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Multi-level profiling of the Fmr1 KO rat unveils altered
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Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and the most prevalent monogenic cause
of autism. Although the knockout (KO) of the Fmr1 gene homolog in mice is primarily used for elucidating the neurobiological
substrate of FXS, there is limited association of the experimental data with the pathophysiological condition in humans. The use of
Fmr1 KO rats offers additional translational validity in this regard. Therefore, we employed a multi-level approach to study the
behavioral profile and the glutamatergic and GABAergic neurotransmission status in pathophysiology-associated brain structures of
Fmr1 KO rats, including the recordings of evoked and spontaneous field potentials from hippocampal slices, paralleled with next-
generation RNA sequencing (RNA-seq). We found that these rats exhibit hyperactivity and cognitive deficits, along with
characteristic bidirectional glutamatergic and GABAergic alterations in the prefrontal cortex and the hippocampus. These results are
coupled to affected excitability and local inhibitory processes in the hippocampus, along with a specific transcriptional profile,
highlighting dysregulated hippocampal network activity in KO rats. Overall, our data provide novel insights concerning the
biobehavioral profile of FmR1 KO rats and translationally upscales our understanding on pathophysiology and symptomatology of
FXS syndrome.
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INTRODUCTION
Fragile X syndrome (FXS), a neurodevelopmental disorder, is the
most common cause of inherited intellectual disabilities, account-
ing for 1–2% of all cases and the most prevalent monogenic cause
of autism [1, 2]. Excessive expansion of the CGG repeats (over 200)
on the 5’ untranslated region of the Fragile X Messenger
Ribonucleoprotein 1 gene (FMR1) leads to abnormal methylation
and transcriptional silencing, causing lack or deficiency of the
Fragile X messenger ribonucleoprotein (FMRP) [3]. FMRP, a
predominantly cytoplasmic protein, binds RNA molecules and
acts as a negative regulator of translation [4–7]. Patients with
FMRP depletion display autism spectrum disorder (ASD) sympto-
matology, including hyperactivity, cognitive deficits, lack of social
interaction, and epileptic seizures [2].
Animal models of FXS include Fmr1 knockout (KO) gene

homolog organisms such as drosophila, zebrafish, mice, and more
recently rats [8]. Although Fmr1 KO mice have been the leading
model, Fmr1 KO rats offer additional translational validity for
elucidating the neurobiological substrate of FXS and the efficacy
of novel pharmacological interventions, due to their pronounced
behavioral and neurobiological complexity [9]. These advantages
can be leveraged towards a deeper understanding of the Fmr1
depletion consequences [10]. Fmr1 KO rats exhibit hyperactivity,
cognitive impairment, glutamatergic and synaptic plasticity

dysregulations [9]. However, limited information exists connecting
behavioral deficits to underlying pathology associated with
alterations in neurotransmission, electrophysiology, and gene
transcription.
To this end, we undertook a multi-level approach to evaluate

the Fmr1 KO rat model, including (1) behavioral experiments to
assess motor activity and cognitive function, (2) assessment of
glutamatergic and GABAergic status in the prefrontal cortex and
the dorsal/ventral hippocampus, (3) ex vivo electrophysiological
recordings, and (4) transcriptomic profiling. Overall, our data
provides novel information concerning the biobehavioral profile
of Fmr1 KO rats. We found that these rats possess several features
shared with FXS syndrome, including hyperactivity and cognitive
dysfunction, while bidirectional glutamatergic and GABAergic
alterations were observed in the prefrontal cortex and the
hippocampus. These results are coupled to hippocampal changes
in excitability and local inhibitory processes along with a specific
transcriptional profile.

MATERIALS AND METHODS
Animals
Hemizygous wild-type (WT) females and Fmr1 KO male rats on a Long
Evans (LE) background (LE-Fmr1em2Mcwi) were purchased from the
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Medical College of Wisconsin (Watertown Plank Rd, Milwaukee, WI, USA)
and crossed to obtain littermates from which WT and KO rats were
selected for experiments. Ten-week-old male WT and KO rats (raised in the
Animal Facility of the University of Ioannina “EL33-BIOexp01.”) were used.
Rats were housed in pairs (47.5 cm length × 20.5 cm height × 27 cm width)
in a temperature (21 ± 1 °C) and humidity (55% ± 10%) controlled
environment. Food and water were available ad libitum.
All experiments were performed during the light phase of a 12 h light/

dark cycle (lights on: 7a.m., off: 7p.m.). All animal experiments followed the
standard ethical guidelines (European Communities Directive 86/60-EEC)
and were approved by the Institutional Animal Committee of the
University of Ioannina (6033).
All animals were handled twice daily for 1 week before the behavioral

assessment.
To mitigate the impact of the litter effect, particular attention was given

to the assignment of animals to experimental groups. Litters were
considered as the primary unit of randomization to avoid litter bias. Rats
within each litter were randomly assigned to one of the following
experimental groups: (i) 1–2 litters/group for behavioral analysis, (ii) One
litter/group for immunoblot and neurochemical analysis, (iii) Two litters/
group for electrophysiology, and (iv) One litter/group for transcriptomics
[11, 12].

Genotyping by PCR
Tail tip samples were collected from the rats for genomic DNA isolation.
Genomic DNA was isolated from the rat tail tip samples using the Tissue
DNA Kit (Omega Tek, D3396-02) following the manufacturer’s instructions.
PCR was performed using the PCR Kit (Kappa, KK1015) and the Peltier
Thermal Cycler (Bio-Rad) according to the manufacturer’s instructions. The
primers used for genotyping were as follows:
Forward primer: GTTTATTTGCTTCTCTGAGGG
Reverse primer: ACCTTTTAAATGGCATAGACCT
The PCR reaction was set up with the isolated genomic DNA as the

template, and the expected product sizes were 413 bp for wild-type rats
(WT) and 415 bp for Fmr1 KO rats. The PCR products were subjected to
digestion using the NEB restriction enzyme RsaI (R0167L) in the respective
buffer. The digestion was carried out for 3 h at 37 °C, and PCR products
were loaded onto the gel for electrophoresis. The DNA bands were
visualized under UV light. The observed band patterns on the gel were
compared to the expected band fragments to determine the genotype of
the rats.

Behavioral analysis
All behavioral experiments were performed during the light phase
between 9:00 and 17:00. The investigator was blinded through all the
experimental procedures. One behavioral test was performed each day
with an interval of 4 days between tests in the following order:

Motor activity—open field. Motor activity was recorded for 60min with a
computerized activity monitoring system (ENV515, Activity Monitor,
version 5; Med Associated Inc., USA) in a transparent, cubic open-field
apparatus (40 cm × 40 cm × 40 cm). The first 30 min were used to assess
spontaneous motor activity, and the second 30min, to habituated motor
activity. Ambulatory distance was used as a measure of horizontal
movement and the frequency of vertical activity was also used as a
reflection of exploration, locomotion, and emotionality [13]. Lastly, time
spent in the center of the apparatus was measured as an index of anxiety
[14].

Motor activity habituation. This behavioral procedure consisted of a
30min open-field session every day for 3 consecutive days to assess
habituation to a novel environment [15].

Novel object recognition test (NORT). NORT was used to assess recognition
memory as previously described with minor modifications [16]. On the
training trial (T1), each rat was placed into the apparatus containing two
identical objects (familiar) in two adjacent corners, allowing each rat to
explore for 5 min. Sixty minutes later, one of the “familiar” objects was
replaced by a novel object (T2 phase). Each rat was placed in the apparatus
for 3 min, and the time spent exploring each object was recorded. Two WT
rats were excluded from the analysis due to poor performance during the
training period T1 (exploration time <10 s). The discrimination index (DI)
was calculated as the difference in time spent exploring the novel (N)

compared to the familiar (F) object divided by the total time spent
exploring both objects (DI = (N− F)/(N+ F)).

Novel object location test (NOLT). NOLT was used to assess spatial
recognition memory as previously described [15]. Like NORT, the T1 phase
consisted of free exploration of two identical objects in two adjacent
corners of the apparatus for 5 min. Sixty minutes later, the T2 phase was
performed where one of the two identical objects was placed in a novel
location (N), while the other remained in the same-familiar position (F), as
presented in T1. Three WT rats and one KO were excluded from the
analysis due to poor performance during the training period T1, expressed
as a lack of motivation to explore the objects (exploration time <10 s).
Discrimination between the familiar (F) and novel (N) location of the
object was assessed, and the discrimination index (DI) was calculated:
DI = (N− F)/(N+ F).

Immunoblot assays
Fmr1 KO and WT rats were euthanized by decapitation under isoflurane
anesthesia, their brains were immediately removed for dissection of the
prefrontal cortex (PFC), the dorsal hippocampus (D. Hip), and the ventral
hippocampus (V. Hip), and analyzed with immunoblotting [17, 18].
Following electrophoresis, proteins were transferred onto a nitrocellulose
membrane with a Bio-Rad CriterionTM Blotter with wired electrodes (wet
transfer, 100 V for 45min) according to the molecular weight of each
protein tested. The antibodies used: anti-NMDA R1 (GluN1) (D6SB7, 1:1000;
Cell Signaling), anti-NMDA R2A (GluN2A) (4205S, 1:1000; Cell Signaling),
anti-NMDA R2B (GluN2B) (D8E10, 1:1000; Cell Signaling), anti-AMPA
Receptor 1 (GluA1) (D4N9V, 1:4000; Cell Signaling), and anti-AMPA
Receptor 2 (GluA2) (E1L8U, 1:4000; Cell Signaling). All samples were
standardized with anti-αTubulin (T6199, 1:10,000) (Sigma-Aldrich). Optical
densities of relevant immunoreactive bands were quantified on ChemiDoc
XRS System (Bio-Rad) controlled by Quantity One Software v4.6.3 (Bio-Rad).

Neurochemical analysis
Brain tissue homogenates, including frontal cortex, dorsal and ventral
hippocampus, were used to measure levels of glutamate (Glu), glutamine
(GLN), and Gamma Aminobutyric Acid (GABA). A YL9112 Plus Isocratic
HPLC Pump (YOUNG IN Chromass Inc., Korea) coupled with a DECADETM
Elite Electrochemical Detector (Antec@Scientific, USA) was used. Hyper-
silTM ODS C18, 250mm× 10mm× 5 μm column (Thermo Fisher Scienti-
ficTM, Massachusetts, USA) was used with pre-column derivatization, as
previously described, with some minor modifications [19]. In brief, the
voltage of the working electrode was set at +800mV, and the mobile
phase consisted of acetonitrile (Chem-Lab, Belgium): 100mM
monosodium-phosphate buffer pH 5.5, containing 0.5 mM Na2EDTA and
0.1 M Citric Acid 1-hydrate (PanReac AppliChem, Germany). Samples were
initially diluted 1:5 with ddH2O, then further diluted with 0.1 M Borax
buffer (Sigma-Aldrich, St. Louis, USA), including o-Phthalaldehyde (Sigma-
Aldrich), pH 10.4. External standards were used each day to generate the
calibration curve. Quantification of Glu, GLN, and GABA was performed by
comparison of the area under the curve with that of reference external
standards using Clarity Software (Data-Apex, Czech Republic), and cycling
rates (GLN/Glu and GLN/GABA) were calculated.

Electrophysiology
Hippocampal slice preparation and electrophysiological recordings. Trans-
verse slices 500-μm thick were prepared from the dorsal and ventral
hippocampus [20]. Slices were maintained in an interface recording chamber
continuously humidified with a mixed gas consisting of 95% O2 and 5%CO2

and perfused by standard medium containing (mM): 124 NaCl, 4 KCl, 2 CaCl2,
2 MgSO4, 26 NaHCO3, 1.25 NaH2PO4, and 10 glucose, pH= 7.4 and
temperature 30 ± 0.5 °C. Slices were left for at least to recover prior to
stimulation and recording. Following stimulation of Schaffer collaterals, we
recorded evoked field potentials consisting of excitatory postsynaptic
potentials (fEPSPs) and population spikes (PSs) from the stratum radiatum
and the stratum pyramidale, respectively. Input–output curves between
stimulation current strength and fEPSP or PS were systematically constructed
in each slice. The ratio PS/fEPSP was used to estimate neuronal excitability.
Paired-pulse stimulation to estimate the effectiveness of synaptic inhibition
was used. fEPSP was quantified by the maximum slope of its initial rising
phase and PS was quantified by its amplitude, measured as the length of the
projection of the minimum peak on the line connecting the two maxima
peaks of the PS waveform. Paired-pulse inhibition was quantified by
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calculating the ratio between the PS evoked by the second pulse and the PS
evoked by the first pulse, i.e., PS2/PS1.

Transcriptomic analysis
RNA isolation and RNA-Seq analysis. Fmr1 KO (n= 3) and WT (n= 3) rats
were euthanized by decapitation under isoflurane anesthesia, and total
RNA from hippocampal samples was isolated according to the manufac-
turer’s protocol using TRIZOL reagent (Thermo Fischer Scientific). RNA-Seq
experiments were conducted at the Greek Genome Center (GGC) of the
Biomedical Research Foundation of the Academy of Athens (BRFAA). RNA-
Seq libraries were prepared with the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina, with 1 μg of total RNA input. Library QC was
performed with the Agilent bioanalyzer DNA1000 kit and quantitation with
the qubit HS spectrophotometric method. Approximately 25 million 100 bp
Single-End reads were generated for each sample. Quality Control was
performed at the fastq raw data file for each sample using the “FASTQC”
software. FastQ files were aligned to rn6 genome using HISAT2 [21]. Counts
were defined using HTSeq htseq-count command with the “intersection
non-empty” option [22]. The count files were used as Input for DESeq2 [23].
Normalization was performed with the estimate size factor function
followed by Differentially Expressed Genes (DEGs) Analysis. DEGs are
defined according to P value (P < 0.05). Gene set enrichment analysis
(GSEA) was conducted using the WebGestalt platform (https://
www.webgestalt.org/#) [24–27]. The DEG list obtained from the RNA-Seq
analysis was used as input for GSEA. Statistical significance was assessed
using appropriate algorithms to determine the enrichment of DEGs in
specific gene sets. KEGG pathway database (https://www.genome.jp/kegg/)
[28–30] was employed to manually identify genes associated with
glutamatergic and GABAergic synapses. The genes involved in glutama-
tergic and GABAergic synapses were identified by cross-referencing the
DEG list with the gene members of the respective pathways.

Statistical analysis
All values are expressed as mean ± SEM. Statistical analyses were
performed using IBM SPSS software by implementing Student’s t-test or

two-way repeated-measures ANOVA (similar variance between groups). All
comparisons were considered significant, where P < 0.05.

RESULTS
Behavioral analysis reveals hyperactivity and cognitive
deficits in Fmr1 KO rats
Increased motor activity in Fmr1 KO rats. The open-field test has
been extensively used for measuring spontaneous and habituated
motor activity, including horizontal and vertical responses [13, 31].
KO rats showed increased horizontal activity compared to WT rats,
both during the first period of spontaneous motor activity (Fig.
1a), as well as the second half, representing habituated motor
activity (Fig. 1c). Spontaneous vertical activity was not altered,
whereas during the habituated period, Fmr1 KOs demonstrated
increased vertical mobility (Fig. 1b, d). KO rats spent statistically
significant increased time in the center of the open-field box in
comparison to WT (Fig. 1e).

Fmr1 KO habituate over time. Open-field habituation over
consecutive exposures has been used for the evaluation of
non-associative learning and memory [15]. Two-way repeated
ANOVA measures did not reveal any statistically significant
effect. Overall, both Fmr1 KO and WT rats exhibited decreased
horizontal activity over the 3 days of testing and thus,
habituated over time (Fig. 1f).

Fmr1 KO rats have impaired recognition memory. The NORT
assesses short-term recognition memory, and it is a non-
rewarding paradigm based on rodents’ spontaneous exploratory
behavior [32]. Fmr1 KO rats demonstrated a decrease in the NORT
discrimination index, indicating a deficit in recognition memory
(Fig. 1g). The total time spent exploring both objects during the
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Fig. 1 Increased motor activity and impaired recognition and spatial memory for Fmr1 KO rats. Spontaneous and habituated horizontal
and vertical motor activity for Fmr1 WT (n= 12) and KO (n= 12) rats in the open field apparatus. Distance traveled (a) and vertical counts (b)
during spontaneous motor activity. Distance traveled (c) and vertical counts (d) during habituated motor activity. Time spent in the center of
the open-field apparatus (e). Habituation to Learning (f) of Fmr1 WT and KO rats. Assessment of recognition and spatial short-term memory of
Fmr1 WT and KO rats. Discrimination Index (DI) of Fmr1 WT (n= 10) and KO rats (n= 12) for the Novel Object Recognition Task (NORT) (g).
Total time spent exploring the two objects during the test phase (T2) of the test (h). Discrimination index (DI) of Fmr1 WT (n= 9) and KO rats
(n= 11) for the Novel Object Location Task (NOLT) (i). Total time spent exploring the two objects in the test phase (T2) of the test (j). All results
are represented as means ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
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test period (T2 SUM) did not show any statistically significant
difference between the two groups (Fig. 1h).

Fmr1 KO rats exhibited impaired spatial recognition memory. The
NOLT is based on the spontaneous exploratory behavior of
rodents and is used to assess short-term spatial recognition
memory [33]. Fmr1 KO exhibited a lower discrimination index in
comparison to their WT counterparts (Fig. 1i), indicating deficits in
short-term spatial memory for Fmr1 KO animals. The total time
spent during the test period (T2 SUM) did not show any
statistically significant difference between the two groups (Fig. 1j).

Region-specific glutamate receptor expression perturbations
in Fmr1 KO rats
Next, we examined potential brain alterations associated with
cognitive dysfunction in Fmr1 KO rats and focused on glutama-
tergic status, including the expression of glutamate receptors
(NMDA and AMPA) in the prefrontal cortex and the hippocampus.
The GluN2A/2B ratio was also assessed since it provides an index
of synaptic activity [34–36]. Taken together, the present results, an
opposite status, concerning glutamate protein expression,
appeared in the PFC versus the hippocampus in the KO rats.

Fmr1 KO rats have increased NMDA receptor GluN2A/2B expression
in the PFC and decreased NR2B protein expression in the
hippocampus. In the PFC, GluN1 subunit expression was
unchanged, whereas increased GluN2A and GluN2B subunit
expression was observed in KO rats (Fig. 2a–c). The GluN2A/
GluN2B ratio was also significantly increased in Fmr1 KO rats (Fig.
2d), due to the prominent increased GluN2A protein expression.
There was no statistically significant difference in GluN1 levels

between WT an KO rats (Fig. 3a, g). In the dorsal hippocampus,
GluN2A expression tended toward a decrease (Fig. 3b), while
GluN2B expression was significantly lower in the Fmr1 KO rats (Fig.
3c). The ratio GluN2A/GluN2B was significantly increased for Fmr1
KO rats due to decreased GluN2B protein expression levels (Fig.
3d). The same pattern was observed in the ventral hippocampus,
however, the GluN2A/GluN2B ratio was similar between both WT
and KO rats (Fig. 3h–j).

GluA1 and GluA2 expression is altered in the PFC and hippocampus
of Fmr1 KO rats. In the prefrontal cortex, AMPA GluA1 subunit
expression was unchanged, whereas GluA2 expression was
elevated in Fmr1 KO rats (Fig. 2e, f). In the dorsal hippocampus,
GluA1 and GluA2 protein expression levels were significantly
lower in the KO rats (Fig. 3e, f). In the ventral hippocampus, GluA1
expression was higher in the Fmr1 KO rats (Fig. 3k).

Region-specific dysregulation of excitatory and inhibitory
neurotransmission in Fmr1 KO rats
We next assessed potential regionally distinct alterations in
glutamatergic and GABAergic neurotransmitter activity of Fmr1
KO rats.
Decreased glutamate levels and elevated cycling rate were

observed in the PFC (Fig. 4a, d). However, a trend for decreased
GABA levels was observed in KO rats.
In the hippocampus, both glutamate and glutamine levels were

increased, but the glutamate cycling rate was unchanged (Fig. 4f,
g, i, k, l, n). GABA levels were elevated in the dorsal and ventral
hippocampus (Fig. 4h, m).
Overall, these neurochemical findings indicate region-specific

differential perturbations of neurotransmitter activity consistent
with alterations in glutamate receptor expression levels.

Loss of excitation/inhibition balance in the hippocampus of
Fmr1 KO rats
Glutamatergic and GABAergic functions are tightly linked to
synaptic transmission and the balance between excitation and

inhibition, with the hippocampus being a key brain region for
assessing such processes [37].

Excitatory synaptic transmission was not different for the
KO rats. Synaptic transmission and neuronal excitation, respec-
tively, were unchanged in both the dorsal and ventral hippocam-
pus of Fmr1 KO rats (Fig. 5a, d).

Maximum neuronal excitation was not different for the
KO rats. Neuronal excitation was compared between WT and
Fmr1 KO rats by measuring the maximum PS that was not
different between them in both dorsal or ventral hippocampus
(Fig. 5b, e).

Neuronal excitability was higher in the Fmr1 KO rats. Neuronal
excitability was subsequently assessed by measuring the ratio PS/
fEPSP at the maximum PS value. A significant increase in neuronal
excitability was observed in Fmr1 KO rats in both the dorsal and
the ventral hippocampus (Fig. 5c, f).

Paired-pulse inhibition was higher in the ventral hippocampus of
FmR1 KO rats. The effectiveness of paired-pulse inhibition was
evaluated by measuring the ratio PS2/PS1 recorded at a
stimulation strength that produced a half-maximum PS1.
PS2/PS1 was unchanged in the dorsal hippocampus of Fmr1 KO

rats, however, we found that the ratio PS2/PS1 was significantly
lower in the ventral hippocampus of Fmr1 KO as compared to WT
rats (Fig. 5g, h).

Transcriptomic analysis: RNA-seq analysis
Our last objective was to employ RNA sequencing (RNA-Seq) in
the hippocampus to gain a deeper insight into pathological
alterations at the transcription level. The RNA sequencing analysis
yielded compelling results, identifying a total of 838 genes that
were differentially expressed (Fig. 6a). To further explore the
functional implications of these gene expression changes, we
performed Gene Set Enrichment Analysis (GSEA) on the identified
gene set. This analysis revealed significant enrichments in gene
ontologies related to various biological processes (Fig. 6b). Among
the downregulated gene ontologies, synapse organization,
regulation of neuron projection development, and signal release,
were significantly affected in Fmr1 KO rats (Fig. 6b–f). A gene
ontology associated with anion transport was also dysregulated in
the Fmr1 KO rats, indicating potential disruptions in ion home-
ostasis and signaling mechanisms (Fig. 6b).
We next performed pathway analysis using the KEGG database.

Key pathways involved in neurotransmission and neuronal
signaling were significantly dysregulated; specifically, the gluta-
matergic/GABAergic synapse pathway (Fig. 6g, h). Noteworthy
genes, such as Cacna1c, encoding a voltage-gated calcium
channel subunit, showed upregulation, suggesting impaired
glutamatergic and GABAergic synapse function (Fig. 6g, h).
Conversely, the downregulation of Shank3, involved in synaptic
scaffolding and neurotransmitter receptor clustering, indicated
disruptions in postsynaptic density organization and synapse
function (Fig. 6g). Finally, the downregulation of the Gng13 gene
suggests possible alterations in G protein signaling within the
glutamatergic synapse, GABA receptor signaling, and synaptic
inhibition (Fig. 6g, h).

DISCUSSION
Present results demonstrated hyperlocomotion and cognitive
deficits for the Fmr1 KO rats. A differentiated glutamatergic and
GABAergic profile, in terms of glutamate receptor subunit
expression and neurotransmitter activity, between the prefrontal
cortex and hippocampus, accompanied the behavioral phenotype.
In parallel, an excessive neuronal excitability and lower inhibitory
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control were observed in the hippocampus of Fmr1 KO rats. These
alterations appear to be associated with aberrant gene transcrip-
tion due to the lack of FMRP that causes downregulation of anion
transport, synapse organization, and signal release, showing a
potential disruption of synaptic connectivity and neuronal
function.
Fmr1 KO rats were hyperactive in a novel environment. This

spontaneous hyperactive profile, in terms of horizontal but not
vertical activity, indicates a pure motoric activation unaccompa-
nied by pivotal alterations in exploration or emotional state [13,
15, 31]. Hyperactivity was also observed after the habituation
period and interestingly, the Fmr1 KO rats remained hyperactive
with respect to both horizontal and vertical activity, throughout
the habituation period. Noteworthy, both WT and KO rats
demonstrated reduced levels of motor activity due to the longer
exposure and subsequent familiarity with the open-field appara-
tus. In agreement with our results, increased motor activity as
deduced by the total time spent in the open-field apparatus was
observed for Fmr1 KO compared to WT rats [38, 39]. Another study
[40] reported that KO rats were hyperactive, only during the first
recording interval. On the other hand, previous studies have
shown either no change [41–43] or a reduction in spontaneous
motor activity compared to the WT counterparts [8, 44]. Repeated
exposures to the open field led to a progressive reduction of

motor activity for both WT and KO rats, in a similar pattern to the
one observed in the first open-field session, indicating unaffected
non-associative learning and memory processes for the hyper-
active KO rats.
Regarding recognition learning and memory, our results agree

with other studies showing deficits in the novel object recognition
test [39, 45–47] and the novel location recognition task [48],
however, one study did not report impairments in recognition and
spatial memory [49].
To summarize our behavioral paradigms have shown that Fmr1

KO rats exhibited hyperlocomotion, a trait that is also observed in
most individuals with FXS [50, 51] and most consistent with the
profile of most animal models of autism [52, 53]. Lack of any
impairment concerning non-associative learning and memory, but
the presence of cognitive deficits related to recognition memory
indicates the face validity of this FXS model used in the present
study. The conflicting results could be attributed to the different
rat strains used in these studies and the genetic modification
technique applied to the respective strain to develop the Fmr1
KO model.
Analysis of protein expression of specific glutamate receptor

subunits revealed a bidirectional expression pattern between the
prefrontal cortex and the hippocampus. Concerning NMDA
receptors, increased GluN2A and GluN2B subunit expression were
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observed in the prefrontal cortex while they were reduced or
unchanged in the dorsal and ventral hippocampus in Fmr1 KO
rats. Interestingly, the GluN2A/GluN2B ratio was elevated in the
prefrontal cortex and the dorsal hippocampus of KO rats due to a
marked increase in GluN2A expression and decreased GluN2B
expression levels, respectively. These results demonstrate for the
first time specific and region-dependent changes in the expres-
sion of NMDA receptor subunits in an experimental FXS rat model.
Experimental studies in Fmr1 KO mice have not shown any
differences in GluN2A and GluN2B expression in the PFC [54, 55].
On the contrary, Bostrom et al. (2015), reported a decrease in the
protein levels of GluN1, GluN2A, and GluN2B subunits in the
prefrontal cortex of KO’s. Regarding the hippocampus, a decrease
in GluN1, GluN2A, and GluN2B subunit expression was found in
the dentate gyrus of Fmr1 KO mice [56], while other studies
observed increased GluN2A and GluN2B expression in both total
hippocampal extracts [57] and isolated synaptosomes [58]. The
noted discrepancies between our findings and studies in mice
may be due to the different species used, the age of the animals
tested since the expression pattern of NMDA subunits changes
during development, the type of genetic modification (i.e., Zing
Finger Nuclease method vs. CRISPR/Cas9) and the tissue prepara-
tions used (e.g., whole-tissue extracts or synaptosomes).
According to our findings, the increased GluN2A/GluN2B ratio

in the prefrontal cortex and dorsal hippocampus of Fmr1 KO rats
provides new evidence of abnormal neuronal activity. This
aberrant change in NMDA receptor subunit expression may
likely be due to GluN2A being a target protein of FMRP [6, 7] and

FMRP’s role as a negative modulator during translation [59, 60].
On the other hand, the decrease in the hippocampal GluN2B
levels may be linked to aberrant induction of LTD in Fmr1 KO
rats [35], which could potentially explain the cognitive deficits
observed as well.
Noteworthy, the NMDA receptor’s function is essential in

regulating AMPA recycling and composition in subunits [61].
Therefore, increased levels of GluA2 subunit observed in the
prefrontal cortex of Fmr1 KO rats, is likely a compensatory
response due to increased levels of NMDARs subunits. This could
be also related to disturbances of synaptic plasticity processes due
to the channel Ca++ permeability and AMPA receptor membrane
recruitment rate [62–64]. Hippocampal changes in AMPA receptor
subunit expression appears to be subregion-specific with reduced
GluA1 and GluA2 in the dorsal and increased GluA1 in the ventral
hippocampus. Studies with Fmr1 KO mice also report alterations in
the expression of AMPAR subunits, albeit approaching the
hippocampus as a functionally homogenous region. More
specifically they have shown a decrease in GluA1 levels in the
whole hippocampus [56], or a decrease in GluA2 levels of the
hippocampal synaptosomes [65]. Present findings indicate the
importance of distinct characterization concerning, AMPA and
NMDA receptor composition and function in the different parts of
the hippocampus.
The neurochemical analysis showed that the GLN/Glu cycling

rate was increased in the prefrontal cortex of KO rats, due to
reduced Glu tissue levels, suggesting increased glutamatergic
activity. However, hippocampal tissue levels of glutamate,
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glutamine, and GABA were increased in KO rats that were not
accompanied by any alteration in the cycling rates. To date,
there are no studies evaluating the levels of these neurotrans-
mitters in Fmr1 KO rats, while studies in mouse models are also
limited. In agreement with our findings, reduced glutamate
tissue levels were found in the cortex of Fmr1 KO mice [66].
Based on our results and this study, glutamatergic function
appears to be dysregulated in Fmr1 KO rats, leading to a
hyperglutamatergic state only in the prefrontal cortex. However,
GABA tissue levels, like glutamate, depict mostly internal
concentration [67] and exhibit a bidirectional pattern between
the prefrontal cortex and hippocampus. Interestingly, these
differentiated patterns of Glu levels are linked to the alterations
in glutamate receptor subunit composition discussed above.
Furthermore, disruptions in glutamate and GABA neurotrans-
mission, particularly in the hippocampus, indicate an imbalance
of excitation and inhibition upon Fmr1 deletion, as further
supported by our electrophysiology data.
Specifically, Fmr1 KO CA1 apical dendrites displayed

unchanged fEPSPs responses after the stimulation of converging
Schaffer collaterals compared to WT rats. Additionally, the
neuronal excitation of CA1 somata in stratum pyramidale was
unaffected, as deduced by the maximum amplitude of PS
recorded. These electrophysiology findings could be also
associated with the hippocampus’s unchanged glutamate and

GABAergic cycling rates. However, KO rats displayed elevated
neuronal excitability in both the dorsal and the ventral
subdivisions of the hippocampus, in accordance with previous
studies [68–71].
Concerning the ventral but not dorsal hippocampus, an

interesting finding was the increased effectiveness of the local
inhibitory networks since a higher reduction of the second
response evoked by two identical electrical pulses applied in
rapid succession was observed. This subregion-specific effect
can be explained by the well-known structural and functional
hippocampal heterogeneity across the dorsoventral axis [72–74].
Hyperexcitability in the dorsal part, the associative subregion of
hippocampus alongside the alterations observed in NMDAR and
AMPAR subunit composition, may explain the poor recognition
performance of Fmr1 KO rats. On the other hand, the
hyperexcitability alongside the hyper-responsivity of the ventral
hippocampal local inhibitory network could be associated with
the unaffected GluN2A/N2B ratio and the increased expression
of GluA1 receptors. Taking into consideration, that the ventral
part of the hippocampus is more prone to epileptic-like activity
[75, 76], it could be suggested that the ventral hippocampal
electrophysiological recordings and corresponding neurobiolo-
gical alterations likely contribute to the development of
adaptive neurobiological mechanisms that counterbalance this
sensitivity of Fmr1 KO rats.
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Finally, RNA sequencing analysis revealed 838 differentially
expressed genes in Fmr1 KO rats generally associated with synapse
organization, signal release, regulation of neuron projection develop-
ment, and anion transport. Observed disruptions in the ion transport
and signaling pathways could also contribute to hyperexcitability and
aberrant synaptic function observed in Fmr1 KO rats. However, other
excitation factors should also be taken into account, such as
neuromodulators (dopamine, serotonin, and acetylcholine), changes
in synaptic plasticity through LTP and LTD, neuroinflammation,
epigenetic modifications, and circuit-level interactions [77–79]. Along
these lines, pathway analysis revealed substantial dysregulation in the
glutamatergic synapse pathway, which provides a compelling link
between the altered gene expression and the glutamatergic
alterations observed in the Fmr1 KO rats. In parallel to this concept,
the upregulation of genes such as Cacna1c suggests potential
alterations in calcium-dependent signaling processes within the
glutamatergic synapse; an effect that is consistent with increased
neuronal excitability in Fmr1 KO rats [80]. Interestingly, Cacna1c

belongs to the L-type voltage-gated Ca++ channel family, which are
targets of FMRP and are found to be dysregulated in FXS animal
models [81]. Conversely, the downregulation of Shank3, involved in
synaptic scaffolding and neurotransmitter receptor clustering, indi-
cates disruption of postsynaptic density organization and glutama-
tergic and/or GABAergic synapse function. These molecular
alterations align with the observed deficits in neurotransmission
and subsequent behavioral output [82–84]. Interestingly, the
upregulation of the Cacna1c gene and the downregulation of the
Gng13 genes contribute to dysregulation of the GABAergic synapse
pathway [85] and might be linked to altered inhibitory processes
observed in the electrophysiological experiments and the increased
GABA tissue content found in the hippocampus.

CONCLUSIONS
Present findings provide evidence linking Fmr1 deletion with
cognitive deficits that arise, at least partly, from perturbations of

Fig. 5 Alterations in excitability and local inhibitory processes in the hippocampus of the Fmr1 KO rats. Comparison of synaptic
transmission, neuronal excitation, and neuronal excitability in WT and Fmr1 KO in the dorsal (D. Hip) (a–c) and ventral hippocampus (V. Hip)
(d–f). Upper graphs in each panel show examples of input–output curves between stimulation current intensity and fEPSP or PS or PS/fEPSP.
Synaptic transmission was compared between WT and KO rats by measuring the max fEPSP. Max fEPSP did not significantly differ between the
WT and KO rats in either the dorsal (a) (WT n= 15 slices/12 rats and KO n= 19 slices/19 rats) or the ventral hippocampus (d) (WT n= 18 slices/
16 rats and KO n= 18 slices/18 rats). Regarding neuronal excitation we found that max PS did not significantly differ between WT and KO rats
in either the dorsal (b) (WT n= 42 slices/33 rats and KO n= 46 slices/35 rats) or the ventral hippocampus (e) (WT n= 40 slices/33 rats and KO
n= 46 slices/37 rats). Neuronal excitability was compared between WT and KO rats by measuring the ratio PS/fEPSP at max PS value. Max PS/
fEPSP significantly increased in KO compared with WT rats in both the dorsal (c) (WT n= 13 slices/11 rats and KO n= 17 slices/16 rats) and the
ventral hippocampus (f) (WT n= 15 slices/13 rats and KO n= 16 slices/13 rats). Paired-pulse inhibition increases in the ventral, not dorsal, KO
hippocampus. The effectiveness of paired-pulse inhibition was compared between WT and Fmr1 KO rats by measuring the ratio PS2/PS1
recorded at a stimulation strength that produced a half-maximum PS1. PS2/PS1 in the dorsal hippocampus (g) was comparable between WT
and KO rats (WT n= 34 slices/29 rats and KO n= 33 slices/27 rats). However, PS2/PS1 was significantly smaller in KO compared with WT ventral
hippocampus (h) (WT n= 38 slices/30 rats and KO n= 44 slices/32 rats), suggesting a higher inhibition in the KO vs WT ventral hippocampus.
Collective data are shown in the bottom graphs in each panel and they are represented as means ± SEM; *P < 0.05.
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glutamatergic and GABAergic neurotransmission, apparent at
the transcription, protein and synaptic level. This complex
interplay deregulates glutamatergic transmission, excitation/
inhibition balance, and plasticity with relevance to FXS
pathophysiology and symptomatology, which is translationally
upscaled by the use of a rat model. Importantly, this study

highlights the crucial region-dependent nature of these
perturbations, providing valuable insights about the circuit
and network bases of the pathologies. Further research will
strengthen the possibility of identifying new genetic or
neuroanatomical targets for the better understanding and
treatment of FXS.
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