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Weinberg and coworkers have used serial transduction of a hu-
man, primary fibroblast cell line with the catalytic domain of
human telomerase, large T antigen, small T antigen, and an
oncogenic allele of H-ras to study stages leading toward a fully
transformed cancerous state. We performed a three-dimensional
screening experiment using 4 cell lines, 5 small-molecule pertur-
bagens (2-deoxyglucose, oxamate, oligomycin, rapamycin, and
wortmannin), and a large number of metabolic measurements.
Hierarchical clustering was performed to obtain signatures of the
4 cell lines, 24 cell states, 5 perturbagens, and a number of
metabolic parameters. Analysis of these signatures and sensitivi-
ties of the cell lines to the perturbagens provided insights into the
bioenergetic states of progressively transformed cell lines, the
effect of oncogenes on small-molecule sensitivity, and global
physiological responses to modulators of aerobic and anaerobic
metabolism. We have gained insight into the relationship between
two models of carcinogenesis, one (the Warburg hypothesis) based
on increased energy production by glycolysis in cancer cells in
response to aberrant respiration, and one based on cancer-causing
genes. Rather than being opposing models, the approach described
here suggests that these two models are interlinked. The cancer-
causing genes used in this study appear to increase progressively
the cell’s dependence on glycolytic energy production and to
decrease its dependence on mitochondrial energy production.
However, mitochondrial biogenesis appears to have a more com-
plex dependence, increasing to its greatest extent at an interme-
diate degree of transduction rather than at the fully transformed
state.
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Cancer cells override mechanisms for controlling cellular
proliferation, differentiation, and death during malignant

transformation. Weinberg and coworkers (1) have shown that
ectopic expression of the telomerase catalytic subunit (hTERT)
in combination with simian virus 40 large T antigen (LT), small
T antigen (ST), and an oncogenic allele of H-ras results in the
tumorigenic conversion of normal human epithelial and fibro-
blast cells (1, 2). In this study, we used the four BJ fibroblast cell
lines named 1-[hTERT], 2-[hTERT � LT], 3-[hTERT � LT �
ST], and 4-[hTERT � LT � ST � H-ras], which we abbreviate
here as CL1, CL2, CL3, and CL4, respectively. To study phys-
iological changes on the path toward tumorigenic conversion, we
performed a three-dimensional screening experiment that
yielded a matrix of data derived from variations in cell states, cell
measurements, and small molecules (Fig. 1). To assess the
bioenergetic status of each cell line CL1–CL4, we selected
small-molecule inhibitors of metabolic and nutrient-sensing
pathways. Each cell line was incubated individually with (i)
DMSO; (ii) oxamic acid, an inhibitor of lactate dehydrogenase,
which is an enzyme involved in anaerobic glycolysis; (iii) 2-
deoxyglucose, an inhibitor of the glycolysis enzyme hexokinase;
(iv) oligomycin, an inhibitor of mitochondrial ATP synthase; (v)
wortmannin, an inhibitor of phosphatidylinositol 3-kinase; or
(vi) rapamycin, an inhibitor of the nutrient-response signaling

protein mTOR. Many metabolic cell measurements were made
by using each of the resulting 24 cell states. Here, we adopted an
approach based on GC-MS and HPLC. We also measured
glucose and oxygen consumption, lactate production, and
mRNA levels of five genes known to play a central role in
mitochondrial function. The transcripts, measured by quantita-
tive RT-PCR, were mitochondrial transcription factor A
(TFAM), a key factor in mitochondrial DNA transcription and
replication (3); cytochrome c (CYCS, a component of the
electron transport chain); nuclear respiratory factor 1 (NRF-1,
a nuclear transcription factor for respiratory genes) (4); perox-
isome proliferator-activated receptor gamma coactivator (PGC-
1�) (5); and � subunit of F1 ATP synthase (ATP5E) (6). The
resulting matrix of data yielded signatures for the 24 cell states
and, together with the measured sensitivity of the cell lines to the
perturbagens, provided insights into the relationship between
cell physiology, especially concerning metabolism and bioener-
getics, and cancer-causing genes.

Materials and Methods
Cell Lines. Cell lines serially transduced with the indicated onco-
genes [hTERT, simian virus 40 LT, ST, and H-ras] were obtained
from William C. Hahn (Dana–Farber Cancer Institute, Boston).
Cells were cultured in DMEM containing 1� medium 199
(Invitrogen) and 15% inactivated FBS at 37°C and 5% CO2.

Small Molecules. Oligomycin, rapamycin, wortmannin, 2-deoxy-
glucose, and oxamic acid were purchased from Sigma-Aldrich
and used at 10 �M, 20 nM, 100 nM, 50 mM, and 50 mM,
respectively.

Metabolite Extraction. Cells were grown to a density of 6 � 105

cells per 15-mm2 dish and treated with small molecules for 3 h.
The extraction protocol was adapted from www.mpimp-
golm.mpg.de�fiehn�blatt-protokoll-e.html (7), and ribitol was
added as the internal standard.

GC-MS. The dry samples were derivatized, and the GC method
was implemented as described in ref. 7.

HPLC. For analysis of nucleotides, the dried samples were recon-
stituted in ddH2O, and HPLC was performed on an Agilent
Technologies 1100 by using a Supelcosil LC-18-DB column from
Sigma-Aldrich. Two eluents were used: 100 mM potassium
dihydrogen phosphate containing 4 mM tetraammonium bisul-
fate at pH 6 (solvent A) and 100 mM potassium dihydrogen
phosphate containing 4 mM tetraammonium bisulfate at pH 7.2
with 30% methanol (solvent B). An 18-min run, using a gradient
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from 0% to 100% solvent B, was used, and detection was
performed at 254 nm.

Small-Molecule Sensitivity. Cells were seeded in 96-well plates at
2,000 cells per well and treated with varying concentrations of
oligomycin (0, 10, 50, 100, and 200 �M), 2-deoxyglucose (0, 10,
100, 500, and 1,000 mM), and oxamic acid (0, 10, 100, 500, and
100 mM). Cells were grown for 48 h, and the IC50 was assayed
by using the CyQUANT cell proliferation assay kit (Molecular
Probes). A mean graph was constructed according to the defi-
nition offered by the Developmental Therapeutics Program of
the National Cancer Institute (http:��dtp.nci.nih.gov).

Oxygen-Consumption Assay. Cells were transferred to 96-well O2
Biosensor plates (BD Biosciences) with cyclodextran beads, at a
density of 500,000 cells per well, and treated with small mole-
cules. After 30 min, f luorescence was measured by using a
Spectramax Gemini XS plate reader (Molecular Devices) at an
excitation of 485 nm and an emission of 630 nm, followed by
subsequent readings every 1 h for 4–5 h.

Glucose-Uptake Assay. Cells were grown and treated as described
for the oxygen assay. A 4-�l sample of medium was taken after
30 min and again after 4 h, and was diluted 100-fold. The assay
was performed by using the Amplex Red�Glucose Oxidase kit
(Molecular Probes). Fluorescence was measured at an excitation
of 563 nm and an emission of 587 nm, and absorbance was
measured by using a Spectramax Plus 384 plate reader (Molec-
ular Devices) at 563 nm.

Lactate-Production Assay. Lactate oxidase was substituted for
glucose oxidase, and the assay was performed as described
above.

Data Analysis. Triplicate samples were used to calculate the
standard deviation for each metabolite measurement. For
GC-MS spectra, metabolites were identified by using electron
impact spectra library generated by us and from the metabolo-
mic analysis group at the Max Plank Institute (www.mpimp-
golm.mpg.de�fiehn). Relative metabolite levels were normalized
to the concentration of internal standard and total ion current.
Peaks identified by HPLC were quantified by using total UV
absorbance of each peak and normalized based on the total
protein concentration of cells. Oxygen, glucose, and lactate
measurements were normalized based on the total protein
concentration of the cells. For hierarchical clustering and heat
map generation, all measurements were expressed as fold change
compared to a reference state. Changes with a z value �2.2 were
considered significant. Average linkage hierarchical clustering
was performed by using the GENE CLUSTER program, and heat
maps and dendrograms were constructed by using the TREEVIEW
program (both available at http:��rana.lbl.gov).

RNA Isolation and Quantitative RT-PCR. Cells were grown and
treated with small molecules for 3 h. RNA was isolated by using
the RNeasy kit (Qiagen). Quantitative RT-PCR was performed
by using the Quantitect SYBR Green kit (Qiagen) on an Opticon
instrument (MJ Research). Primers were designed by using the
PRIMER3 program (available at http:��frodo.wi.mit.edu�cgi-bin�
primer3�primer3�www.cgi). Relative quantitation was done by
using the �CT method by taking the difference (�CT) between
the CT of �-actin and CT of each transcript and computing 2��CT.
CL1 was used as the calibrator cell line, and the fold change was
defined as the ratio of the level of transcript in a sample over that
in CL1.

Results
Profiling of the Basal States of the BJ Cell Lines. To quantify the
effects of oncogenes on cellular bioenergetics, we compared
metabolic measurements of four cell lines that constitute a
defined path toward tumorigenic conversion (Fig. 1). In this
analysis, the immortalized cell line CL1 was used as the reference
state. The metabolic measurements from the cell lines were
expressed as the fold change over their respective measurements
in the reference CL1 cell line. The heat-map signatures of these
changes are shown in Fig. 2A. A progressive increase in oxygen
consumption occurred from CL2 to CL4 such that the fully
transformed CL4 cells consumed three times the amount of
oxygen as the reference state. This was accompanied by a steeper
progressive increase in the rates of glucose uptake and lactate
production, up to 6-fold in CL4. Levels of ATP, GTP, NAD�,
and NADP� also increased for both CL3 and CL4 cells. CL4 had
high levels of ribose-5-phosphate and orotic acid, both of which
are involved in nucleotide biosynthesis. CL3 had high levels of
citric acid cycle metabolites, such as citrate, malate, and fuma-
rate, but CL4 did not show these changes from the reference
state. Similarly, CL3 had high levels of several transcripts, such
as PGC-1�, NRF-1, TFAM, and ATP5E, which are important
for mitochondrial biogenesis (Fig. 2B), as well as increased
mitochondrial mass as determined by mitotracker dye staining of
mitochondria (data not shown), but CL4 had low levels of all
these transcripts and did not have increased mitochondrial mass.

Sensitivity of the BJ Cell Lines to Small-Molecule Modulators of
Aerobic and Anaerobic Metabolism. We measured the growth
inhibition of cells after treatment with three small molecules that
perturb enzymes involved in cellular metabolism (oligomycin,
2-deoxyglucose, and oxamic acid). Oligomycin is an inhibitor of
mitochondrial ATP synthase, 2-deoxyglucose is a substrate
analog inhibitor of hexokinase, and oxamic acid is a substrate
analog inhibitor of lactate dehydrogenase. The concentrations
that inhibit the growth of each cell line by 50% (IC50) were

Fig. 1. Three-dimensional screening. A matrix of data was obtained by
altering cell states, small-molecule perturbagens, and cell measurements.
Four cell lines, which model tumorigenic conversion and were generated by
Weinberg and coworkers (BJ fibroblast cells serially transduced with the four
indicated oncogenes), were treated with five small-molecule perturbagens
(wortmannin, rapamycin, 2-deoxyglucose, oxamic acid, and oligomycin). Bio-
chemical signatures of the members of this matrix were calculated by using
metabolic measurements such as oxygen consumption, glucose consumption,
lactate production, and metabolite measurements, using GC-MS or HPLC.
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measured as described in Materials and Methods, and a mean
graph of small-molecule sensitivities was constructed (Fig. 3).
We observed a continuous decline in oligomycin sensitivity as
cells increased their tumorigenic potential from CL1 to CL4.
This trend was reversed with 2-deoxyglucose, with CL4 being the
most sensitive and CL1 being the least sensitive. CL4 was also the
most sensitive to oxamic acid, but in this case CL3 was the least
sensitive.

Perturbational Profiling of BJ Cell Lines by Using Small Molecules. To
examine the effects of small-molecule perturbations in more
detail, we obtained bioenergetic signatures of each cell line after
treatment with the five small molecules. In this analysis, we used
measurements for each cell line in the basal state as the reference
for comparison with the small-molecule treated state (Fig. 4A).
Oligomycin treatment caused decreases in ATP levels that were
progressively less pronounced in the sequence from CL1 to CL4,
such that CL1 had 60% less ATP, CL2 and CL3 had 30% less
ATP, and CL4 showed no significant change. Oligomycin also
inhibited oxygen consumption in all cell lines, but CL1 was the
only cell line to respond by increasing glucose uptake. 2-Deoxy-
glucose treatments caused decreases in ATP and increases in
oxygen flux for all cell lines. This increase was high for CL2, CL3,
and CL4 but minor for CL1. Oxamic acid inhibited lactate
production in all cell lines. Glucose uptake was also inhibited in
CL3 and CL4, but oxygen flux was increased in these cell lines.
Oxamic acid caused the greatest decreases in ATP of any small
molecule, and CL4 was most severely affected, with a 70%
decrease compared with 50% for the other cell lines. Rapamycin
and wortmannin caused only small changes in the levels of most
metabolites. However, both small molecules led to an increase in
oxygen flux in CL3 and CL4.

Fig. 2. Biochemical signatures of a cell-line model of tumorigenesis. (A) Heat
map showing the relative levels of the metabolites in the four cell lines. The
metabolic measurements were expressed as the fold change relative to the
same measurement in the CL1 cell line. (B) The relative levels of the TFAM,
CYCS, ATP5E, PGC-1�, and NRF-1 transcripts, expressed as the fold change over
that in the CL1 cell line, are plotted in the bar graph.

Fig. 3. Mean graph of the small-molecule sensitivities of the four cell lines
to oligomycin, oxamate, and 2-deoxyglucose. The mean graph was con-
structed as defined by the Developmental Therapeutics Program of the Na-
tional Cancer Institute (http:��dtp.nci.nih.gov). The mean graph consists of
positive (more sensitive) and negative (less sensitive) ‘‘delta’’ values, gener-
ated from a set of IC50 values by using a three-step calculation. The IC50 values
for each of the cell lines against the small molecules were converted to
log(IC50) values. For each small molecule, the log(IC50) values of the cell lines
are averaged. Finally, the individual IC50 values are subtracted from this
average to create a delta. The mean small-molecule sensitivities of oligomycin,
oxamate, and 2-deoxyglucose are 0.5, 1.4, and 3.6 mM, respectively. There-
fore, for cell line CL4, a delta value of 3.6 for 2-deoxyglucose indicates that it
is �1,000-fold more sensitive than the average sensitivities of the four cell
lines.
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We also measured transcript levels in each cell line after
treatment with 2-deoxyglucose and oligomycin. 2-Deoxyglucose
caused 5- to 13-fold increases in all five transcripts for CL3
relative to the basal state (Fig. 4B). Oligomycin caused 6- to
8-fold increases in NRF-1, PGC-1�, and CYCS. CL4 only
showed a small increase in NRF-1 in both cases (Fig. 4C).

Average linkage hierarchical clustering was performed on the
metabolic data (Fig. 4D). The global physiological responses to
2-deoxyglucose of CL1 and CL4 were shown by cluster analysis
to be highly dissimilar, whereas their responses to oligomycin are
more similar.

Discussion
Over 70 years ago, Warburg performed experiments on tumor
and normal tissues that led to a proposal for the pathogenesis of
cancer (8). He reported that tumor tissues convert glucose to
lactate, via the reduction of pyruvate, even in the presence of
oxygen, whereas normal tissues use pyruvate, derived from
glycolysis, plus oxygen to produce ATP via mitochondrial res-
piration. Furthermore, cancer cells were proposed to produce
ATP from glycolysis, deriving the requisite NAD� from the
conversion of pyruvate into lactate, in amounts comparable to
that derived from oxygen-dependent respiration in normal cells,
which were thought to produce 100-fold less ATP from glycolysis
relative to respiration. Thus, cancer was proposed to derive from
an impairment of cellular respiration (9). Although cancer is now
viewed as a disease resulting from cancer-causing genes that
deregulate cellular proliferation, differentiation, and death, the
relationship between these genes and the deregulation of energy
production is only partially understood. The results described
below, made possible by the combined use of stepwise trans-
formed cell lines and metabolic profiling, suggest that the two
views are intimately linked and fully consonant.

The two views of cancer have been studied in the case of the
oncogene Akt by Thompson and colleagues (10). Akt has been
shown to promote the malignant transformation of hematopoi-
etic cells (11), and it has been shown that the phosphatidylino-
sitol 3-kinase�Akt pathway can induce glucose uptake and
glycolysis in cells. Elstrom and colleagues (10) demonstrated that
Akt can promote aerobic glycolysis without up-regulating oxi-
dative phosphorylation in a dose-dependent fashion, suggesting
its role in the Warburg effect. The above studies support the
possibility that metabolic transformations play an important role
in oncogenesis. The high glycolytic activity in cancer cells has
been shown to be associated with an increased expression of
glycolytic enzymes and glucose transporters (12), and has been
linked to the role of the oncogene c-myc and hypoxia-inducible
factor 1� (HIF-1�) (13). Higher levels of hexokinase, in hepa-
tomas, mediate this high rate of glycolysis (14). Of the oncogenes
used in the matrix experiment (Fig. 1), Ras is the only one that
has been studied in some detail for its impact on cellular
metabolism. For example, in yeast the Ras-cAMP pathway can
activate the glycolytic enzyme 6-phosphofructo-1-kinase via the
cAMP-dependent protein kinase (PKA) (15), and the Ras
cascade has been shown to increase the levels of mitochondrial
oxidative phosphorylation complexes (16). In glioblastoma cells,
inhibition of H-ras resulted in diminished glycolysis and cell
death (17). Biagalow et al. (18) showed that in rat embryo cells,
H-ras stimulates glycolysis and inhibits oxygen consumption.
Young et al. (19) used two ovarian cell lines, one transduced with

Same analysis as in B, after the four cell lines were treated with oligomycin. (D)
Hierarchical clustering of cell states and metabolites, with additional metab-
olite measurements from GC-MS. The columns representing the cell states are
labeled by the name of the cell line followed by the perturbation. 2DG,
2-deoxyglucose; OL, oligomycin; OX, oxamate; RAP, rapamycin; WORT,
wortmannin.

Fig. 4. Perturbational profiling of cell-line models of tumorigenesis. The
four cell lines were perturbed by using 2-deoxyglucose, oligomycin, oxamate,
rapamycin, and wortmannin as described in Materials and Methods. (A) The
fold change of the normalized levels of metabolic measurement (with respect
to that of the unperturbed basal states of the respective cell lines) was used to
construct heat maps. The columns in the heat map are grouped by the
small-molecule perturbagen. (B) The relative levels of TFAM, CYCS, ATP5E,
PGC-1�, and NRF-1 transcripts, prepared from the four cell lines after treat-
ment with 2-deoxyglucose, were expressed as fold change over their respec-
tive levels in the unperturbed basal state and plotted on the bar graph. (C)
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hTERT, LT, and ST, and the other with hTERT, LT ST, and
H-ras, to compare immortalized and transformed states. Using
two-dimensional electrophoretic separation of cellular proteins,
they showed that five proteins involved in redox balance were
up-regulated, and that Ras activity was responsible for resistance
to oxidative stress-mediated apoptosis.

The mitochondria are known to play a central role in the
regulation of cellular energy metabolism; however, the role of
mitochondria in oncogenesis is not well understood. Cuveza et al.
(20) have measured the expression levels of �-F1-ATPase
relative to that of mitochondrial Hsp60 in liver, colon, and renal
carcinomas. They showed a general down-regulation of mito-
chondrial components in liver tumors and a specific down-
regulation of �-F1-ATPase in colon and renal tumors (21).
Rossignol and colleagues (22) have shown that the mitochondria
are structurally and functionally dynamic and can adapt their
oxidative capacity to meet the energy requirements of cancer
cells. Such alterations in energy metabolism and mitochondrial
function may play a role in oncogenesis.

Recently, Nolan and colleagues (23) classified cancers based
on their response to perturbation, using five cytokines to perturb
the phosphorylation state of six signaling proteins, and used
these states to distinguish between leukemic cell lines. In the
present study, we have explored the differences in mitochondrial
biogenesis and metabolism in a well characterized set of cell lines
with serially transduced oncogenes combined with a set of five
small-molecule perturbagens. A set of metabolic measurements
provided a metabolic signature for the different stages of
tumorigenesis (Fig. 1); in addition, metabolic profiles obtained
after small-molecule perturbation generated signatures of the
response to these perturbagens (heat maps in Figs. 2 and 4A).
Hierarchical clustering was performed on the metabolic data
(obtained from HPLC and GC-MS analysis) to help visualize the
differential effects of cancer genes and the perturbagens on
cellular physiology (Fig. 4D).

The glycolysis inhibitor 2-deoxyglucose elicited the maximal
difference in sensitivities between CL1 and CL4 (Fig. 3). The
dendrogram in Fig. 4D indicates that signatures of these two cell
lines upon treatment with 2-deoxyglucose are maximally dissim-
ilar, suggesting that biochemical signatures obtained by using
metabolic measurements correlate well with sensitivity to the
corresponding small molecules (Fig. 3). Fig. 4D also illustrates
that within each cell line, the perturbational profiles of oxamate,
another inhibitor of glycolysis, and 2-deoxyglucose are most
similar to each other, as are the profiles of rapamycin and
wortmannin, small molecules that target elements of the nutri-
ent-response signaling network.

During serial transduction of these cell lines, there is an
increased rate of oxygen consumption and an increase in glucose
uptake and lactate production, as seen in the heat map in Fig. 2.
CL4 is distinguished by its high rates of aerobic and anaerobic
metabolism relative to CL1, as well as by high levels of key
nucleotides, such as ATP, GTP, NAD�, NADH, and NADP�.
There is no concomitant increase in the levels of citric-acid cycle
metabolites, suggesting the possibility that increased levels of
NADH, necessary for increased oxidative phosphorylation, may
come from sources extrinsic to the citric acid cycle. CL2 and CL3,
which are intermediate in the progression to the most trans-
formed state, had bioenergetic signatures intermediate between
CL1 and CL4.

As the cell lines progress toward a more tumorigenic state,
they become more sensitive to 2-deoxyglucose and less sensitive
to the mitochondrial ATP synthase inhibitor oligomycin; fur-
thermore, the fully transformed cell line is most dependent on
glycolysis and least dependent on the mitochondrial machinery
for ATP synthesis. Such responses to small-molecule perturba-
gens suggest differences in the cellular physiology of cells during
tumorigenesis, as judged by the mean graph in Fig. 3 and the heat

map in Fig. 4A. Oligomycin sensitivity declined progressively
from CL1 to CL4 (Fig. 3), as did the changes in cellular ATP
levels caused by oligomycin treatment (Fig. 4A). CL4 is least
sensitive to oligomycin and showed no decrease in ATP levels
upon treatment with oligomycin, consistent with predominant
ATP production via glycolysis in CL4, whereas CL1 is most
sensitive and showed a large decrease in ATP levels. CL2 and
CL3 are intermediate in both parameters. These results suggest
that CL4 is least dependent on the mitochondrial machinery for
ATP production. In contrast, CL4 is the most sensitive to both
2-deoxyglucose and oxamic acid. Consistent with the Warburg
effect, we found that the inhibition of anaerobic ATP production
with 2-deoxyglucose, as opposed to inhibition of aerobic ATP
production with oligomycin, induced greater reductions in cel-
lular ATP and proved more lethal in the maximally transformed
state represented by CL4.

We imagine two plausible explanations for an increase in ATP
production and an increase in the relative contribution to ATP
synthesis from glycolysis in cells with high tumorigenic potential.
Such cells are either making little ATP by respiration or they are
more able to switch readily to glycolytic (anaerobic) ATP
synthesis after exposure to an ATP synthase inhibitor. Consis-
tent with the latter explanation, Salomon et al. (24) have shown
that Jurkat cells, which are ordinarily insensitive to another
inhibitor of mitochondrial ATP synthase, apoptolidin, can be
strongly sensitized toward apoptolidin by treatment with 2-
deoxyglucose.

It is intriguing that cells with greater tumorigenic potential
consume more oxygen and yet exhibit diminished oxygen-
dependent (aerobic) ATP synthesis. It is possible that such cells
use the mitochondrial electron transport chain and oxidative
phosphorylation for reasons other than the production of ATP;
for example, for producing heat or reactive oxygen species by
allowing leakage of the membrane potential. A caveat to this
explanation is that we observe a diminution in mitochondrial
biogenesis after the addition of H-ras to CL4. It is also possible
that cells with greater tumorigenic potential use mitochondria
and oxygen for pyrimidine synthesis (facilitating DNA synthesis)
rather than for ATP synthesis, as judged by CL4 having higher
levels of ribose-5-phosphate and orotic acid in the basal state
(Fig. 2 A). Ribose-5-phosphate is the starting reactant for the
formation of 5-phosphoribosyl-1-pyrophosphate (PRPP), which
is the ribose phosphate donor in nucleotide biosynthesis. Orotic
acid reacts with PRPP in a biosynthetic route that produces
pyrimidine nucleotides. Orotic acid itself is produced in a
mitochondrial electron transport chain (EC)-dependent manner
by dihydroorotate dehydrogenase, which has been shown to be
associated with EC enzymes in the mitochondria (25). These
results indicate a possible coupling of nucleotide biosynthesis
with the mitochondrial machinery to achieve the high rates of
cell proliferation in the fully transformed state. This coupling
suggests that modulators of mitochondrial metabolism and
biogenesis may have a therapeutic window as anticancer agents.
Noteworthy in this regard is the discovery by small-molecule
screening of a small molecule that selectively induces cell death
in mammary epithelial cells overexpressing the neu oncogene.
This small molecule targets mitochondria having high membrane
potential (26). In the future it will be important to determine
whether oxygen might be consumed in cells with greater tumor-
igenic potential by nonmitochondrial mechanisms, for example,
by peroxisomes.

Treatment with small-molecule perturbagens revealed that
the inhibition of certain elements of signaling networks pro-
duced differential responses in the activities of metabolic path-
ways and in a manner dependent on the oncogenic background.
Rapamycin and wortmannin do not effect the rate of oxygen
consumption, and thus, presumably, oxidative phosphorylation,
after the introduction of hTERT (CL1) and hTERT plus LT

5996 � www.pnas.org�cgi�doi�10.1073�pnas.0502267102 Ramanathan et al.



(CL2). But after the additional introduction of ST (CL3), both
rapamycin and wortmannin cause an increase in oxygen con-
sumption. This effect is maintained after the additional intro-
duction of H-ras (CL4).

As cell lines progress toward greater tumorigenic potential via
the introduction of hTERT, LT, and ST (CL1–CL3), they have
increasing levels of mitochondrial biogenesis. However, after the
introduction of H-ras (CL4) there is a decline in mitochondrial
biogenesis, as seen in the bar graphs in Figs. 2B and 4 B and C.
In the basal state, CL3 had the highest levels of PGC-1�, NRF-1,
and TFAM transcripts, all of which play key roles in mitochon-
drial biogenesis. CL3 also has the highest levels of citric-acid
cycle metabolites, such as citrate, malate, and fumarate (Fig.
2A), suggesting an increased supply of reducing equivalents for
aerobic metabolism. Together with an increased mitochondrial
mass, these results indicate an induction of a mitochondrial
biogenesis program by the specific combination of oncogenic
elements present in CL3. This effect is even more pronounced
when CL3 is treated with 2-deoxyglucose, which caused a
severalfold increase over the basal state in all transcripts tested.
In contrast, CL4 had low levels of all transcripts in the basal state
and only a small increase in NRF-1 in response to 2-deoxyglu-

cose. We therefore infer that the introduction of H-ras in CL4
attenuates the mitochondrial biogenesis response conferred by
the combination of hTERT, LT, and ST.

Global biochemical profiles in combination with modulators
of bioenergetic and signaling pathways can illuminate the influ-
ence of oncogenes on cellular physiology. Using a three-
dimensional screen of cell states, cell measurements, and small-
molecule perturbagens, we have discovered differential
metabolic responses to small molecules and differential depen-
dencies of tumorigenic states on specific metabolic pathways.
The data and our analyses show that the cancer-gene and
Warburg concepts are fully consonant but, presumably, with
cancer genes as the cause and metabolic alterations as an effect.
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