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Abstract
Purpose  This study evaluates the nnU-Net for segmenting brain, skin, tumors, and ventricles in contrast-enhanced T1 (T1CE) 
images, benchmarking it against an established mesh growing algorithm (MGA).
Methods  We used 67 retrospectively collected annotated single-center T1CE brain scans for training models for brain, skin, 
tumor, and ventricle segmentation. An additional 32 scans from two centers were used test performance compared to that of 
the MGA. The performance was measured using the Dice-Sørensen coefficient (DSC), intersection over union (IoU), 95th 
percentile Hausdorff distance (HD95), and average symmetric surface distance (ASSD) metrics, with time to segment also 
compared.
Results  The nnU-Net models significantly outperformed the MGA (p < 0.0125) with a median brain segmentation DSC of 
0.971 [95CI: 0.945–0.979], skin: 0.997 [95CI: 0.984–0.999], tumor: 0.926 [95CI: 0.508–0.968], and ventricles: 0.910 [95CI: 
0.812–0.968]. Compared to the MGA’s median DSC for brain: 0.936 [95CI: 0.890, 0.958], skin: 0.991 [95CI: 0.964, 0.996], 
tumor: 0.723 [95CI: 0.000–0.926], and ventricles: 0.856 [95CI: 0.216–0.916]. NnU-Net performance between centers did 
not significantly differ except for the skin segmentations Additionally, the nnU-Net models were faster (mean: 1139 s [95CI: 
685.0–1616]) than the MGA (mean: 2851 s [95CI: 1482–6246]).
Conclusions  The nnU-Net is a fast, reliable tool for creating automatic deep learning-based segmentation pipelines, reduc-
ing the need for extensive manual tuning and iteration. The models are able to achieve this performance despite a modestly 
sized training set. The ability to create high-quality segmentations in a short timespan can prove invaluable in neurosurgical 
settings.

Keywords  Artificial intelligence · Augmented reality · Deep learning · Neurosurgical planning · Segmentation · 
Visualization

Introduction

Three-dimensional (3D) visualization is increasingly being 
recognized as a crucial tool in neurosurgical interventions 
[25], often in combination with mixed reality (MxR) glasses 
and/or microscopic overlays of meshes [3, 6, 12, 18, 19, 
28]. These advances enhance a surgeon’s ability to plan and 
execute complex procedures. A key prerequisite for such 
visualization is the creation of high quality segmentations, 
which can be done manually, or (semi-)automatically. The 
process of generating high-quality manual segmentations is 
a time-consuming process and requires significant training. 
Consequently, automated generation of segmentations has 
emerged as an active and pressing[10, 24, 26, 33].
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The use of deep learning (DL) in semantic segmentation 
of medical images has seen a significant rise. Early deep 
neural networks (DNN) were generally based on AlexNet 
[17], VGG [32], and ResNet [9], which were modified to 
perform voxel-wise classification. These models would often 
require thousands of training samples to perform well, which 
made them less suitable for the limited datasets available 
for clinical applications. Additionally, due to the pixel-wise 
nature of these models, creating predictions on 3D voxel 
volumes would result in a very inefficient process.

The introduction of the U-Net [30] presented a signifi-
cant step forward. Originally designed to efficiently segment 
cells in histopathological slides, the U-Net is particularly 
strong at training on smaller datasets and is able to classify 
several voxels in one pass [30], enhancing performance by 
better considering the relationships between surrounding 
structures. Since its introduction, the U-Net has seen a wide 
adoption with many variations and applications [5, 31].

A notable development was the nnU-Net [13], which 
included dataset-specific features to guide preprocessing 
and architectural choices. These features are extracted from 
a dataset automatically, making it possible to fully auto-
matically generate a new pipeline with little to no human 
intervention [13]. The creators, Isensee et al., argue that this 
emphasis on the extraction of dataset-specific features is 
more effective than changing the U-Net’s core architecture, 
hence the name “no new U-Net.”

A mathematical mesh-growing algorithm (MGA) was devel-
oped in an effort to provide surgeons easier access to automated 
segmentation tools for neurosurgical planning. This method 
was validated for segmentation of contrast enhancing tumors 
and ventricles [7, 35], Despite its effectiveness, the MGA has to 
be hand-tailored to specific anatomical structures and may still 
require manual fine-tuning for a perfect match [7].

The growing integration and exploration of MxR tools in 
neurosurgical practices indicates a future where accurate, 
on-demand segmentations are required. Whether used for 
optimizing a surgical planning or refining surgical training 
through virtual rehearsals, high-quality segmentations are 
vital to the further adoption of these technologies. Addition-
ally, by introducing nnU-Net to a neurosurgical audience, we 
aim to allow future research to circumvent the effort required 
to create a custom segmentation pipeline. This will allow 
them to focus on exploring larger clinical questions and 
impacts, achieving more meaningful medical advancements.

The presented study aims to demonstrate nnU-Net as an 
efficient tool for creating an automatic pipeline for brain, 
skin, ventricles, and tumor segmentation in T1-weighted 
contrast-enhanced (T1CE) magnetic resonance imaging 
(MRI) scans. We benchmark its performance against the 
previously developed, non-DL, mathematical MGA, provid-
ing a comparative view of these two different approaches to 
segmentation.

Methods

Data

The data was sourced from two leading academic neuro-
surgical hospitals (center A and center B). The training set 
consisted of 67 T1CE scans, exclusively from center A, each 
corresponding to a distinct patient with one or more con-
trast-enhancing tumors. Center A predominantly uses Philips 
Ingenia and Achieva scanners. Center B uses a wide range of 
scanner manufacturers and models through referring centers. 
The training data was originally collected and segmented 
for use in two previous studies [7, 35], which explored auto-
matic tumor and ventricle segmentations. Testing data, con-
sisting of a random selection of contrast enhancing lesions of 
minimally 1 cm, was collected separately from the training 
samples in both centers (n = 15 for center A and n = 17 for 
center B). These scans were excluded from model training 
or any other algorithmic development and were used as a 
reference standard.

The data collected by Fick et al. [7] consisted of 50 T1CE 
scans of patients with at least one contrast-enhancing tumor 
with a volume of no less than 5 cc, and a scan volume of no 
less than 100 slices at center A. The data collected by van 
Doormaal et al. [35] consisted of 46 scans, from both centers 
A and B, of patients who were admitted for intracranial sur-
gery. No further inclusion criteria were used. Data from center 
B was not included in our training set. The scans from center 
A were made between August 2018 and November 2020.

Manual segmentation

Not all patient scans in the training (n = 67) and test (n = 32) 
sets were fully segmented. The choice to segment or not to 
segment a certain anatomy in a patient was based on balanc-
ing the amount of effort required versus the potential perfor-
mance increase an additional segmentation would provide. 
Mainly, smaller and more variable structures require more 
segmentations, while larger and less variable ones do not. 
Each segmentation was checked for quality by an experi-
enced neurosurgeon. For an overview of available segmenta-
tions in our train and test sets, refer to Table 1.

Initial brain segmentations were created using CAT12 
v12.8.1 for patients with an available T1 non-contrast 
scan of suitable quality. These segmentations were manu-
ally refined in 3D Slicer v5.4.0 to eliminate any artefacts 
caused by patient motion or the presence of metal objects.. 
The resulting segmentations were then used to bootstrap a 
MONAI Label v0.8.0 active learning session, in which a 
small supporting neural network is used to provide best-
guess initial segmentations which are then manually checked 
and corrected where required before inclusion in the dataset.
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NnU‑Net model development and training

The nnU-Net codifies best-practice pre-processing and 
architectural considerations automatically based on features 
of the provided dataset. These features include modality, 
spacing, and scan sizes, which can be extracted from the 
dataset automatically. Based on these features, a number of 
decisions are made to adjust U-Net architecture and data 
processing steps. With this method, hyperparameters are 
selected based on a-priori domain knowledge, resulting in 
a more robust model. For further technical information, we 
refer to the original paper by Isensee et al. [13].

We trained four separate models for each anatomical 
structure using the training data and the nnU-Net v2.2.1 
tools. Standard settings were used for each training run. A 
model was trained for 1000 epochs, 250 steps per epoch, two 
random patches per step, using a DSC with Cross Entropy 
loss. NnU-Net is designed around the lack of testing data, 
using a fivefold cross-validation set up by default. As we 
were in possession of a separate testing set, we disabled this 
functionality, and trained on all data instead. Each anatomi-
cal structure was assigned its own dataset, and was preproc-
essed independently. To mitigate false positives in our brain 
segmentations, we employed a straightforward post-process-
ing step that retained only the largest distinct island in the 
predicted segmentations. This step capitalized on the a priori 
knowledge that the brain is one large, continuous structure.

Mesh‑growing algorithm

In the MGA, the scans are pre-processed to a mathemati-
cal format. The computational system utilizes image data 
and a-priori anatomical information to determine initial 
anatomical structure boundaries. The intermediate results 
are used to guide the segmentation of the of the tissues of 
interest with region-growing and watershed algorithms. 
An iterative process optimizes the segmentations further 
and includes any regions that were missed in the initial 
steps. The original application of the MGA was the seg-
mentation of orbital volumes [14, 27], which was later 
expanded to wrist [34], ankle [16], and intracranial anato-
mies [7, 35]. This approach is fully deterministic, using 
classic numerical algorithms and is not based on any DL 
techniques.

Experiments

To evaluate the performance of the trained nnU-Net models, 
we generated predictions on the test scans. The resulting 
outputs were compared with the available manual segmenta-
tions. We used the Dice-Sørensen coefficient (DSC), inter-
section over union (IoU), 95th percentile Hausdorff distance 
(HD95), and average symmetric surface distance (ASSD) for 
numerical performance evaluation. The implementations of 
these metrics were provided by MONAI v1.3.0, paired with 
PyTorch v2.0.1. All metrics were collected on a per-patient 
basis, and did not include the background class. The choice 
of these particular metrics was intentional to ensure that 
the weaknesses of any individual metric were mitigated by 
incorporation of the others [21, 29].

We also compared the time required to create the auto-
matic segmentations. For nnU-Net, we use the automatically 
provided timing with all predictions. Given that the MGA 
was ran in a cloud environment that only provides timing 
to the nearest full minute and since the MGA delivers all 
predictions at once, we added the nnU-Net times per patient 
to simulate a sequential segmentation setup.

Statistical analyses

A Shapiro–Wilk test showed that the resulting scores were 
not normally distributed, leading us to use a Mann–Whitney 
U test to identify the existence of any statistically significant 
performance difference between (1) the two methods and (2) 
between centers A and B for the nnU-Net segmentations. All 
statistical tests were implemented by SciPy v1.11.4.

The alternative hypotheses available in the used 
Mann–Whitney U test implementation were utilized to 
assess whether our models had a statistically better perfor-
mance than the MGA. We assessed whether the nnU-Net 
models scored significantly higher for the DSC and IoU 
scores, and significantly lower for the HD95 and ASSD 
scores. We calculated our Bonferroni adjusted p-value to 
be 0.0125.

Results

The nnU-Net successfully produced all segmentations for each 
patient. The MGA failed to produce one brain, skin, and ventricle 
segmentation and five tumor segmentations. In our subsequent 
analyses, missing predictions were not included. Visually, the nnU-
Net models produce a higher level of detail, reduced false positives 
and false negatives than the MGA, see Fig. 1 for examples. For a 
sagittal view of our nnU-Net model segmentations, including the 
T1CE scans they were derived from, see Fig. 2. Finally, since these 
models’ outputs are intended to serve as visualization aids, we have 
visualized them in an online environment, see Fig. 3.

Table 1   The number of available (semi-)manual segmentations

Anatomy Train (n = 67) Test (n = 32)

Brain 30 23
Skin 60 32
Ventricles 60 32
Tumor 61 30
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All nnU-Net models demonstrated superior performance 
for all different anatomical structures, with the largest differ-
ence observed in tumor segmentations. For a detailed break-
down of scores, readers are referred to Online Appendix 
A. A patient-specific comparison can be found in Online 
Appendix B. Figure 4 offers a visual representation of the 
achieved performance through boxplots. Finally, Appendix 
C contains an overfitting evaluation.

The results of the Mann–Whitney U tests, which compare 
the nnU-Net models and the MGA scores, suggest a statistically 

significant (p < 0.0125) difference in performance across all met-
rics and anatomical structures. Table 2 contains the results of these 
tests. A comparison of the inter-center performance of the nnU-Net 
models is available in Table 3. Apart from the skin segmentations, 
no statistically significant difference in performance was observed.

On average, the nnU-Nets required 1139 s (19 min) [95CI: 
685, 1616] to predict all anatomical structures sequentially. In 
contrast, the MGA took an average time of 2851 s (47.5 min) 
[95CI: 1482, 6246] to predict the same.

Fig. 1   3D comparisons of segmentations generated by our nnU-Net 
models and the Mesh Growing Algorithm (MGA) (denoted row-wise 
in the margins). These visualize brain (left column, white), skin (mid-
dle column, brown), tumor (red, right column) and ventricles (blue, 

right column). The annotations in red indicate the same region in 
each segmentation with a notable difference in quality. The MGA 
oversegmented the tumor in this particular patient
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Discussion

We propose nnU-Net as a promising option for generating 
automatic segmentation pipelines for brain, skin, contrast-
enhancing tumor, and ventricles in T1CE scans. As MR 
systems continue to advance, on-demand, high-quality 
segmentations become increasingly vital. Beyond assisting 

experienced neurosurgeons, these segmentations can ele-
vate the education of trainees, offering virtual rehearsal 
opportunities and a deeper grasp of complex anatomical 
relationships.

This study demonstrates that an nnU-Net trained on a 
relatively small dataset collected from a single center signifi-
cantly outperforms the MGA. Except for skin segmentations, 

Fig. 2   Example sagittal slices 
from our test set, indicating 
the difference in craniocaudal 
FOV, with the automatic brain 
(white), tumor (red) and ventri-
cle (blue) segmentations over-
laid. Each slice is positioned to 
display the bulk of the tumor. 
The top row are examples from 
Center A, the bottom row are 
examples from Center B. The 
red arrows are used to indicate 
false positives in the tumor 
segmentation

Fig. 3   Typical example segmen-
tations on two different patients 
(left: Center A, right: Center 
B) generated by our nnU-Net 
models. The brain segmentation 
is made transparent, to allow 
visualization of the underlying 
anatomy. the ventricle seg-
mentations are blue, the tumor 
segmentation is green and the 
ground truth for the tumor is 
purple. Red arrows indicate 
false positive segmentations
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the nnU-Net is robust enough to not cause statistically signif-
icantly different performance between the two tested centers. 
With this, we provide future research endeavors the opportu-
nity to redirect their energy towards using these segmenta-
tions for more advanced research that may provide a higher 
clinical impact, instead of focusing their efforts on solving 
the automatic segmentation problem instead.

Our models deliver predictions more rapidly than the 
MGA. While the MGA’s prediction times may be skewed 
due to unexpected background processes interfering or 

Fig. 4   A boxplot showing performance of the MGA and our nnU-Net 
models side by side. The various anatomical structures are displayed 
in each row of plots, the used metrics are displayed in the columns. 

Note that the y-axes are independent to maximize visibility, and the 
HD95 and ASSD plots have a logarithmic y-axis

Table 2   Results of the Mann–Whitney U tests comparing our nnU-
Net model segmentations versus those of the MGA. The tests used 
the alternative hypotheses that the nnU-Nets’ DSC and IoU were 
higher, and lower for HD95 and ASSD scores. U-values denoted by 
an asterisk have a P-value of < 0.001

Anatomy DSC IoU HD95 ASSD

Brain 488* 488* 45.0* 47.0*
Skin 887* 887* 178* 77.0*
Tumor 649* 649* 184* 169*
Ventricles 793* 793* 124* 157*

Table 3   Results of the Mann–Whitney U tests comparing the performance of the nnU-Net models between both clinical centers A and B. U-val-
ues denoted with an asterisk have a p-value of < 0.001

Anatomy DSC IoU HD95 ASSD

Brain 69.0 (p = 0.591) 69.0 (p = 0.591) 86.0 (p = 0.101) 94.0 (p = 0.0238)
Skin 224* 224* 83.0 (p = 0.0914) 34.0*
Tumor 97.0 (p = 0.534) 97.0 (p = 0.534) 120 (p = 0.787) 126 (p = 0.590)
Ventricles 177 (p = 0.0643) 177 (p = 0.0643) 85.0 (p = 0.113) 123.0 (p = 0.880)
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suboptimal hardware, our nnU-Net models remain substan-
tially faster. Furthermore, although the nnU-Nets were timed 
sequentially, they can operate in parallel, given that suffi-
cient computing power is available. Initial experimentation 
with running the models on more powerful hardware and 
combining all segmentations into a single model indicate 
the potential for a large amount of significant additional time 
savings.

Prior works

Brain tumor segmentations are a popular subject, mainly due 
to the Brain Tumor Segmentation (BraTS) challenge [22] 
dataset. The existence of this open dataset lowers the barrier 
of entry for many researchers, resulting in a considerable 
amount of articles exploring the problem of automated brain 
tumor segmentation [1, 8]. However, nnU-Net surpassed the 
majority of these other works at the time of its publication 
[13], indicating its robust generalizability.

Despite potential benefits in using the BraTS data to 
train our own models, their data differs considerably from 
routine clinical data. Each set of scans in the BraTS data-
set is extensively pre-processed with linear registrations, 
resampling to the same voxel spacing and skull stripping 
to preserve patient privacy. All of these steps require addi-
tional processing of the incoming data, which takes time 
and introduces additional points of failure in the pipeline. 
Our models do not require such pre-processing by design 
and are therefore more ergonomic in their integration in a 
clinical workflow.

DNN-based brain and ventricle segmentation methods 
have not been as widely explored as tumor segmentation, but 
several examples do exist. Most earlier works employ atlas 
registration techniques [4], which may take a lot of time to 
complete. In recent years, increasing amounts of DNN-based 
solutions were presented [2, 11, 36–38]. Generally, these 
studies focus on tissue classification or brain parcellation 
in the context of disease detection and/or disease progres-
sion assessments. In contrast, our segmentations aim to aid 
surgical planning, which focuses on the anatomical relations 
between the different brain structures, eliminating the need 
for such detailed differentiation.

While skin segmentation on its own is not a common 
subject of published research, it is a common step in analysis 
pipelines [15]. Often a thresholding technique is applied, 
which is subsequently processed with standard morpho-
logical operations [20]. While these techniques provide 
solid results without the need for training a model, each 
implementation is highly specific for the relevant dataset. 
In the presence of unexpected artefacts, signal loss and low-
intensity regions these methods may fail to produce a proper 
mask.

Accurate and robust skin segmentations are crucial for 
preoperative planning. They provide valuable spatial infor-
mation for locating the tumor relative to normally visible 
exterior reference points. Furthermore, this information 
could be used in the future to perform surface matching for 
neuronavigation. DNNs, like our nnU-Net models, can gen-
erate high-quality segmentations for these purposes.

Limitations

We used a post-processing step to filter out false positive 
regions in our brain segmentations. This step was added 
to our process after initial results revealed a tendency of 
the model to generate these false positives in areas not seen 
in the training set. The scans from center B, which had a 
much larger craniocaudal field of view than center A, often 
included the neck. Since the scans from center A with an 
available manual brain segmentation did not include these 
areas, the model would have never been trained to recognize 
these areas. Fortunately, we know the brain segmentation 
should be one continuous structure. Removing all but the 
largest connected component improved the performance on 
these scans considerably.

However, this strategy does not translate well to tumor 
and ventricle segmentations. Removing all but the largest 
segmentations from these could introduce false negatives in 
the case of multiple tumors, slit ventricles, or other causes 
of component separation. It is not always known how many 
tumors any given patient has, nor is it straightforward to 
mathematically or programmatically reason which segmen-
tations are false positives to be removed with a post-pro-
cessing step. Furthermore, false negatives are difficult to 
detect. Post hoc user input may be required to indicate false 
positives or false negatives.

As is a common issue with DL solutions, not all seg-
mentations may produce a correct result and/or these 
results may not generalize to a third clinical center. For-
tunately, the high retrainability of a DNN allows future 
training runs to be performed on a dataset amended with 
data that has been the cause for low-quality segmentations. 
Prior research has indicated that only a small amount 
of additional out-of-distribution data may significantly 
improve performance on future iterations of the models 
[23].

Finally, we do not include failed segmentations in our 
statistical analyses. It could be argued that a failed seg-
mentation should result in a DSC and IoU of 0.0, and a 
similar “complete miss” value for the HD95 and ASSD 
scores. Unfortunately, HD95 and ASSD do lack an upper 
bound [29] and should, in principle, be assigned a value 
of infinity. This would severely impact our statistical 
analyses to the point of unusability. As the MGA failed 
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to produce several segmentations, while our nnU-Net 
models did not, our results are somewhat biased in favor 
of the MGA. Nevertheless, our nnU-Net models still out-
perform the MGA.

Future applications

The models trained and tested in the current study accurately 
automatically segment skin, brain, tumors, and ventricles. 
This practically facilitates the creation of individual three-
dimensional neurosurgical patient models from standard two-
dimensional scans. The models are versatile in their display 
capabilities, suitable for presentation on conventional flat 
screens, advanced 3D displays, and augmented reality devices.

The potential implications of this technology in the context 
of neurosurgical patient care are multifaceted. The primary 
areas of impact include operative preparation, resident educa-
tion, and patient education. The 3D models provide a platform 
for surgical planning and positioning rehearsals. They also 
serve as a foundation for creating immersive virtual simula-
tions, enhancing the precision and preparedness of surgical 
interventions. These simulations are instrumental in the edu-
cational arena, particularly for training residents in fundamental 
surgical skills, including patient positioning and approach strat-
egies. The 3D representations offer a more intuitive and detailed 
understanding of complex neuroanatomical structures. Finally, 
simplifying the complexity inherent in DICOM images, these 
3D models offer a more comprehensible visual representation 
for patients. This approach can potentially improve patients’ 
understanding of their medical conditions, treatment plans, and 
the risks associated with various procedures.

Despite the apparent benefits, we underscore the necessity 
for further research to systematically assess and quantify the 
specific advantages and limitations of these 3D models in 
each of the aforementioned areas. This ongoing investigation 
is crucial for validating the efficacy and practicality of imple-
menting such technology in clinical neurosurgical settings.

Future applications of the trained models in research 
are many. NnU-Net may empower researchers with a 
limited knowledge on DL pipelines to create their own 
powerful networks. This will allow them to focus on the 
actual use of the segmentations for clinically relevant 
research questions.

Conclusion

We have demonstrated nnU-Net as an effective tool to develop 
automatic DL pipelines for segmenting brain, skin, contrast-
enhancing tumors, and ventricles in T1CE scans. We also 
compared the performance of these trained models to a math-
ematical MGA, showing a statistically significantly improved 
performance on data from two neurosurgical hospitals.
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