Table 4.
SC-FSL vs. some state-of-the-art FSL.
| Algorithms | Accuracy (%) | |
|---|---|---|
| 5-way 1-shot | 5-way 5-shot | |
| ProtoNet | 75.32 ± 0.80 | 89.70 ± 0.51 |
| MatchingNet | 76.80 ± 0.81 | 87.85 ± 0.56 |
| RelationNet | 74.71 ± 0.83 | 88.90 ± 0.40 |
| NegMargin | 72.40 ± 0.80 | 90.78 ± 0.47 |
| MetaBaseline | 70.07 ± 0.81 | 87.02 ± 0.51 |
| MAML | 69.97 ± 0.96 | 86.04 ± 0.56 |
| FEAT | 74.23 ± 0.03 | 88.01 ± 0.03 |
| MELR | 74.90 ± 0.75 | 89.02 ± 0.13 |
| DeepEMD | 73.87 ± 0.07 | 88.56 ± 0.06 |
| SC-FSL(ours) | 78.55 ± 0.81 | 92.90 ± 0.47 |
The boldface is the best result and the underline the second-ranked result.