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The Gaze of Schizophrenia Patients Captured by Bottom-up
Saliency
Petr Adámek 1,2✉, Dominika Grygarová1,2, Lucia Jajcay1,3,4, Eduard Bakštein5,6, Petra Fürstová5, Veronika Juríčková 1,7, Juraj Jonáš1,8,
Veronika Langová1,2, Iryna Neskoroďana1, Ladislav Kesner1,9 and Jiří Horáček 1,2

Schizophrenia (SCHZ) notably impacts various human perceptual modalities, including vision. Prior research has identified marked
abnormalities in perceptual organization in SCHZ, predominantly attributed to deficits in bottom-up processing. Our study
introduces a novel paradigm to differentiate the roles of top-down and bottom-up processes in visual perception in SCHZ. We
analysed eye-tracking fixation ground truth maps from 28 SCHZ patients and 25 healthy controls (HC), comparing these with two
mathematical models of visual saliency: one bottom-up, based on the physical attributes of images, and the other top-down,
incorporating machine learning. While the bottom-up (GBVS) model revealed no significant overall differences between groups
(beta = 0.01, p= 0.281, with a marginal increase in SCHZ patients), it did show enhanced performance by SCHZ patients with highly
salient images. Conversely, the top-down (EML-Net) model indicated no general group difference (beta=−0.03, p = 0.206, lower in
SCHZ patients) but highlighted significantly reduced performance in SCHZ patients for images depicting social interactions
(beta=−0.06, p < 0.001). Over time, the disparity between the groups diminished for both models. The previously reported
bottom-up bias in SCHZ patients was apparent only during the initial stages of visual exploration and corresponded with
progressively shorter fixation durations in this group. Our research proposes an innovative approach to understanding early visual
information processing in SCHZ patients, shedding light on the interplay between bottom-up perception and top-down cognition.
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INTRODUCTION
Schizophrenia (SCHZ) is typically associated with deficits in
domains related to information processing, such as perception,
attention, working memory, and learning1. All these domains likely
have one common denominator: impaired salience, the property
by which something stands out from surrounding context.
Salience is typically regarded as having two components: physical
and cognitive salience. Physical salience refers to the aspects of a
stimulus that automatically capture attention or direct gaze in a
stimulus-driven, goal-independent, or bottom-up manner2. In
contrast, cognitive salience is task-oriented, influenced by tasks
assigned by external sources or driven by one’s current internal
goals3. Disruption of physical salience, which is based on sensory
sensitivity to external stimuli, may impede the formation of
cognitive salience-related associations. This means that it can
affect our ability to attribute meaning to individual stimuli from
the external environment4. Kapur proposed that dysregulated,
hyperdopaminergic states at the cellular level may lead to the
attribution of aberrant salience to individual experiences at the
psychological experiential level5. However, salience formation is a
complex, long-term process that reflects our internal model of the
world, which may not be stable in SCHZ due to distortions and
instability of sensory signals6.
Vision is our most developed sense7,8 and unsurprisingly a

substantial amount of brain processing is devoted to it, with over
half the primate brain being involved in vision-related processing9.
Due to the limited computational capacity of the visual cortex10, it
is critical to correctly cluster visual percepts according to a

hierarchy of importance. The internal model of the world is
derived from the combination of neural filters and cognitive
signals that gradually calibrate them. This mechanism allows the
brain to process visual signals efficiently and to focus its limited
computational capacity and attention only on those parts of the
scene that are subconsciously assessed as important11,12. Compu-
tational capacity limits are mainly related to the physiological
aspects of the neurons themselves and the functional circuits
sensitive to the different elements of the visual scene13,14. The
brain solves this limited capacity for attention allocation through
prediction mechanisms15. The perceptual onset is preceded by a
quick subliminal observation of the scene (bottom-up), which is
based on its physical saliency (contrast, brightness, and low spatial
frequencies). This observation helps us quickly orient ourselves
and focus our attention in the next step, in which higher (top-
down) cognitive processes come into play. These processes are
related to the cognitive saliency formed by our internal model of
the world6,16. Low spatial frequency (LSF) information is swiftly
extracted from visual stimuli and conveys general details about
the shape and orientation of objects within a scene. This LSF
information subsequently contributes to the formation of top-
down predictions, influencing visual attention and higher-level
cognitive processes related to visual perception16–19. A primary
outcome resulting from the disruption of this process is a disorder
of attentional capacity and the inability to rapidly incorporate
salient percepts into the stream of consciousness20,21.
In SCHZ, previous findings indicated a disruption in both types

of processing: basal visual perception based on incorrect
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processing of visual stimuli (bottom-up)22–25, and impairment of
higher visual cognition based on the processing of visual stimuli
influenced and orchestrated by previous experience (top-down/
feedforward sweep)26–34. The stimuli used in these experiments
are typically designed based on the research question being
addressed. Bottom-up experiments predominantly work with
elementary stimuli, such as basic line figures35, Gabor pat-
terns29,36, and pop-out structures37, while top-down experiments
use different types of visual illusions33,38 or faces39. However, this
approach falls short in providing a comprehensive mapping of the
interplay between bottom-up and top-down processes during
complex visual processing in everyday environments. It also lacks
the capability to conclusively ascertain how deficits in bottom-up
processing influence the perception, cognition and formation of
aberrant saliency of complex real-life scenes in SCHZ population.
To address this knowledge gap, we attempt to identify

differences between both groups by using recent saliency
“bottom-up” and “top-down” predictive models40,41, with the
former relying solely on physical visual properties and the latter
additionally incorporating object recognition. Attention allocation
has been intensively investigated through saliency models using
“saliency maps”42–44, a computational concept that predicts
graded saliency for each location of an image based on its low-
level visual features, and thus predicts bottom-up attention45. It
includes three components: (1) feature maps that represent
fundamental visual characteristics such as color, orientation,
luminance, and motion; (2) saliency maps resulting from combin-
ing normalized feature maps that highlight the visually significant
areas in an image, solely based on their physical attributes,
without taking into account any semantic features of the stimulus;
(3) the “ground truth maps” representing the saliency maps
derived from the real eye-tracking data capturing viewer attention
allocation to specific regions of the image. The efficacy of saliency
model predictions is then evaluated through its comparison with
ground truth maps. In previous studies, saliency models have even
been employed to analyze brain activity in response to visual
stimuli, with distinct brain areas linked to the ‘saliency map’
generated by a saliency model46,47.
Recent technological advances in the field of machine learning

have enabled the incorporation of additional convolutional neural
network (CNN) layers to original bottom-up models. These added
CNN layers reflect top-down cognition, which is involved in
analysis and categorization of specific semantic content of a scene
(e.g., objects, faces, emotions)48–51. However, it is important to
emphasize that such models are not solely based on top-down
cognition; they still incorporate the bottom-up layer within their
computations. In this paper, for the sake of simplicity, we refer to
such models as “top-down” because, unlike bottom-up models,
they have the capability to suppress the bottom-up component in
favour of top-down processing52,53.
We utilized these two models to determine the likelihood of an

observer directing their attention to specific areas within the
scene. We expect that analyzing ground truth maps derived from
eye-tracking data of individuals with schizophrenia (SCHZ) and
healthy controls (HCs), and comparing these with mathematically
predicted saliency, will provide deeper insights into the similarities
and differences in bottom-up and top-down visual processing
between these two groups. We hypothesized that SCHZ patients’
attention is influenced more by the physical properties of the
image than HC’s attention. This suggests a tendency to prioritize
highly physically salient percepts in the scene more than HC54–57,
likely reflecting the disruption of higher cortical processes
consistently found across studies and resulting in the expected
lower predictive ability of the top-down model in SCHZ
patients58–60. In this paper, we employ the term “bottom-up bias”
to denote a tendency to prioritize bottom-up signal over top-
down processing61.

To investigate the ‘bottom-up bias’ in schizophrenia (SCHZ), our
approach involved a multi-faceted comparison using saliency
models across both SCHZ patients and HCs. Initially, we compared
the overall results of these models between the two groups.
Furthermore, our analysis extended to assessing the performance
of the saliency models across five specific content-based
categories, each inherently linked to either bottom-up or top-
down processing. This nuanced categorization allowed us to parse
the visual processing mechanisms more precisely and understand
how each model interprets different types of visual stimuli in SCHZ
and HCs. Subsequently, we integrated a stepwise analysis of two
consecutive time periods in our study – the first encompassing up
to five fixations, and the second starting from the sixth fixation.
This sequential analysis was aimed to unravel the dynamics of
visual perception in SCHZ. By examining these two distinct phases,
we sought to identify and contrast the engagement of bottom-up
and top-down components in the visual perception processing of
both groups. Finally, to reveal confounding factors that might
influence the results of the two saliency models, we decided to
test the relationship of oculomotor movements with psychological
metrics (Continuous Performance Test (CPT) and Positive and
Negative Syndrome Scale (PANSS)), medication, disease duration,
and the length of its untreated phase (DUP).

RESULTS
Differences in the Performance of Saliency Models
Comparison of saliency maps calculated for each participant
(ground truth maps) to saliency predictions lead to 13,436
normalized scan path (NSS) values from 53 subjects (28 SCHZ,
25 HC). A direct nonstatistical comparison of the NSS scores
between two saliency models showed that the bottom-up (GBVS)
model was able to predict oculomotor behavior better in the SCHZ
population (M= 1.43, SD= 0.58) than in HC (M= 1.35, SD= 0.51).
In contrast, the top-down (EML-Net) model better predicted the
distribution of fixations in HC (HC: M= 2.16, SD= 1.13) than SCHZ
(SCHZ: M= 2.08, SD= 1.29). However, when we employed linear
mixed effects models (LME) for statistical comparison, the analysis
did not corroborate the differences observed in the direct, non-
statistical comparison of NSS scores between groups and across
models.
Evaluation of NSS scores for the bottom-up (GBVS) model did

not show significant differences between-groups but indicated
significantly higher performance of SCHZ patients in the highly
salient image category (Table 1). The top-down (EML-Net) model
also did not show an overall between-groups effect but showed
significantly lower patients’ performance in images depicting
social interactions (Table 1).
At the whole-group level, including both SCHZ and HC, the

bottom-up (GBVS) model showed no differences between image
categories. On the other hand, the top-down (EML-Net) model
showed lower prediction capability in the physically salient image
category, and higher capability in the social interaction and social
landscape image categories (Table 1).

Between-group differences in bottom-up and top-down
predictions in time
To identify the inter-group differences in the involvement of
bottom-up and top-down processes over time, we calculated NSS
score for each model in two different time periods: up to the fifth
fixation and from the sixth fixation (Fig. 1). The decision to split the
dataset into two periods was based on previous research showing
that prediction accuracy for bottom-up models is lost around the
fifth fixation62. Another decision that led us to split the dataset is
the peak of the fixation duration, which is located just around the
fifth fixation, for both groups (Fig. 2). We applied LMER models to
both periods and both saliency models.
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Sequential analysis of bottom-up (GBVS) model. The LME model
revealed no significant differences in NSS scores between the
SCHZ and HC groups for either observed period. However, in the
context of physically salient images, the model consistently
showed a better prediction of oculomotor behavior for SCHZ
patients compared to HCs, in both periods (Table 2).
Furthermore, an analysis of the second period revealed

differential performance across image categories at the whole-
group level. Specifically, the bottom-up model indicated better
performance for physically salient images, while it showed
reduced effectiveness in accurately predicting oculomotor move-
ments for stimuli depicting social interactions and social land-
scapes (Table 2).

Sequential analysis of top-down (EML-Net) model. LME results
showed a difference in NSS score between groups during the first
time period (Table 3). We also observed significantly higher model
predictive performance of patients’ oculomotor behavior in the
physically salient image category and lower performance in social
landscape images category in the first period. Stimuli depicting
social interactions had significantly lower NSS score in SCHZ
patients in both periods (Table 3). Contrastingly, when we
examined the whole-group level results, which include both SCHZ
and HC groups, no differences were observed between image
categories in either of the two periods (Table 3).

Group Differences in Fixation and Explored Area of the Image
The SCHZ group showed a significantly lower mean number of
fixations per image than the HC (SCHZ: M= 8.92, SD= 1.28; HC:
M= 9.22, SD = 0.75; t(54)= 5.26, p < 0.001), and the overall mean
fixation duration was longer in SCHZ than in HC (SCHZ:
M= 326.12ms, SD= 22.97; HC: M= 254.83ms, SD= 24.15; t(54)=
−4.44, p < 0.001). We also observed a statistically significant
difference between the groups in terms of the total area of the

image that received fixations. This ‘total fixed image area’ refers to
the cumulative portion of the image that was the focus of gaze
fixations across all participants within each group. The standard
deviation (SD) test revealed that the SCHZ group had significantly
reduced spread of fixations over the image area (SCHZ: SD Mean =
678.28; SD= 76.3; HC: SD Mean = 727.56 (SD= 83.82); t(54)= 6.87,
p < 0.001).
In addition, we identified between-group differences in the

temporal dynamics of fixation duration. In SCHZ, the average
fixation duration stabilized after an initial increase in duration.
Around the fifteenth fixation, their duration became comparable
to HC. The fifth fixation was achieved in 99% of all trials in HC and
in 96% of all trials in SCHZ. Tenth fixation was achieved in 96% of
all trials in HC and in 82% of all trials in SCHZ. Fifteenth fixation
was achieved in 79% of all trials in HC and in 45% of all trials in
SCHZ. A sequential testing procedure was used to test the
significance of this difference. The first fourteen fixations showed
a statistically significant difference in fixation lengths
(t(54)=−2.55, p = 0.013). The fifteenth and subsequent fixation
durations did not differ between groups (t(54)=−1.67, p = 0.098)
(Fig. 2).
In the SCHZ group, we also investigated the relationship

between oculomotor movements (including the duration and
number of fixations) and various factors: the antipsychotic
medication dosage, responses on the PANSS questionnaire, the
duration of illness, and the period of untreated illness. However,
our analysis revealed no statistically significant correlations
between these variables and oculomotor movements. Addition-
ally, we examined the relationship between oculomotor move-
ments and CPT test results in both SCHZ and HC groups. We found
a negative correlation between CPT Commissions and the mean
number of fixations in HC group, but no other significant
correlations with other measured variables and participant groups.
Detailed results can be found in (Table 4).

Table 1. Results of LME comparison for top-down and bottom-up model.

bottom-up sqrt(NSS) top-down sqrt(NSS)

Predictors Estimates CI p Estimates CI p

(Intercept) 0.44 0.37–0.58 <0.001 0.57 0.53–0.61 <0.001

SCHZ 0.01 −0.01–0.03 0.281 –0.03 −0.07–0.02 0.206

Incongruent 0.01 −0.10–0.11 0.921 0.04 −0.01–0.09 0.132

Physically salient −0.04 −0.14–0.06 0.428 –0.11 −0.17–−0.06 <0.001

Social interaction −0.08 −0.18–0.02 0.099 0.18 0.12–0.23 <0.001

Social landscape −0.02 −0.12–0.08 0.699 0.09 0.04–0.14 0.001

SCHZ × Incongruent 0.01 −0.01–0.02 0.224 0.03 −0.00–0.06 0.050

SCHZ × Physically salient 0.02 0.00–0.03 0.015 0.03 −0.00–0.06 0.051

SCHZ × Social interaction 0.01 −0.01–0.02 0.324 –0.06 −0.09–−0.03 <0.001

SCHZ × Social landscape 0.01 −0.00–0.03 0.153 0.01 −0.02–0.04 0.582

Random Effects

σ2 0.02 0.07

τ00 0.00 ID 0.01 ID

0.00 imageCat 0.00 imageCat

ICC 0.10 0.07

N 54 ID 54 ID

5 imageCat 5 imageCat

Observations 13436 13436

Marginal R2/Conditional R2 0.049/0.140 0.090/0.157

sqrt square root, NSS normalised scan path, ID unique participant identification string, imageCat Image category.
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DISCUSSION
The main finding of our study is that the bottom-up model was
able to better predict the oculomotor behavior of the SCHZ
population and in contrast the top-down model better predicted

the oculomotor behavior of HCs. While the LME model did not
statistically confirm differences for either the bottom-up or top-
down models overall, it identified significant variations upon
examining specific image categories. These findings indicate that

Fig. 1 The difference between models performance in time. A difference in NSS score of the top-down and bottom-up model between-
groups over time. Description: The top-down (EML-Net) model performs better within both time periods in the case of HCs. The bottom-up
model, on the other hand, is better in predicting saliency in the SCHZ population only in the case of the second period from the sixth fixation.
In the first period, the prediction is more accurate for HCs than SCHZ patients.

Fig. 2 Inter-group differences in the duration of individual fixations (group mean, standard error of the mean). Vertical red dotted lines
show the mean number of fixations in groups ***p < 0.001; **p < 0.01; *p < 0.05; ns = not significant. A sequential testing procedure was
applied to control false positive rate – stopping at the first fixation with a non-significant result.
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the bottom-up model better predicted oculomotor behavior in
SCHZ patients compared to HC when viewing physically salient
images. This observation supports a ‘bottom-up‘ bias in SCHZ
patients and the assumption of a delayed integration of visual

signals initially processed by bottom-up mechanisms into the
subsequent top-down processing26,55,56.
On the other hand, the top-down model was more effective in

predicting the gaze patterns of SCHZ patients compared to HCs

Table 2. Differences in NSS scores between SCHZ and HC groups, for bottom-up (GBVS) model in two different time periods.

bottom-up sqrt(NSS) – To the fifth fixation bottom-up sqrt(NSS) – Up to sixth fixation

Predictors Estimates CI p Estimates CI p

(Intercept) 1.61 1.51–1.70 <0.001 1.54 1.52–1.57 <0.001

SCHZ −0.02 −0.04–0.00 0.093 0.01 −0.0–0.04 0.270

Incongruent 0.03 −0.10–0.16 0.622 −0.00 −0.03–0.03 0.953

Physically salient −0.06 −0.19–0.07 0.393 0.04 −0.07–-0.02 0.002

Social interaction −0.10 −0.23–0.03 0.129 −0.10 −0.13–−0.07 <0.001

Social landscape −0.01 −0.14–0.12 0.925 −0.03 −0.06–−0.00 0.039

SCHZ × Incongruent −0.01 −0.03–0.02 0.595 0.01 −0.01–0.03 0.193

SCHZ × Physically salient 0.02 0.00–0.05 0.030 0.02 0.00–0.04 0.046

SCHZ × Social interaction 0.01 −0.01–0.03 0.310 0.01 −0.01–0.03 0.306

SCHZ × Social landscape 0.01 −0.02–0.03 0.532 0.02 −0.00–0.04 0.107

Random Effects

σ2 0.04 0.03

τ00 0.00 ID 0.00 ID

0.00 imageCat 0.00 imageCat

ICC 0.06 0.05

N 54 ID 54 ID

5 imageCat 5 imageCat

Observations 13435 13097

Marginal R2/Conditional R2 0.040/0.097 0.039/0.087

sqrt square root, NSS normalised scan path, ID unique participant identification string, imageCat Image category.

Table 3. Differences in NSS scores between SCHZ a HC groups for top-down (EML-Net) model in two different time periods.

top-down sqrt(NSS) – To the fifth fixation top-down sqrt(NSS) – Up to sixth fixation

Predictors Estimates CI p Estimates CI p

(Intercept) 1.81 1.35–2.27 <0.001 1.67 1.36–1.98 <0.001

SCHZ −0.11 −0.17–−0.04 0.001 −0.02 −0.08–0.03 0.431

Incongruent 0.14 −0.51–0.79 0.679 0.02 −0.42–0.46 0.936

Physically salient −0.14 −0.79–0.51 0.663 −0.13 −0.57–0.31 0.557

Social interaction 0.25 −0.40–0.90 0.443 0.20 −0.24–0.64 0.370

Social landscape 0.25 −0.40–0.89 0.460 0.05 −0.39–0.49 0.826

SCHZ × Incongruent −0.01 −0.05–0.04 0.706 0.04 0.00–0.08 0.034

SCHZ × Physically salient 0.05 0.00 – 0.09 0.029 0.02 −0.01–0.06 0.232

SCHZ × Social interaction −0.04 −0.09–−0.00 0.045 −0.08 −0.12–−0.05 <0.001

SCHZ × Social landscape −0.05 −0.09–-0.00 0.035 0.01 −0.02–0.05 0.521

Random Effects

σ2 0.16 0.12

τ00 0.01 ID 0.01 ID

0.05 imageCat 0.02 imageCat

ICC 0.28 0.22

N 54 ID 54 ID

5 imageCat 5 imageCat

Observations 13435 13097

Marginal R2/Conditional R2 0.086/0.346 0.054/0.263

sqrt square root, NSS normalised scan path, ID unique participant identification string, imageCat Image category.
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when they viewed incongruent scenes. This observation suggests
that although the model is capable of predicting gaze patterns in
relation to the objects within a scene, it falls short in recognizing
the incongruity of these objects, that is, an understanding how the
objects relate contextually. This observed behavior is likely
because the top-down model, which inherently lacks the ability
to assess the semantic context of objects, does not factor in the
presence of incongruent objects within its predictive framework.
In essence, the model’s limited capacity to evaluate semantic
contexts aligns with the similar cognitive limitation observed in
SCHZ patients63. Therefore, the enhanced predictive accuracy of
the top-down model for SCHZ patients may stem from this shared
deficiency in correctly interpreting the semantic context of
objects, resulting in more accurate oculomotor predictions for
this group. Our findings also indicate that the top-down model
more accurately predicted the oculomotor behavior of HCs
compared to SCHZ patients in the context of social interactions
images. This is consistent with earlier research highlighting the
impaired ability of SCHZ patients to process more complex visual
scenes such as social interactions and emotions64–66. This
outcome is linked to negative symptoms of emotional blunting67

and a deficit in processing the low spatial frequency (LSF) of
images68,69.
Category-specific stimuli analyses showed better performance

in SCHZ group for the top-down model in categories of social
interaction and social landscape. This finding is in agreement with
previous reports on the properties of saliency models70,71. This
enhanced prediction accuracy suggests that this model excels in
accounting for higher cognitive processes associated with the
interpretation of individuals and objects within the scene and
their interactions. Conversely, the performance of the top-down
model was less effective in predicting the oculomotor behavior of
HCs in response to physically salient stimuli. The top-down
model’s reduced capacity to predict oculomotor behavior for

physically salient stimuli reaffirms its overall lower sensitivity to
the bottom-up component within the predicted saliency map.
As expected, the temporal analysis of the models allowed us to

reveal how top-down and bottom-up processes are involved in
cognition and its formation in the groups we studied. The bottom-
up (GBVS) model indicated no significant differences between the
groups across both periods. However, this trend changed when
we focused on specific stimulus categories. Notably, for physically
salient images, the GBVS model consistently showed better
performance in SCHZ patients than in HCs during both periods.
This confirms the previously reported tendency of SCHZ patients
to focus their attention on physically salient stimuli72,73. The
second analysis shows a difference in performance of the top-
down (EML-Net) model between groups. Especially in the first
period, the nuanced differences in how SCHZ and HC groups
process visual information is highlighted. This distinction, particu-
larly evident in the early period, underscores a potential
divergence in cognitive processing strategies between the two
groups. As the model’s ability to differentiate between SCHZ and
HC partly diminishes in the second period, it suggests a partial
convergence in visual processing strategies over time, or possibly
an adaptation in the SCHZ group’s visual attention mechanisms.
Differences persist for images depicting social interaction and
emerge in incongruent images category.
Furthermore, these observations are in agreement with results

from the CPT, where SCHZ patients exhibited higher rates of
omission and perseveration errors compared to HCs. These CPT
findings imply a greater tendency of SCHZ patients to overall
inattentiveness (as indicated by higher omission scores) and to the
use of more automatic responses (as evidenced by higher
perseveration scores). Together, these elements suggest an
impaired ability of SCHZ patients to direct their focus towards
visual stimuli74. This impairment may also contribute to the
delayed scene orientation observed in SCHZ patients, thereby

Table 4. Results of psychological measurements.

Group SCHZ HC

Variable Mean of fixation number Mean of fixation Mean of fixation number Mean of fixation duration

Pearson
Correlation r(28)

p-value Pearson
Correlation r(28)

p-value Pearson
Correlation r(23)

p-value Pearson
Correlation r(23)

p-value

CPT omissions 0.12 0.52 −0.08 0.88 −0.19 0.34 0.24 0.23

CPT commissions 0.15 0.45 −0.16 0.4 −0.51 0.01 0.36 0.07

CPT hit reaction time (HRT) −0.18 0.36 0.27 16 0.17 0.4 −0.13 0.54

CPT HRT standard deviation −0.2 0.29 0.21 0.26 −0.26 0.21 0.05 0.86

CPT variability −0.22 0.26 0.22 0.21 −0.24 0.23 0.13 0.53

CPT detectability 0.13 0.5 −0.09 0.64 −0.35 0.08 0.31 0.12

CPT perseverations 0.19 0.32 −0.21 0.26 0.28 0.17 −0.2 0.33

CPT HRT block change −0.13 0.52 0.22 0.24 −0.05 0.8 −0.15 0.47

CPT HRT inter-stimulus −0.19 0.33 0.15 0.44 −0.05 0.8 0.05 0.67

PANSS positive symptoms −0.04 0.84 0.01 0.96 NA NA NA NA

PANSS negative symptoms −0.17 0.37 0.09 0.64 NA NA NA NA

PANSS general
psychopathology

−0.14 0.48 0.07 0.72 NA NA NA NA

PANSS total score −0.17 0.34 0.11 0.59 NA NA NA NA

Duration of illness (months) −0.08 0.64 0.17 0.36 NA NA NA NA

Duration of untreated
psychosis (months)

−0.11 0.54 0.2 0.28 NA NA NA NA

CHLPMZ equivalent −0.2 0.29 0.31 0.9 NA NA NA NA

CPT Conners’ Continuous Performance Test III, PANSS Positive and Negative Syndrome Scale, NA notavailable.

P. Adámek et al.

6

Schizophrenia (2024)    21 Published in partnership with the Schizophrenia International Research Society



affecting the efficiency of bottom-up signal processing. In the HC
population, after the initiation phase, bottom-up saliency is
suppressed by the top-down saliency of higher cognitive
processes16,75–77, but as seen in the results it appears that this
onset is delayed in the SCHZ population.
The delayed emergence of top-down cognitive processes is

likely attributable to dysfunctions in LSF processing. LSF proces-
sing is essential for swift scene orientation, laying the groundwork
for top-down predictive mechanisms and focused attention
distribution within the visual scene16. The absence of notable
differences between-groups in the second period of top-down
model predictions implies that the slower initiation of top-down
cognition might be linked to LSF processing abnormalities
repeatedly reported in SCHZ population61,78–80. Previous studies
mainly focus on the reduced ability of the SCHZ population to
process LSFs, which has been attributed to dysfunction of the
magnocellular optical pathways. However, recent findings indicate
that LSFs may not be processed only by the magnocellular
pathways but are likely processed in parallel in the koniocellular
pathways81,82. Consequently, the research focus has shifted
toward the retina itself in recent years83–85. One possible reason
for the slower bottom-up signal processing in SCHZ is the
inflammatory processes of retinal microvascularity, which are
associated with commonly reported atrophy of retinal nerve
fibers86,87. The outcome of this process is a low signal-to-noise
ratio88, particularly resulting in an increased level of vagueness
related to the nature of a percept/signal, ultimately leading to a
disruption of the decision-making process89. However, inflamma-
tory processes and associated atrophy would not explain why, in
early-stage and untreated first-episode patients, hypersensitivity is
often encountered55,57. Retinal atrophy can only explain the later
stages of the illness when hypersensitivity eventually progresses
to hyposensitivity, which also extends to other frequencies of the
visual scene55,90,91. An alternative explanation that would also
include hypersensitivity to LSFs would be instability in retinal
dopamine levels6. Dopamine influences the size of receptive fields,
thereby affecting the sensitivity to individual frequencies of the
perceived image92. Increased dopamine levels reduce the size of
receptive fields, leading to increased sensitivity to high spatial
frequencies and vice versa93,94. Therefore, the instability of the
receptive fields may contribute significantly to the formation of
the aberrant salience that is typical for schizophrenia6.
In our study, the SCHZ patient group exhibited fewer yet longer

fixations compared to the HC group, corroborating findings from
existing literature95–97. While previous studies have suggested a
link between these oculomotor differences and the severity of
both negative and positive SCHZ symptoms, the nature of this
association remains a subject of debate98. In contrast to these
studies, our results did not establish a connection between the
severity of SCHZ symptoms (whether negative or positive) and
oculomotor behavior. This absence of correlation extended to the
outcomes of the PNASS as well as to medication effects.
Furthermore, we observed no significant relationship between
fixation patterns and CPT performance within the SCHZ group.
These findings imply that the overall ability of SCHZ patients to
sustain attention does not significantly impact the results of
predictive models. It raises the possibility that these specific
differences in saliency and its predictive model might be
considered as trait markers of SCHZ itself.
Temporal analysis of fixation duration revealed a diminishing

difference between the HC and SCHZ groups over time. Initially,
the SCHZ group exhibited prolonged fixations, likely indicative of
extended time needed for scene orientation and LSF signal
processing. However, fixation durations gradually decreased,
suggesting the engagement of advanced top-down cognitive
processes. This pattern aligns with the documented reduction in
fixation duration and count in SCHZ during top-down cognitive
tasks, such as object search or fixation within a scene99. This

“unknown compensatory mechanism”, as the authors of the
original study called it, might relate to altered receptive field
sensitivity, potentially due to dopamine fluctuations in the retina
and variations in retinal morphology, affecting receptive field
distribution and size. However, a precise answer to this question
would require more in-depth research.
In this study, we explored the application of salience models in

schizophrenia (SCHZ) research, an area with limited prior
investigation100,101. Our findings indicate that predictive models
of visual saliency are potent tools for identifying errors in visual
information processing and the development of aberrant saliency
in SCHZ patients. Emphasis should be placed on incongruent
stimuli, stimuli that are physically salient, and complex stimuli
depicting social interactions. These types of stimuli effectively
illustrate the limitations of the models and the specific abnorm-
alities in visual processing among the SCHZ population. Our study
also reveals that the previously documented bias in SCHZ patients
towards bottom-up signals31,55,57,61,102,103 is variable over time,
possibly originating from disruptions in early-stage visual proces-
sing. This disruption might further impede the onset of top-down
visual cognition. The altered and prolonged processing of bottom-
up signals likely leads to flawed and unstable internal representa-
tions of the world, impacting higher cognitive functions6. Our
study highlights the complex interaction between bottom-up and
top-down processes in the visual signal processing of SCHZ
patients, marked by a progressive decrease in fixation duration.
However, to fully comprehend these intricate dynamics, further
research is essential.

Limitations
The first limitation of the presented study arises from the above-
mentioned question: to what extent the presented saliency
models reflect purely “bottom-up” and “top-down” processing?
Although this is still a matter of debate, the proportion of these
two components largely differs in the applied models and thus
the presented methodology can describe the differences between
HC and SCHZ bottom-up and top-down processing. Also, the top-
down EML-Net model, having been trained on data from
individuals without neurological conditions, presents a challenge
in interpretation: it’s unclear whether the improved model fit
observed in the control group is due to differences in the type of
top-down information prioritized by patients and controls, or if it
simply reflects variances in the degree to which they prioritize
such information. This ambiguity raises questions about the
model’s ability to accurately capture the nuances of top-down
information processing in populations with neurological condi-
tions like SCHZ. Other limitation pertains to the antipsychotic
treatment of SCHZ participants. The relationship between
antipsychotic medication and oculomotor movement is a
controversial topic which has been questioned before104–106,
and our results support these concerns.

METHODS
Participants
This study involved 62 subjects (37 SCHZ and 25 HC) (Table 5),
matched in age, sex, and years of education (within ± 2 years).
Some HCs were matched to a larger number of SCHZ patients due
to the lower availability of HCs with fewer years of education,
resulting in this imbalance. The number of participants was
estimated by a power analysis (Appendix A). Nine participants (9
SCHZ, 0 HC) were excluded due to incorrect eye-tracking
measurements (within the measurement, the calibration deviation
increased to more than 0.5°; high blink rate; fatigue; and
concentration problems). Participants were recruited into the
study as part of the Early-Stage Schizophrenia Outcome (ESO)
Study107–109 and through the National Institute of Mental Health
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clinic, Czech Republic (NIMH CZ). The diagnostic procedure was
standardized with the structured Mini-International Neuropsychia-
tric Interview110, and patients were diagnosed according to ICD-
10111. Only patients diagnosed with schizophrenia spectrum
disorder were included in the analyses (i.e., F20, F23 and F25)111.
Additional inclusion criteria were age between 18 and 60 years,
the absence of severe neurological illness or organic brain
problems, and normal color vision as determined by the Ishihara
test112. All the patients took medication at the time of
participation. HCs were recruited via an advertisement from a
similar socio-demographic background to the SCHZ participants.

HCs were not allowed to have a history of psychiatric disorders
(evaluated with a modified version of the M.I.N.I.) or in their first-
and second-degree family members (assessed by an anamnestic
questionnaire). Both groups were recruited between 2018 and
2021. The ethics committee of the NIMH CZ approved the study.
All the experiments were performed in accordance with the
relevant guidelines and regulations. Written, informed consent
was obtained from all the subjects after receiving a complete
study description. Participation in the research was voluntary, with
a financial compensation of 500 CZK. In the SCHZ group, the
current clinical condition and medication dose were also taken
into consideration.

Visual stimuli selection and pre-processing
A total of 250 color images of an everyday naturalistic scene were
used in the study. All the photographs were downloaded from
public databases (Flicker, World Images, and Vecteezy) or taken by
the study’s authors. The stimuli were divided into five categories
(50 images pear each), based on their content (congruent,
incongruent, physically salient, social landscape, social interaction)
(Fig. 3). (1) Everyday Scenes (Congruent): This category includes
images of typical, everyday environments where all elements are
contextually appropriate and consistent. Such congruent scenes
are expected to align well with top-down models’ predictions, as
they match usual expectations of everyday environments. (2)
Incongruent images: These scenes contain everyday settings but
with objects that are contextually out of place or unusual. The
incongruence of these objects is anticipated to challenge top-
down models, which rely on contextual appropriateness, and
could be more accurately predicted for individuals with SCHZ than
HC due to the expected bottom-up bias in SCHZ56. (3) Natural
Scenes with Physically Salient Elements: Scenes in this category
are natural environments that include elements with notable
physical salience—like unusual color, contrast, or orientation.
These elements are expected to be more effectively predicted by
bottom-up models, and thus potentially better predicted for
individuals in the SCHZ group. (4) Scenes Depicting Social
Interactions: This category comprises scenes focused on social
interactions. These types of stimuli are expected to be more
accurately predicted by top-down model for the HC group, as they
involve understanding social cues and contexts. 5) Social Land-
scapes: These are natural scenes that include elements of nature
and feature humans. Termed “social landscapes,” these scenes are
anticipated to align better with top-down model predictions for

Table 5. Demographic and clinical characteristics of the experimental
groups.

Variable SCHZ
(n = 30)

HC (n =
25)

p-
value

Mean (SD) Mean (SD)

Gender (F/M) 10/20 10/15 0.817

Age (years) 32 (9.1) 31.57
(7.57)

0.837

Education (years) 14.11
(2.64)

14.28
(2.15)

0.777

PANSS total score 37.6 (7.43)

PANSS positive symptoms 8.18 (1.1)

PANSS negative symptoms 11.06 (4.7)

PANSS general symptoms 18.53 (3.03)

CPT omissions 55.43
(14.84)

47.15
(4.63)

0.017

CPT perseverations 54.84
(11.55)

48.61
(7.81)

0.015

CPT commissions 54.62
(9.72)

53.15
(10.99)

0.583

CHLPMZ equivalent 399.1 (182.14)

Duration of untreated psychosis
(months)

5.12 (8.03)

Duration of illness (months) 133.72 (170.45)

Ratio of individual SCHZ diagnoses F20 (n = 20); F23 (n = 10); F25
(n = 0)

CHLPMZ Chlorpromazine.

Fig. 3 Examples of stimuli utilized in the experiment. The photographs were categorized into five different groups based on their
content. (1) Everyday Scenes (Congruent) include images of typical, everyday environments where all elements are contextually
appropriate and consistent. (2) Incongruent images contain everyday scenes but with objects that are contextually out of place or
unusual. (3) Natural Scenes with Physically Salient Elements include natural environments that include elements with notable physical
salience. (4) Scenes Depicting Social Interactions comprises scenes depicting social interactions. (5) Social Landscapes are natural scenes
that include elements of nature, but feature also humans.
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the HC group, as they combine elements of nature with social
interactions.
The Shine toolbox113 for MATLAB was used to normalize all the

stimuli to color and luminance. Then two saliency models,
Expandable Multi-Layer NETwork (EML-Net) and Graph-Based
Visual Saliency Model (GBVS) (See below in section 4.6), were
applied to each photograph, producing one saliency map per
image and model. Subsequently, a black border was added to
each image to reach a resolution of 3840 × 2160 pixels. The
original mean image area was M= 6,029,277.12 pix, SD=
818,762.31. The mean area of the added black borders was
M= 1,487,522.88 pix, SD= 818,762.31. The image area therefore
occupied approximately 80% of the monitor area. The experiment
was created and presented using SR Research Experiment Builder
2.3.1114 .

Eye-tracking data acquisition
Eye movements were recorded using the EyeLink 1000 Plus eye
tracker (SR Research Ltd. Ottawa, Ontario, Canada). The eye-tracker
samples raw gaze data at 1000 Hz, fixations and saccadic
movements are derived from that. Stimuli images were presented
on a 4 K 27” (3840 × 2160, 163 PPI, 60 Hz refresh rate) IPS screen
with 100% sRGB color space. The screen was color- and
luminance-calibrated with X-Rite i1 Display Pro probes connected
during the whole rating session to adjust the screen for ambient
light. The eye tracking and rating session took place in a quiet and
windowless eye tracking lab in standardized conditions across all
raters. Raters were seated with their heads on a chin and forehead
rest (SR Research Head Support) 70 cm from the screen. Every
participant saw images in a randomized order, with instructions to
freely observe image on the computer screen.
We determined the dominant eye of each participant using a

variation of the Porta test115. Although vision is binocular, we
tracked only the dominant eye. The eye tracker was calibrated by
a standard nine-point routine. Calibrations was validated by the
EyeLink software and repeated as necessary until the optimal
calibration criterion is reached.
Each image begun with a drift correction. A fixation cross on an

18% grey background appeared (in eight possible positions) on
the screen, and participants were instructed to focus their gaze on
it. The distance of the centers of the corner crosses from the
center of image was 1275 pix at angles of 155°; −155°; 25°; −25°.
The centers of the crosses above and below the image center
were 542 pix at angles of 90° and −90°. The centers of the crosses
to the right and left of the image center were 1150 pix at the
angles of 0° and 180°. The cross size was 183 pix with a stroke
thickness of 7 pix. The semi-random position of the cross out of
the center was chosen to avoid visual bias towards the center of
the image. When a participant’s eye fixates on the cross, the
stimuli presentation will initiate for five seconds.

Symptom rating and cognitive testing
After conducting the eye-tracking measurements, we utilized the
Positive and Negative Syndrome Scale (PANSS)116 to assess the
severity of positive and negative symptoms in SCHZ patients.
Additionally, we employed Conners’ Continuous Performance Test
III (CPT)117 to evaluate attention. We hypothesized that diminished
attention, as indicated by the CPT, would influence perception
processing, given that visual attention is crucial for acquiring
information visually117. These assessments were conducted at the
National Institute of Mental Health (NIMH CZ) in a quiet, dedicated
room. The entire assessment process, led by a trained psychol-
ogist, lasted approximately 2 hours. The primary objective of this
psychological testing was to investigate any potential causal links
between the illness, the performance of the saliency models, and
the oculomotor behavior observed in the patients.

Data pre-processing and statistics
Primary pre-processing (differentiation between saccades and
fixations) was performed in the EyeLink Data Viewer. The data
were then exported to a spreadsheet format (CSV) for further
processing. In the first step, all ET data were cleaned of off-monitor
fixations and saccades. The first fixation overlapping with the
fixation cross between stimuli was removed and no longer
considered. Pre-processing and all table data (including PANSS,
CPT, saliency prediction scores, and demographic data) were
statistically analyzed with R118 using the tidyverse package119.
Ground truth fixation matrices were calculated from the cleaned

fixation data for each participant and image in Python using the
GazePointHeatMap package120. This matrix contains the fixation
averages for each image area over time. Ground truth fixation map
was in full resolution of the original stimuli (3840 × 2160). Two
subsequent ground truth maps from fixations were computed (up
to the fifth fixation and from the sixth fixation) to examine whether
the bottom-up signal bias in the SCHZ group persists over time or
not. Python was used to process both saliency models, which are
published at github.com (GBVS121; EML-Net122). The final perfor-
mance evaluation of each saliency model was calculated using the
MIT saliency benchmark toolbox40 in MATLAB (Fig. 4).
The inter-group difference in the total examined image area

was calculated using the standard distance deviation formula
(SDD) in R with the mapTool package123. We investigated the
relationship between the oculomotor behavior of SCHZ patients
and key clinical factors: the duration of untreated psychosis and
the chlorpromazine equivalent54,124,125 were investigated in R.
Finally, the metrics differences between-groups were evaluated

using Linear Mixed-Effects Models (R lme4 package)126. The
models used NSS metrics value as the dependent variable and
included fixed effects for interaction between-group (patients vs
controls), image category, crossed random intercepts for each
individual (participants ID) and each image category. Estimating
random intercepts for individual images was not feasible due to
the extensive number of parameters required. Prior to modelling,
the NSS score was transformed using square root transformation
to suppress skewness of the distribution. Inputs and resulting
distributions, as well as model residuals, were checked using
density and q-q plots. Significance tests on fixed effects were
performed using Satterthwaite’s method (R lmerTest package)127.
The Wilcoxon signed-rank test was applied to assess saccadic eye

movement, which had a non-normal distribution. A Pearson’s
correlation test was used to assess the association between
medication, the outcomes of psychological tests, and the duration
of untreated psychosis with the findings of the oculomotor
movements. For all the tests, the significance level was set at alpha
< 0.001 in order to take into consideration multiple comparisons.
For the between-group comparison of fixation duration, we

used the sequential testing procedure: starting from fixation 1, the
between-group differences were compared using the t-test at a
significance level alpha = 0.05. The subsequent fixations were
considered significant if, and only if, current and all preceding
tests rejected the null hypothesis. This approach conforms to the
closed testing procedure and thus controls the overall significance
level at alpha = 0.05128.

Saliency Models
The selection of the most recent top-down and bottom-up
saliency models used in our study was based on the models’
overall success in their category as measured by the MIT Saliency
Benchmark (saliency.mit.edu)40. We selected the best-performing
models from the top-down and bottom-up categories based on
the NSS metrics129–132, which was set as a mandatory performance
indicator at the 14th European Conference on Computer Vision40.
The second criterion was the availability of source code. We chose
the results from a MIT300 dataset131, which by its nature, better
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reflects the stimuli used in our study than a CAT2000133, which
contains only natural scenery.
As the bottom-up model, we selected the pre-trained GBVS134,

which works by constructing a graph representation of the image,

where each node in the graph corresponds to a small region of
the image. This process consists of two steps. First, it creates
numerical activation maps of feature channels extracted from
locations in the image (e.g., by linear filtering followed by

Fig. 4 The diagram illustrating data processing and analysis steps utilized in the study. Pink arrows mark the processing path of the
ground truth map. Green arrows mark the processing path of the saliency models. Black arrows mark the processing path of table data for
statistical comparison; CSV comma-separated values, EDF standardized European data format for storage of medical time series, NSS
normalized scan path saliency, PANSS Positive and Negative Syndrome Scale, CPT Conners’ Continuous Performance Test III.
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elementary nonlinear filtering). Second, it normalizes the activa-
tion maps in a way that emphasizes conspicuity and allows
combinations with other maps135. The model takes a Markovian
approach at both steps. Markov chains are defined over various
image maps, and the equilibrium distribution over map locations
is treated as activation and saliency values. The edges between
the nodes represent the similarity between the regions. The model
then computes a saliency value for each node based on its
contrast with neighboring regions. The nodes with high saliency
values are considered to be the most visually salient regions of the
image and are likely to attract human attention.
As the top-down model, we selected the pre-trained EML-

Net136, a deep-learning model used for image saliency prediction.
The EML-Net model uses CNN layers to extract features from the
image and then passes these features through multiple layers of
fully connected neural network layers to predict the saliency.
Specifically, the encoder consists of NasNet from ImageNet and
DenseNet from PLACE365136, both are used as encoder for image
classification. During training, the model learns to predict the
saliency map for a given input image by adjusting the weights of
the neurons in the network to minimize the difference between
the predicted saliency map and the ground truth map.
To enable a meaningful comparison between two distinct

prediction models, the NSS metrics were selected to evaluate their
performance40. Specifically, NSS metrics measure accuracy by
comparing the predicted saliency map created by the model with
the fixation density map from eye-tracking data (ground truth
map).129 The fixation density map shows where viewers look at an
image. NSS calculates the mean saliency value at the fixated locations
by comparing the predicted map with a binary fixation map, where
‘ones’ represent fixations and ‘zeros’ represent other areas137. A higher
NSS value suggests a better prediction of viewer attention, while a
value of zero indicates chance-level predictions. NSS is widely used for
comparing different saliency models because it provides a straightfor-
ward and standardized way to assess their performance.

DATA AVAILABILITY
The data analyzed during the current study are available from the corresponding
author upon reasonable request. Analysis scripts are available on the OSF: https://
osf.io/hz2p8/.
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