PAC-1+ cells.
MS-based proteomics was used to examine the platelet

lysates and corresponding releasates (Fig. 1D). Analysis of the
platelet releasates identified >1300 proteins consistently
detected across both the high- and low-dose groups
(supplemental Table S1). From the platelet lysates >3000
proteins were consistently detected (supplemental Table S1).
To visualize the thrombin-induced proteome changes, we
plotted a heat map of the normalized LFQ intensity for all
proteins detected (Fig. 1E). From this heat map the difference
in protein releasate abundance of the high-thrombin–treated
platelets is clearly apparent. Proteins known to be released
upon thrombin activation, showed the expected responses
after thrombin stimulation (Fig. 1F).

Unbiased PTM Analysis of Releasate Proteins

PTMs are known to play important roles in the function of
platelet releasate proteins. For example, the O-glycosylation
of thrombospondin 1 (THBS1) has been proposed to mediate
protein–protein interactions and protein folding (39). To
investigate modifications to proteins in the releasate prote-
ome, we employed an open-search strategy as described
previously (29, 40). Peptide-level MS/MS data from all
thrombin-treated platelet releasates were combined and
searched for modifications ranging in mass from −40
to +1000 Da, representing a wide range of potential PTMs
(supplemental Table S2). As expected, we detected many
chemical modifications of <100 Da arising during sample
preparation, such as oxidation (+16 Da) (Fig. 2A). However, it
should be noted that several modification masses of ~80 Da
were observed and may correspond to biologically relevant
modifications on secreted platelet proteins such as sulfation.
Unexpectedly, plotting peptide modifications >100 Da

revealed ~20 prominent peaks, whose masses corresponded
with known O-glycan compositions and were associated with
Ser/Thr residues (41) (Fig. 2B). To confirm this, an O-glycan
variable modification search was performed on the platelet
releasate LC-MS/MS data (supplemental Table S3). This
search used a glycan database that was a combination of
well-known mammalian glycans and any glycan that was
putatively identified in the open search analysis (supplemental
Table S2). While some of these glycans are not known to
occur in mammals, we believe the unbiased analysis of the
dataset is useful. Modifications containing fucose, hexose,
Mol Cell Proteomics (2024) 23(2) 100717 5
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FIG. 1. Proteomic analysis of platelet lysates and releasates from healthy donors. A, workflow for platelet isolation and stimulation with
thrombin. B, Coomassie stained SDS-PAGE gel to assess for plasma contamination in platelet lysates and releasates. Arrow indicates albumin.
C, histograms of platelet activation using PAC-1 intensity (x-axis). Resting platelets are shown in gray, platelets stimulated with either low-dose
(0.025 U/ml) or high-dose (0.2 U/ml) thrombin shown in red. D, workflow for lysate/releasate proteomic analysis. E, heat map showing platelet
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pentose, and HexNAc units and combinations of these were
confidently identified (42). A comparison of the open-search
and O-glycan specific search demonstrated ~45% overlap
between these approaches for the most frequently identified
O-glycans (supplemental Fig. S2 and Table S3). Two modifi-
cations had compositions consistent with mucin-type sialo-O-
glycans. Peptides modified by fucose alone (146 Da) were
identified, alongside many peptides modified by a single
hexose (162 Da). In total 11 platelet-derived proteins were
identified as being O-glycosylated, including a small group of
proteins modified at multiple sites, including THBS1, latent-
transforming growth factor beta-binding protein 1 (LTBP1),
fibrinogens, and platelet basic protein. The discovery that
these proteins carry O-glycans is important as this small
protein subset constitutes >50% of the protein content
released by platelets (supplemental Table S1). Importantly, it
should be noted that assignment of glycosylation site locali-
zation is extremely difficult using HCD data alone, thus all sites
given in supplemental Table S3 have been marked as
ambiguous in their glycosylation site localization within each
peptide. Many aspects of the search can decrease the ac-
curacy of glycosylation site analysis, including nonspecific
cleavages, fortuitous side reactions, the mixing up of N/C/O-
glycosylation, and potential adduct formation.
The corresponding O-glycan profile was established by

quantitative O-glycome analysis, where all O-glycans are
detached through β-elimination from already de-N-glyco-
sylated proteins and profiled by LC-MS/MS (35) (Fig. 2C).
This O-glycome profiling method provides both the fine
structures and relative abundances of O-glycans. O-Gly-
cans with 11 different structures covering nine different
compositions were identified as the main components
attached to platelet releasate proteins (supplemental File 2).
Four prominent glycans quantitatively agreed with our open
search analysis of the proteomics data, as we observed a
high abundance of O-fucose structures extended by
glucose, (xylose)2-glucose conjugates, and mucin-type core
1 and 2 sialo-O-glycans (supplemental Table S4). Since
PGC is known to be unable to retain monosaccharides, we
were not able to observe the monosaccharides modifica-
tions (Hex, dHex, HexNAc) as indicated in the open search
and conversely since the open search was capped at
1000 Da, a few larger penta- and hexa-saccharide glycans
were not identified in that analysis while still being detected
in our glycomics data. Further, the open search pointed to
the existence of FucHex2/3 modifications; however, since
these modifications were not identified in the matching
glycomics analysis, these peptide modifications may
instead arise from a combination of two or more PTMs, that
is, C-mannosylation, O-Fuc.
proteins that were significantly increased in the releasate by high-dose t
proteins known to be secreted by platelets after thrombin activation. E
quantitation (LFQ) intensity for each protein.
Of the O-glycosylated sites detected on releasate proteins
many were not previously observed in human samples
including platelets. To validate these PTMs, we performed
EThcD fragmentation analysis on a separate cohort of platelet
samples (supplemental Table S5). EThcD fragmentation–
based MS/MS analysis is known to preserve labile modifica-
tions such as O-glycans for more confident identification (43).
A search was performed on these EThcD data with the same
parameters as used for the HCD data analysis. However, the
glycosylation site search of EThcD data can still be compli-
cated by the same factors as HCD analysis. Thus, only those
glycosylation site localizations that have been validated
through manual interpretation of the MS/MS spectra have
been labeled as having unambiguous glycosylation site
localization in supplemental Table S5. Among the many
releasate proteins confirmed to be O-glycosylated, four
modified proteins were the most interesting for platelet biology
and were annotated in the context of their known domains and
modification sites (39, 44–48). Extracted ion chromatograms
were generated and peak areas determined for each intact
glycopeptide ion to compare the microheterogeneity at each
modified site. It should be noted that this analysis is semi-
quantitative, given that the ionization efficiency of each form of
glycopeptide will be different. First, we observed that ~53% of
S553 of THBS1 had a (pentose)2-hexose modification
consistent with a (xylose)2-glucose conjugate (Fig. 2D). Sec-
ond, we observed two sialylated mucin-type O-glycans on
LTBP1 at T769 and T801 within the proteolytically sensitive
hinge domain, which targets the protein to the extracellular
matrix and is needed for transforming growth factor beta
release (49) (Fig. 2E). Third, coagulation factor V (F5) carried
mostly a core 1 mucin O-glycan (>75% sialyl T) in position
T805, while ~20% of the site was unmodified (Fig. 2F). Lastly,
we observed >95% O-fucosylation of MMRN1 at T216, which
is outside the epidermal growth factor (EGF)-like and throm-
bospondin type 1 repeats (TSR) domains known to contain
this modification (50).

Quantification of Releasate Proteins

Overall, we identified 202 proteins with significantly
increased total abundance in the high-dose thrombin relea-
sates, whereas only 63 were significantly increased by the
low-dose thrombin (supplemental Table S6). To delineate the
functional groups of the proteins increased in high-dose
thrombin releasates, we categorized proteins into ten
distinct gene ontology groups based on either biological
process or cellular component (Fig. 3). As expected, proteins
known to reside in the platelet alpha granules underwent the
largest fold change increase and were also the most abundant
releasate constituents. This was closely followed by proteins
hrombin stimulation or not significantly regulated, n = 5. F, boxplots of
ach line represents a single donor. The y-axis shows the label-free
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involved in cellular signaling such as chemokines and growth
factors (e.g., C-X-C motif chemokine 3, C-C motif chemokine
5). In this signaling group, several proteins not previously
described to be released from platelets were detected,
including granulin (GRN) and midkine (MDK), with GRN having
the largest fold change and final protein abundance. The
group showing the largest average fold change were from the
lysosome (51). Many proteins from the Golgi and endoplasmic
reticulum were also observed in the releasate, a large pro-
portion of which are involved in glycan processing/metabolism
(52). Of the 133 proteins having accurate measurements of
lysate fold change, only 44 decreased in lysate abundance
after high thrombin by >2-fold (Fig. 4, A and B and
supplemental Table S6). Several lysosomal proteins that were
enriched in releasates (Fig. 4C), such as N4-beta-N-acetyl-
glucosaminyl-L-asparaginase showed a 32-fold increase in
platelet releasates after thrombin, but only <2-fold decrease in
their lysate abundance (Fig. 4D). This suggests a large pool of
these proteins likely remains within the cell and that only a
small portion is secreted after thrombin treatment. Lastly,
proteins that mediate cell–cell contacts and comprise the
extracellular matrix were also released and included proteins
such as glycoprotein V (GP5) (53) and nidogen 1, a basement
membrane component.
Characterization of MMRN1 Fucosylation Within the EMI
Domain

One of the most abundant proteins released by activated
platelets was MMRN1, a large ~150 kDa protein that initially
forms stable homotrimers, which are hypothesized to interact
through EMI domain and C1q domain binding to form elon-
gated multimers of up to many MDa in size (54). We observed
a novel fucosylation of MMRN1 at T216, which is within the N-
terminal EMI domain of the protein. The O-fucosylation on
T216 of MMRN1 was confirmed by EThcD analysis as was the
predicted O-fucosylation of the C-terminal EGF-like domain at
T1055 (Fig. 5A and supplemental Table S5). The stoichiometry
of T216 fucosylation is very high, as the fucosylated peptide
was >10-fold more intense compared to the nonglycosylated
form (supplemental Table S2). The modified T216 and its
surrounding sequence are highly conserved in vertebrates
(Fig. 5B). The EMI domain has six conserved cysteines, which
likely form disulfide bonds (55). To examine the predicted 3D-
structure of the MMRN1 EMI domain we used the
probability (Log Prob) score >8 and had modifications to S,T,Y,K,R,D,E
common low-mass modifications (A) and higher mass modifications (B).
glycan symbols. C, quantitative O-glycomics analysis of O-glycans deta
Supplementary methods (n = 5). Bond linkage types are indicated in the
out of all observed O-glycans (100%). D, boxplots showing quantitative a
W-Man is C-mannose modified tryptophan on the same peptide as the
transforming growth factor beta-binding protein 1 O-glycosylation at iden
peptide as the indicated Ser/Thr. F, boxplots showing quantitative analy
RoseTTAfold program (56), which predicted the correct pairing
of cysteine residues (57) (Fig. 5C). Mapping the modified
threonine residue onto this structure illustrates the small size
of the EMI domain relative to the fucose modification (pink
circle, Fig. 5C). The EMI domain is hypothesized to contain
two subdomains, where one is similar to the C-terminal region
of the EGF-like domain (55). EGF-like domains are known to
be O-fucosylated by the endoplasmic reticulum–resident
enzyme GDP-fucose protein O-fucosyltransferase 1
(POFUT1) (58). O-Fucosylation of EGF-like domains by
POFUT1 occurs in a specific motif (C2XXXX[S/T]C3) bracketed
by the second and third conserved cysteine residues (59–61).
Mutation of the modified Ser/Thr within this motif completely
blocks O-fucosylation by POFUT1 (62, 63). Cocrystal struc-
tures of POFUT1 and an EGF repeat with this motif shows that
the folded EGF repeat is bound in such a way to position the
hydroxyl of Ser/Thr precisely in the active site for a nucleo-
philic attack on the anomeric carbon of fucose of GDP-fucose
(64). In contrast, the related enzyme POFUT2 adds O-fucose
to TSRs containing CXX[S/T]C motifs such as THBS1 as
shown in Figure 2D (65). Sequence similarities were observed
after alignment of the MMRN1 EMI-domain with EGF-like
domains that are known to be O-fucosylated by POFUT1
(Fig. 5D). This showed T216 of MMRN1 is in a region of the
EMI domain not conserved with EGF-like domains but dis-
plays a similar sequence motif that is only missing the C-ter-
minal cysteine residue and would be compatible with transfer
of fucose (64). The region of MMRN1’s EMI domain that is
homologous to the EGF-like domain fucosylation site does not
match the POFUT1 modification motif, as one extra amino
acid has been inserted and this is known to be incompatible
with fucosylation (64). Therefore, this modification of MMRN1
at T216 may represent a new recognition motif for POFUT1
within a new domain type that is missing the C-terminal
cysteine residue.
Using our proteomics dataset, POFUT1 was detected in

the platelet lysates and underwent no significant change in
abundance after thrombin stimulation (Fig. 6A). To determine
the extent of possible POFUT1 targets, we aligned all human
EMI domains (Fig. 6B). This showed EMILIN1, MMRN2, EMI
domain–containing protein 1, and collagen alpha-1(XXVI)
chain had the highest similarity and are also potential
O-fucosylation targets. The O-fucosylation site within
MMRN1 at T216 is a highly conserved position across EMI
domains as it is present in approximately half the proteins.
,N,Q,P,M,W were plotted. Modifications were plotted separately for
Delta masses corresponding to O-glycan masses are indicated by the
ched by β-elimination from platelet releasate proteins as described in
legend. The identified O-glycans are depicted as relative abundances
nalysis of thrombospondin-1 O-glycosylation at identified sites, (n = 5).
indicated Ser/Thr. E, boxplots showing quantitative analysis of latent-
tified sites, (n = 5). HydroxyN is hydroxylated asparagine on the same
sis of coagulation factor V O-glycosylation at identified sites, (n = 5).
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This suggests EMI domains are a previously uncharacterized
target of O-fucosylation and that these modifications may
play a key role in the function of EMI domain–containing
proteins. A known function of O-fucosylation is to assist
protein folding and aid in secretion (50, 65). Consistent with
this, exogenous expression in HEK293T cells of a MMRN1
T1055A mutant (EGF O-fucose–deficient) showed a nearly
complete loss of MMRN1 secretion. Notably, expression of a
MMRN1 T216A mutant (EMI O-fucose–deficient) led to a
>50% reduction in secretion, suggesting a role of EMI
O-fucose in assisting MMRN1 secretion (Fig. 6C). To examine
the role of POFUT1 in MMRN1 secretion, we expressed myc-
tagged WT MMRN1 in HEK293T cells that were either WT,
POFUT1-null mutants, or POFUT2-null mutants. Secretion of
positive control domains, EGF-like and TSR, which require
O-fucosylation for secretion, were absent from the media in
Mol Cell Proteomics (2024) 23(2) 100717 11
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POFUT1 KO and POFUT2 KO cells, respectively (POFUT1
does not modify TSRs and POFUT2 does not modify EGF
repeats) (66, 67). Secreted MMRN1 could be detected in the
tissue culture media from WT and POFUT2-null cell lines, but
was not detected in the POFUT1-null cells (Fig. 6D). Since
loss of O-fucose on T216 resulted in >50% loss of secretion,
these data suggest that POFUT2 is not responsible for
modifying the EMI domain, leading to the conclusion that
either POFUT1 or a novel POFUT is responsible for this
modification.

DISCUSSION

In this study, we mapped thrombin-induced platelet re-
sponses by combining high-quality platelet preparations and
ultrasensitive MS-based proteomics and glycomics. This
enabled the identification of new factors being released by
platelets and observation of novel PTMs on platelet proteins.
Our analysis generated three key findings. First, platelet
releasate proteins were enriched for a wide range of O-glycan
modifications and we quantified many novel modification sites
and structures. Second, the abundant platelet releasate pro-
tein MMRN1 was determined to be O-fucosylated on a novel
site (T216) within its EMI domain, and we show that the T216A
mutation resulted in >50% reduction in MMRN1 secretion. We
propose the O-fucosylation of the EMI domain is catalyzed by
either POFUT1 or a novel (unknown) POFUT. Lastly, large
differences in platelet secretion response were observed be-
tween low-dose and high-dose thrombin, with strong stimuli
triggering increased secretion of lysosomal luminal enzymes.
Collectively, these data provide an extensive proteome-wide
analysis of platelet responses to thrombin activation, which
may contribute to disease states through new functions in
haemostasis. This proteomic resource is provided as a free
web-based interactive visualization for the research commu-
nity (larancelab.com/platelet-proteome).
O-Glycosylation is known to play an important regulatory role

in cellular function; however, the majority of platelet studies
have focused on the role of N-glycans and O-sialic acids in
platelet production and clearance (68, 69). Importantly, defec-
tive O-glycosylation of platelet proteins results in a bleeding
phenotype (70). Previous studies have used enrichment re-
gimes to facilitate the detection of plateletO-glycosylation (71).
However, these regimes often only allow the identification of
specific glycan classes (e.g., O-GalNAc glycans) and do not
enable identification of some platelet-enriched modifications
such as O-fucosylation or O-glucosylation. Here, we
medium was collected and analyzed by Western blot probed with ant
quantified band intensity normalized with IgG bands from three indepen
HEK-293T cells either WT, POFUT1 KO, or POFUT2 KO were transfect
AdamTS9 TSR2-8-Myc and IgG (secretion control). After 2 days, cultured
Myc and anti-human IgG antibodies. Bottom, the bar graph shows quant
transfection experiments (n = 3), plotted as mean ± SD. EGF, epiderma
fucosyltransferase 1; TSR, thrombospondin type 1 repeats.
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demonstrate that many of the released platelet proteins carry
diverse O-glycan structures. This included high abundance of
O-fucosylation and O-glucosylation and their extended forms,
alongside themore broadly expressedmucin-type glycans. The
high abundance of O-fucosylated proteins can be explained
through domain enrichment analysis of the >200 platelet
releasate proteinswedetected usingSTRING-db (72), where 19
proteins (e.g., THBS1, MMRN1, LTBP1, nidogen 1) contained
either EGF-like domains or TSRs, which are the only previously
known consensus sites for O-fucosylation. This study has now
demonstrated for the first time that sites that were only pre-
dicted to be modified, such as the EGF-like domain in MMRN1
(50), are indeed O-fucosylated at high stoichiometry in human
platelets. This likely contributes to platelet function as demon-
strated by the loss of MMRN1 secretion when this domain
cannot be O-fucosylated as shown by a T1055A mutant.
We have discovered that the abundant platelet releasate

protein MMRN1 is constitutively O-fucosylated at T216 within
its EMI domain. MMRN1 is known to have several functions
including binding/release of coagulation factor V, thrombus
formation (73), and interaction with collagen via an N-terminal
RGD motif (74). We show that T216 was stoichiometrically
fucosylated within the context of a potentially altered POFUT1
O-fucosylation motif (C1-X-X-X-X-T-X) derived from its known
modification context in EGF-like domains (64). Mutation of the
EMI O-fucose site led to >50% reduction in MMRN1 secre-
tion. These results indicate a role for EMI O-fucosylation in
regulating MMRN1 secretion. The fact that elimination of
POFUT2 does not reduce MMRN1 secretion strongly sug-
gests EMI O-fucosylation is mediated by either POFUT1 or a
novel POFUT. EMI O-fucosylation may be required for correct
folding of the tertiary or quaternary structure of MMRN1,
which exists natively as a trimer (54). Given the proposed role
of the N-terminal EMI domain to interact with the C-terminal
C1q domain and enable MMRN1 multimerization (55), we
propose that O-fucosylation is required for this interaction and
is important for MMRN1 secretion and possibly multi-
merization efficiency.
High sensitivity MS-based proteomics of the platelet

releasate has enabled us to identify several novel factors
released from platelets in response to high-dose thrombin.
These include two small, secreted proteins GRN, and MDK.
Given the known links between lysosomal function and GRN
activity (75, 76), we hypothesise that GRN plays a key role in
the formation of the platelet lysosomes. MDK signaling
through a range of receptors is known to control inflammatory
i-Myc and anti-human IgG antibodies. Bottom, the bar graph shows
dent transfection experiments (n = 3), plotted as mean ± SD. D, top,
ed with plasmids encoding MMRN1-Myc, NOTCH1 EGF1-18-Myc, or
medium was collected and analyzed by Western blot probed with anti-
ified band intensity normalized with IgG bands from three independent
l growth factor; EMI, elastin microfibril interface; POFUT1, protein O-
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processes, including the activation of neutrophils (77).
Therefore, we hypothesize that the release of the proin-
flammatory MDK cytokine by platelets contributes to inflam-
mation by neutrophil recruitment at the site of tissue damage
and, in turn, enhances the innate immune defence.
This work catalogues the proteome-wide response of hu-

man platelets to thrombin activation. Platelets experience a
range of thrombin levels in vivo; the thrombin concentrations
during coagulation are estimated to range from 1 nM (0.1
U/ml) to over 500 nM (78). Different thrombin concentrations
will also affect the platelet interacting environment, including
the composition of fibrin strands (79). Alterations in the platelet
releasate content in response to different thrombin concen-
trations may differentially modulate platelet functions,
including immune, inflammatory, angiogenic, and tissue
remodeling responses (80).
We show that high-dose (0.2 U/ml) thrombin can trigger the

release of many proteins associated with the secretory
pathway including the ER, Golgi, and lysosome. Our com-
parison of platelet lysate and releasate fold changes after
thrombin treatment, showed that only a small pool of these
secretory pathway proteins was released from platelets.
Furthermore, several low abundance proteins detected in
thrombin-stimulated releasates such as tumor necrosis factor
ligand superfamily member 13 and calsyntenin-1 could not be
reliably detected in the corresponding lysates (81, 82).
Therefore, these proteins are likely of very low abundance
within platelet cells and would have been overwhelmed by
more abundant proteins during LC-MS/MS analysis of platelet
lysates. In contrast, the simpler releasate protein mixture ex-
hibits a lower dynamic range, which facilitates detection of
minor protein components with high sensitivity. This demon-
strates the advantage of platelet releasate analysis compared
to analysis of lysates alone.
In conclusion, the multidimensional dataset we provide

here on the platelet proteome provides the groundwork for
future mechanistic studies investigating the functions of the
novel proteins identified and the previously uncharacterized
O-glycosylation sites. Analysis of how the platelet prote-
ome is altered in disease states such as type II diabetes,
where platelets are known to be hyperactivated (83), should
prove fruitful to detect new mechanisms of platelet
dysfunction. In addition to the abundant O-glycosylation
decorating the platelet releasate proteins, many other
PTMs remain to be explored in the context of platelet
function and hemostasis.
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