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Key Points

• A pediatric patient
presented with
macrothrombo-
cytopenia carrying 2
novelGNEmissense
variants (C594Y and
P735R).

• Mice with homozygous
P735R mutations
exhibited defective
angiogenesis and
cerebral hemorrhages
as early as E11.
Glucosamine (UDP-N-acetyl)-2-epimerase and N-acetylmannosamine (ManNAc) kinase

(GNE) is a cytosolic enzyme in de novo sialic acid biosynthesis. Congenital deficiency of GNE

causes an autosomal recessive genetic disorder associated with hereditary inclusion body

myopathy and macrothrombocytopenia. Here, we report a pediatric patient with severe

macrothrombocytopenia carrying 2 novel GNE missense variants, c.1781G>A (p.Cys594Tyr,

hereafter, C594Y) and c.2204C>G (p.Pro735Arg, hereafter, P735R). To investigate the

biological significance of these variants in vivo, we generated a mouse model carrying the

P735R mutation. Mice with homozygous P735R mutations exhibited cerebral hemorrhages

as early as embryonic day 11 (E11), which subsequently progressed to large hemorrhages in

the brain and spinal cord, and died between E11.5 and E12.5. Defective angiogenesis such as

distended vascular sprouts were found in neural tissues and embryonic megakaryocytes

were abnormally accumulated in the perineural vascular plexus in mutant mouse embryos.

Furthermore, our in vitro experiments indicated that both C594Y and P735R are loss-of-

function mutations with respect to de novo sialic acid biosynthesis. Overall, this study

reveals a novel role for GNE-mediated de novo sialic acid biosynthesis in mouse embryonic

angiogenesis.
Introduction

Sialic acid is a common capping structure on nonreducing terminus of glycans on proteins and lipids,
a biochemical process named sialylation. Because of its negative charge, sialic acid imparts an
electrostatic repulsive force to glycans. Sialic acid also interacts with many sialic acid binding pro-
teins such as sialic acid binding immunoglobulin-like lectins. As a result, sialylation has critical bio-
logical functions, especially in cell-cell interactions.1,2 Sialylation takes place in the Golgi. There are 2
pathways to synthesize the sialic acid precursor for sialylation. One is glucosamine-2-epimerase and
N-acetylmannosamine kinase (GNE)–mediated de novo sialic acid biosynthesis, and the other results
from lysosomal degradation of glycoconjugates by lysosomal neuraminidase.3
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GNE consists of 2 functionally distinct domains: UDP-GlcNAc-2-
epimerase on the N-terminus and the ManNAc kinase on the
C-terminus.4 The former activity is required for the epimerization of
UDP-GlcNAc to ManNAc, and the latter is for the following
phosphorylation of ManNAc to ManNAc-6-phosphate. Then, Man-
NAc-6-phosphate is modified to sialic acid-9-phosphate and sub-
sequently dephosphorylated to sialic acid, which is then converted
to CMP-sialic acid in the nucleus. CMP-sialic acid is transported to
the Golgi apparatus by the specific CMP-sialic acid transporter
Slc35a1 for sialylation of glycans.5 To prevent overproduction of
sialic acid, GNE is allosterically inhibited by CMP-sialic acid.6

Congenital deficiency of GNE causes an autosomal recessive
genetic disorder. Different GNE mutations in humans cause 2
distinct phenotypes; sialuria, a disorder of sialic acid metabolism,
and hereditary inclusion body myopathy (HIBM).7 The former is
inherited as an autosomal dominant trait and presents as sialic acid
overproduction due to impaired allosteric inhibition mechanism.6,8

The latter is an adult-onset autosomal recessive disorder, and the
pathological mechanism still remains unclear.9 One proposed
mechanism of HIBM is based on the lack of functional glycosylation
of dystroglycan, a transmembrane protein that plays an important
role in transducing extracellular matrix–derived signals to the
cytoskeleton and provides physical strength to the skeletal muscle
cell membrane.10-12

Since the first genomic mutation in GNE was discovered in a
patient with sialuria in 1989,13 several GNE variants have been
reported to be relevant to sialuria and HIBM.7,9,14 Sialuria is caused
by GNE mutation–mediated impairment of the inhibitory feedback
in the sialic acid production pathway and is inherited as an auto-
somal dominant trait, whereas loss-of-function GNE mutations
cause HIBM as an autosomal recessive disease. Interestingly,
several recent reports have shown that GNE pathogenic variants
are associated with congenital macrothrombocytopenia and, in
some cases, with concomitant myopathy.15-18 Some studies have
suggested that impaired sialylation of platelet surface glycans leads
to shorter platelet lifespan,18,19 thereby contributing to GNE-
associated macrothrombocytopenia. However, the exact mecha-
nism of GNE-related diseases is not yet fully understood.

In this study, we report on a pediatric patient with severe macro-
thrombocytopenia. Next-generation sequencing technology identi-
fied compound heterozygous GNE variants in the patient,
c.1781G>A (C594Y) and c.2204C>G (P735R). To investigate
the pathological significance of these variants, we generated a new
mouse model carrying a homozygous P735R missense mutation.
Unexpectedly, P735R homozygous embryos exhibited cerebro-
spinal hemorrhages at embryonic day 11 (E11) and became
nonviable between E11.5 and E12.5. Defective angiogenesis, such
as abnormal vascular sprouts in neural tissues budding from the
perineural vascular plexus, was discovered in the diencephalon at
E11 in the mutant (mt) mice. After the in vivo work, we analyzed
these patient-derived variants by establishing Gne-knockout (KO)
mouse endothelial cell line, MS1 cells transduced with human GNE
carrying C594Y or P735R using lentiviral vectors, and discovered
that both C594Y and P735R are loss-of-function mutations. Alto-
gether, our studies reveal novel GNE pathogenic variants that
contribute to macrothrombocytopenia in human and provide new
insights into GNE-mediated de novo sialic acid biosynthesis during
embryonic vascular development in mice.
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Material and methods

Study design

The study design was focused on the functional characterization of
novel pathogenic variants in GNE of a patient with macro-
thrombocytopenia we identified. This includes in vitro approaches,
such as mouse endothelial MILE SVEN 1 (MS1) cells transfected
with the GNE variants, and a newly generated knockin mouse
model carrying one of the pathogenic variants in GNE to determine
the pathogenic roles of the GNE variant. Both the patient and
mouse studies were approved by the institutional review boards
and the Animal Use Committee of the First Affiliated Hospital of
Soochow University.

Generation of Gne+/P735R mice

To generate a C57BL/6J mouse background with a point mutation
(c.2204C>G, P735R) at the mouse Gne locus, a gRNA targeting
vector and donor oligo (with 9 bp targeting sequence, flanked by
60 bp homologous sequences on both sides) were designed. The
P735R (CCG to CGG) and a synonymous mutation p.Leu737
(CTG to TTA) were introduced into exon 12. After obtaining mt
mice, the pups were genotyped by PCR, followed by sequence
analysis, and heterozygotes were kept for breeding. To eliminate
off-target effects, heterozygous founder mice were backcrossed
with wild-type (wt) mice for at least 3 generations. In each breeding
generation, breeders were selected by specific genotyping of the
targeted knockin mutation. All mice were housed in humidity- and
temperature-controlled specific pathogen-free animal facilities on a
12 hour light-dark cycle with free access to food and water. Timed-
mated females were obtained from natural matings by crossing
males with females of breeding age. The presence of a copulatory
plug denoted E0.5.

Animal studies were conducted under protocols approved by the
Institutional Animal Care and Use Committee of Soochow Uni-
versity. The human study was approved by the Ethics Committee of
the First Affiliated Hospital of Soochow University. Written
informed consent was obtained from the parent of the patient
before enrollment.

Histology, immunostaining, and image acquisition

Mouse embryos were collected and photographed at dissection.
For histology, embryos were fixed in 10% formalin, and 5-μm
paraffin-embedded coronal sections were cut and stained with
hematoxylin and eosin. For immunofluorescence, tissues were
fixed in 4% paraformaldehyde, and cryosections were cut at a
thickness of 20 to 50 μm, blocked, incubated with primary and
then secondary antibodies, counterstained with nuclear marker,
and mounted for imaging with a Leica TCSSP8 microscope
system.

Data analysis and statistics

Statistical tests were performed using Prism software (GraphPad,
San Diego, CA). Two-sided Student t tests were performed to
assess the statistical significance of differences between 2 groups
after confirming that the data met the criteria of normal distribution
and equal variance. Differences were considered statistically sig-
nificant when P < .05.

Additional methods can be found in the supplemental Information.
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Results

Novel missense mutations in GNE gene were

identified in a patient with macrothrombocytopenia

The patient had continuous epistaxis starting at the age 5. His
blood tests and bone marrow examination revealed a low platelet
count <20 000 cells/μL with no other abnormalities, and the bone
marrow aspirate smear showed megakaryocytes of normal number
and size. He was diagnosed with immune thrombocytopenia and
has been treated with glucocorticoid, IV immunoglobulin, cyclo-
sporine, danazol, and eltrombopag since at local hospitals. How-
ever, his platelet count remained at 10 000 to 30 000 cells/μL. At
age 13, he was admitted to the First Affiliated Hospital of Soochow
University. On physical examination, the patient was found to have
purpura and asthenia. He also had growth retardation with a height
of 140 cm, which is less than –2 standard deviation of the height of
general population, based on the Standard Deviations of Height
and Weight for Children and Adolescents Aged 0 to 18 years in
China.20 However, he had no pain, sensory disturbance, muscle
cramps, or other signs of myopathy, and no marked weakness of
cardiopulmonary function, along with normal spleen size and serum
creatine kinase concentration. Besides, he had no other medical
complications, and none of his family members had similar
symptoms.

Blood tests revealed that his platelet count was 28 000 cells/μL as
shown in supplemental Table 1, and the peripheral blood smear
displayed markedly enlarged platelets compared with normal
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Figure 1. Identification of GNE compound

heterozygote variants in a patient with

macrothrombocytopenia. (A) Representative images of

Giemsa staining of peripheral blood smears from the patient

(age 16), the patient’s father (age 40), and a healthy

individual (age 28) as normal control who has no family

relationship with the patient or his other family members. The

size of patient’s platelets was nearly 3 times larger than that

of the normal control. Arrows indicate enlarged platelets.

Arrowheads indicate normal platelets. Black boxes indicate

platelets with higher magnification. Scale bar, 10 μm.

(B) Genomic DNA sequences of exon 10 and exon 12 of

GNE in father- and patient-derived blood cells. Letters and

numbers in red indicate mutated residues and sites in the

GNE protein sequence, respectively. (C) Pedigree of

the family. The filled square indicates the patient, who is the

proband, and the half-filled square and circle indicate

heterozygous father and mother, respectively. (D) Schematic

domain structure of GNE carrying combined missense

mutations in the patient. (E) MFI of MAL-II and platelet

surface marker CD42a on peripheral platelets from the

patient, patient’s father and a healthy individual as normal

control (the same individual as in Figure 1A), respectively.

MFI, mean fluorescence intensity; FSC, forward scatter;

MAL-II, Maackia amurensis lectin II, binds to α-2,3 linked

sialic acid. *P < .05; ***P < .001.
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platelets (Figure 1A). Targeted exome sequencing using a 199-
gene panel for congenital bleeding disorders (supplemental
Table 2) was performed and we identified 2 heterozygous
missense variants in the GNE gene, c.1781G>A
(NM_001128227.3: C594Y) in exon 10 and c.2204C>G
(NM_001128227.3: P735R) in exon 12, whereas no other muta-
tion was found. Further Sanger sequencing of GNE confirmed
these 2 mutations in the patient, and his father has the same
c.1781G>A heterozygous mutation (Figure 1B). Because his
mother’s DNA sample was not available, it is presumed that the
c.2204C>G mutation was inherited from his mother (Figure 1C).
Most of patients with GNE mutations have either 1 homozygous
missense variant or 2 heterozygous missense variants; one on the
epimerase domain and the other on the kinase domain, respec-
tively.7 Therefore, it is rare for the 2 heterozygous mutations to be
located on the C-terminal ManNAc kinase domain, as in our patient
(Figure 1D).

Because GNE is required for de novo sialic acid biosynthesis and
sialic acid on platelets is a determinant of platelet’s lifespan,17,21

the thrombocytopenia in this patient could be the result of
altered glycans on the platelet surface. To test this, platelets from
the family members were isolated and analyzed by flow cytometry.
To lessen the effect of the giant size of the patient’s platelets on the
mean fluorescence intensity (MFI), we divided the MFI with the
forward scatter (FSC) as the normalized MFI. The normalized MFI
of CD42a, a platelet marker, and MAL-II, which detects α2,3-linked
sialic acids, were decreased in the patient’s platelets compared
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Figure 2. Generation of P735R-knockin mice. (A) Schematic domain representation of UDP-GlcNAc-2-epimerase and ManNAc kinase in human GNE, and the structure of

dimeric kinase domains (PDB ID: 2YHW). (B) Structural prediction of kinase domain carrying C594Y mutation, showing that 1 rotamer causes severe clashes in all 3 rotamers.

(C) Structural prediction of kinase domain carrying P735R mutation, showing severe clashes for all the 22 rotamers. Mutagenesis and rotamer selection were performed

using PyMOL, in which the gray sticks indicate the mutated residues and the red octagon disks indicate significant van der Waals overlap, meaning atoms are close to other atoms

causing clashes. (D) Diagram of the targeted genomic sequence in the GneP735R/P735R (hereafter, mt/mt) mouse using the CRISPR-Cas9 system. The synonymous mutation

p.Leu737 (CTG to TTA) was introduced as a blocking mutation to prevent re-cutting by Cas9 after homology-directed repair. (E) Illustration of the RFLP-based genotyping assay

using PCR and restriction endonuclease NlaIV. (F) Genotyping results visualized using 2% agarose/TBE gel.
with those of his father (Figure 1E). This phenotypic characteriza-
tion of platelet glycans suggests that thrombocytopenia in this
patient is caused by a shorter platelet lifespan based on altered
glycans, possibly sialylation.

Generation of a mouse model carrying the P735R

mutation

We performed computational model simulations of the mutated
protein structure. C594Y has 3 rotamers, one of which causes
severe clash, whereas P735R has 22 rotamers, all of which cause
severe clashes (Figure 2A-C). Hence, these results demonstrate
994 HUANG et al
that both of C594Y and P735R could be pathological. Analysis of
the primary sequence of GNE also revealed that exon 12 con-
taining p.Pro735 is more conserved across several species than
that around p.Cys594 (supplemental Figure 1A, B). Therefore, to
investigate the pathogenicity of these mutants in vivo, we chose to
generate a mouse model in the C57BL/6J background carrying a
c.2204C>G (P735R missense mutation) via CRISPR-Cas9-
mediated genome editing (Figure 2D). To this end, we designed
a dual-sgRNAs expression vector targeting exon 12 and a 129-bp
donor oligo in which the targeting 9-bp sequence was flanked by
60-bp homologous sequences. The missense mutation P735R
(CCG to CGG) in the donor oligo was introduced into exon 12 in
27 FEBRUARY 2024 • VOLUME 8, NUMBER 4



the genome of fertilized eggs by homology-directed repair. In
addition, a synonymous mutation p.Leu737 (CTG to TTA) was
introduced as a blocking mutation to prevent sgRNAs from binding
and recutting the sequence by Cas9 after successful homology-
directed repair (Figure 2D). To genotype the mt pups, we devel-
oped a restriction fragment length polymorphism–based assay
using PCR and the restriction endonuclease NlaIV, which cuts wt
but not mt amplicons (Figure 2E,F).

Homozygous P735R mutants exhibit fatal cerebral

hemorrhage at early embryonic stage

Heterozygous Gne+/P735R (hereafter, wt/mt) mice developed nor-
mally, of which both sexes appeared healthy with a normal life span.
Similar to Gne+/+ (hereafter, wt/wt) mice, wt/mt mice showed
normal peripheral blood cell counts (supplemental Figure 2A,B).
wt/mt mice were crossed to generate homozygousGneP735R/P735R

(hereafter, mt/mt) mice. A total of 395 viable pups were generated,
of which 201 (51%) were male and 194 (49%) were female.
Genotyping results showed that 134 (34%) were wt/wt, and 261
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Figure 3. Homozygous P735R-knockin embryos

develop distended vascular sprouts and

spontaneous hemorrhages in the brain.

(A) Comparison of wt/wt and mt/mt embryos at different

developmental stages. Blood is visible in the hearts of the

older embryos. Asterisks indicate hemorrhages in the brain

ventricles, spinal cord, and spinal canal of E11.5 mt/mt

embryos. The E11.5 and E12.5 mt/mt embryos are dead

and appear pale as blood circulation has ceased. (B)

Hematoxylin-eosin staining of coronal section of the wt/wt

and mt/mt embryos’ heads at E11.5. Arrows indicate

hemorrhagic lesions, which are shown at higher

magnification in (C). Hemorrhages are visible in both the

brain parenchyma as well as in the ventricles. Erythrocytes

are nucleated at this stage of development. (D) Confocal

images of angiogenic sprouting into the ventricle from

PNVP of the diencephalon (coronal section) of E11 and

(E) E11.5 embryos. (F) Confocal images of diencephalon

distended sprouts and (G) accumulated eMKs in mt/mt

embryos at E11. Neural, brain tissue. PNVP, perineural

vascular plexus. ECL intensity reflects the degree of

asialylation. In E11.5 mt/mt embryos, the hemorrhage

penetrated the brain tissue and spread into the ventricle.

IB4 marks the vasculature. CD41 marks eMKs and platelets

(mostly eMKs at this stage). (H) Confocal microscopy

images of wholemount stained E10.5 yolk sac with CD31

near the vitelline vein and (I) capillary plexus. Scale bar,

100 μm (B, D, F, H, I); 25 μm (C, E, G).
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(66%) were wt/mt. However, no mt/mt genotype was identified
among 395 viable pups. To determine whether P735R homozy-
gosity causes embryonic lethality, we analyzed 313 embryos at
E9.5 to E16.5 from timed matings by crossing wt/mt mice.
Genotyping revealed 70 wt/wt (22.4%), 169 wt/mt (54%), and
74 mt/mt progenies (23.6%) as shown in supplemental Table 3.

At E11, mt/mt embryos appeared developmentally normal, but
thereafter progressively developed large hemorrhages in the brain
and spinal cord, whereas littermate wt/wt and wt/mt controls
developed normally (Figure 3A). Embryonic hemorrhage consis-
tently preceded death, supporting a causal relationship. Through
observing heartbeat activity, 70.6% of mt/mt embryos died around
E11.5, and all mt/mt embryos succumbed by E12.5. These results
indicate that the P735R mutation causes a vital loss of GNE
function.

Histology showed that the brains of mt/mt embryos exhibited
bleeding into the third ventricle from the diencephalon at this stage
of development (Figure 3B,C). There were fewer vascular sprouts
mt/mt
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in neural tissues extending from the perineural vascular plexus in
mt/mt embryos (Figure 3D). Moreover, there were distended and
dilated sprouts in neural tissues at an early stage before the
bleeding phenotype (Figure 3E,F; supplemental Figure 3A), sug-
gesting that ruptured dilated vascular sprouts were most likely the
source of hemorrhage. Spontaneous hemorrhages then occurred
in the diencephalon or midbrain and developed into the ventricles
by E11.5 (Figure 3B). Based on previous studies, we hypothesized
that the homozygous Gne P735R mutation affects embryonic
megakaryocytes (eMKs) and platelets through hyposialylation of
mucin-type O-glycosylation of proteins such as podoplanin.22

Supporting this hypothesis, quantification results of immunofluo-
rescence staining displayed that the number of circulating plate-
lets, eMKs and vascular sprouts emerging from perineural vascular
plexus were significantly decreased in mt/mt embryos compared
with wt/wt mice (Figure 3G; supplemental Figure 3B). Besides, no
obvious morphological abnormalities of both vitelline vein and
capillary plexus were found in yolk sacs compared with wt/wt
embryos (Figure 3H,I), suggesting that the impaired growth in mt/
mt embryos was not the consequence of extrinsic yolk sac
development.

Mutated GNE affects gene expression related to

angiogenesis

To determine how the GNE mutant causes defective angiogenesis
in the developing brain, we performed bulk RNA sequencing (RNA-
seq) using E11.5 embryo heads (n = 5 in each group)
(Figure 4A,B; supplemental Figure 4A,B). Principal component
analysis revealed a global difference in gene expression profiles
between mt/mt and wt/wt embryos. According to gene ontology
(GO) analysis, P735R mutation mainly enriched pathways related
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to sugar metabolism, probably due to the limited bioavailability of
sialic acid in mt/mt mice (supplemental Figure 4A). We performed
enrichment analysis using Metascape and found that regulation
angiogenesis was one of the most significant GO biological pro-
cesses (supplemental Figure 5A-C). Besides, we performed the
gene set enrichment analysis on differentially expressed genes
relevant to hematopoiesis including many genes regarding the
function of platelet/megakaryocyte (supplemental Figure 5D).
These results indicated that mutated GNE influenced the expres-
sion of genes related to angiogenesis and platelet function. We
performed reverse transcription quantitative real-time PCR (RT-
qPCR; n = 3 in each group; primers are listed in supplemental
Table 4) to validate the results of bulk RNA-seq (Figure 4C;
Supplemental Table 5), and noted that several genes, especially
Esm1, Hk2, and Angpt2, were differentially expressed (P < .1)
between E11.5 wt/wt and mt/mt, which may explain the defective
angiogenesis in embryonic development in mt/mt embryos.

Homozygous P735R mutation causes defective sialic

acid biosynthesiss in mouse embryos

Western blotting analysis displayed greatly decreased intensity of
the GNE protein band in mt/mt whole embryo lysates (Figure 5A),
suggesting that Gne carrying P735R mutation causes impaired
expression and/or stability of GNE protein. Lectin blotting of MAL-II,
which binds to α-2,3 linked sialic acids, and peanut agglutinin
(PNA), which preferentially binds to the de-sialylated core 1 O-
glycan, as well as Sambucus nigra lectin, which binds to α-2,6
linked sialic acids, revealed that defective protein sialylation in
mt/mt embryos relative to that of wt/wt (Figure 5C). Consistent
with these lectin blotting results, PNA and MAL-II immunofluores-
cence staining revealed reduced sialylation in mt/mt brain tissue
t/mt
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Figure 4. Bulk RNA sequencing of E11.5 embryos
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(B) Clustering analysis of differentially expressed genes of

A shown as a heat map. (C) RT-qPCR of angiogenesis-
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compared with wt/wt brain tissue (Figure 5B,D). Of note, MAL-II
strongly labeled angiogenic structures in the wt/wt brain tissue,
implying a unique role for sialic acid in the developing vasculature.

Both patient-derived mutations impair de novo sialic

acid biosynthesis

To determine the effects of both patient-derived mutations on the
GNE function, a Gne-deficient (KO) MS1 mouse endothelial cell line
was generated by CRISPR-Cas9 genome editing (Figure 6A). Gne-
KO MS1 cells had reduced surface sialylation as revealed by a
sialylation probe, SiaFind Lectenz, and increased exposure of
desialylated glycans as shown by RCA1 staining, a probe for
desialylated glycans (Figure 6B). To determine the specific role of
each patient-derived GNE variant in sialylation, we transduced Gne-
KO MS1 cells with lentiviral vectors encoding each patient-derived
GNE with Flag3 tag (Figure 6C). Western blotting showed that
the expression of wild-type (WT) GNE in transduced Gne-KO cells
was similar to that in parental cells; however, the expression levels of
both GNE variants were reduced (Figure 6D,F), which is consistent
with the considerable reduction in the lysates from mt/mt mice,
although the messenger RNA expression levels of GNE were
equivalent among these transduced cells (supplemental Figure 6).
Gne-KO MS1 cells transduced with WT but not the 2 GNE mutants
normalized cell surface sialylation, indicating both mutations are loss
of function (Figure 6E). Of note, cells transduced with C594Y-
carrying GNE slightly restored cell surface sialylation with statisti-
cal significance (Figure 6E). This conclusion was further supported
by normalizing SiaFind Lectenz binding with CD31 and VE-Cadherin
expression, forward scatter, and GNE-Flag3 protein expression
levels (supplemental Figure 7A-F). Given that residual expression of
each GNE variant in transduced MS1 cells was detected, the
dramatically reduced SiaFind Lectenz binding to cells expressing
these GNE variants is presumably not due to reduced protein
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expression but impaired enzymatic activity of GNE. Immunocyto-
chemical staining showed no difference among WT and 2 GNE
mutants in their subcellular localization in the transduced MS1 cells
(Figure 6F; supplemental Figure 8).

Both C594Y and P735R mutations are located on the kinase
domain of GNE, thereby the kinase activity is most likely impaired in
the patient. Furthermore, the kinase domain is required for the
phosphorylation of ManNAc to ManNAc-6-phosphate during the de
novo sialic acid biosynthetic pathway (Figure 6G). To investigate
whether kinase function is impaired, Gne-KO MS1 cells transduced
with each GNE variant were metabolically labeled with azide-labeled
N-acetyl-mannosamine (ManNAz), and ManNAz-derived NeuAzy-
lated glycans on the cell surface were examined by Staudinger
ligation using a membrane-impermeable phosphine-biotin
(Figure 6H). The results exhibited that NeuAz on the cell surface was
increased in MS1 cells expressing WT GNE, whereas it was not
observed in cells expressing each GNE variant. Taken together,
these data demonstrated that both patient-derived GNE mutations
are loss-of-function variants in de novo sialic acid biosynthesis, and
P735R variant might be more pathogenic than C594Y variant.

To determine whether the reduced protein expression of cytosolic
GNE carrying P735R was due to accelerated protein degradation
through the ubiquitin-proteasome pathway, MS1 cells with WT or
P735R-carrying GNE were pretreated with MG132, a proteasome
inhibitor. However, GNE protein expression in cell lysates and the
level of poly-ubiquitinated GNE among these transduced cells were
not affected by proteasome inhibition, suggesting that the
ubiquitin-proteasome pathway does not contribute to the reduced
protein expression of GNE carrying P735R (supplemental
Figure 9A-C). In a previous report, GNE mutations may cause
alterations in the actin cytoskeleton that affect cell dynamics.23 To
test this, actin cytoskeleton and microtubules were analyzed in
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Gne-KO MS1 cells, but none of them showed altered distribution
and expression (supplemental Figure 10).

Discussion

In this article, we report a macrothrombocytopenia patient without
myopathy carrying compound heterozygous GNE missense vari-
ants, c.1781G>A and c.2204C>G, both of which are novel. We
simulated how 2 mutations influence protein structure respectively
and found that P735R is more likely to damage the steric stabili-
zation of GNE, indicating P735R might be more pathogenic; thus,
we generated a new mouse model carrying the c.2204C>G
(p.P735R) variant in both alleles. Unexpectedly, mt/mt embryos
died before E12.5, resembling global Gne-KO mice,24 and exhibi-
ted a brain bleeding phenotype similar to T-syn-/- mice.25

T-synthase (T-syn) is a glycosyltransferase that transfers galactose
from UDP-galactose on N-acetylgalactosamine α1-serine/threo-
nine (Tn antigen) on carrier proteins to form galactose β1-3
N-acetylgalactosamine α1-serine/threonine (T antigen or core 1
O-glycan). Core 1 O-glycan is commonly capped by sialic acids.
Sialylated T antigen is expressed primarily on endothelial,
hematopoietic, and epithelial cells during mouse development. We
have previously reported that global T-syn-/- mice fail to produce
sialylated T antigen, and progressively develop lethal cerebrospinal
hemorrhage from E11, similar to our mt/mt mice.25 Our recent
study has shown that podoplanin (Pdpn), a highly sialylated core 1
O-glycoprotein expressed on neuroepithelial cells, is critically
involved in embryonic vascular integrity via interaction with platelet
Clec-2.22 Mice lacking either Pdpn or Clec-2 also develop cere-
brospinal hemorrhage phenotypes preceded by abnormal angio-
genic sprouting that are similar to those of global T-syn-/- and mt/mt
mice. These data strongly suggest that hemorrhages and abnormal
angiogenesis in mt/mt mice are caused, in part, by the impaired
function of sialylated core 1 O-glycoproteins such as podoplanin.

Interestingly, mouse models carrying other Gne missense muta-
tions can live for several days or even longer after birth, and have
renal failure syndrome and myopathy.26-29 To some extent, this
phenotypic heterogeneity of Gne mutants in mice corroborates the
very essence that different GNE mutations cause different types of
disease in humans. Given that our mt/mt embryos are embryonic
lethal, the residual activity in GNE carrying C594Y in our patient
shown in Figure 6E is most likely critical for survival. Thus, we
expect that mice carrying homozygous C594Y will show prolonged
survival and enable us to study the mechanism of macro-
thrombocytopenia in postnatal stages as an appropriate patient
model, which will be our future direction.

GNE is the key rate-limiting enzyme in the sialic acid synthesis
pathway, and thus current hypotheses about the pathological GNE
pathway mostly focus on the sialylation defect of glycans.18,19,26,30

α-Dystroglycan (α-DG), an extracellular domain of dystroglycan,
functions in skeletal muscle as a receptor for extracellular matrices
(ECMs) such as laminin, agrin, and perlecan, and transduces external
ECM signals into the actin cytoskeleton. The interaction of α-DG with
ECMs depends on a unique glycosylation displayed on O-man-
nosylated glycan (ie, phospho-core M3 structure with repetitive
disaccharides consisting of glucuronic acid and xylose). A possible
mechanistic insight into GNE myopathy is based on the defective
binding of laminin to α-dystroglycan of Gne mutants.10 These data
suggest that GNE is directly or indirectly involved in the generation of
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a functional laminin-binding epitope of glycans on α-dystroglycan.
Congenital disorders of glycosylation (CDGs) are a large diverse
disease group of approximately 170 rare inherited glycosylation-
defective disorders.31,32 When it comes to CDG-II (ie, disorders
affecting glycan composition), it is quite rare compared to CDG-I, and
accounts for only 6% of all CDGs.33 GNE is scored as one of such
CDG-II causative genes. SLC35A1 is a sole CMP-sialic acid trans-
porter in the Golgi. CDG-IIf caused by SLC35A1 mutations develop
platelet abnormality just like GNE mutations.34 Interestingly, pheno-
types inGNE and SLC35A1 variants in humans share similar platelet
and skeletal muscle phenotypes. This is because SLC35A1 also
functions as sole CDP-ribitol transporter in the Golgi that is essential
for matriglycan formation on α-DG.35,36 Along the these lines, other
investigators hold the views that GNE mutation disrupts the distri-
bution of actin, a cytoskeletal protein.23,37 The GNE-KO zebrafish
model also displayed skeletal muscle defects.38 Oral sugar supple-
mentation, such as mannosamine (ManN), N-acetylmannosamine
(ManNAc), and N-glycolylneuraminic acid (Neu5Gc) as external
sources of free sialic acid, has been proposed to bypass GNE
dysfunction for the treatment of sialylation impairment in vivo.39-41 A
phase 2 clinical trial demonstrated the efficacy of oral ManNAc in
GNE myopathy patients.42 Recently, Crowe et al developed a
recombinant adeno associated virus (rAAV) vector with a muscle-
specific promoter-driven GNE expression cassette in transgenic
mice carrying the myopathogenic D207V mutation in Gne together
with oral administration of NeuGc, and observed a significant
increase in Neu5Gc immunostaining in muscle, suggesting the
potential of gene therapy in the treatment of GNE-related diseases.41

We also investigated how Gne variants affect de novo sialic acid
biosynthesis using ManNAz, and found that ManNAz-derived NeuAz
on the cell surface was lower in MS1 cells expressing both GNE
variants than in cells expressing wild-type GNE, demonstrating that
compromised de novo sialic acid biosynthesis in the patient results
from loss of function of GNE protein, especially in kinase activity.

In our study, the early embryonic lethality of mt/mt mice prevented us
from investigating whether thrombogenesis and skeletal muscle
functions are impaired in mt/mt mice as observed in patients with
GNE. Nevertheless, our study reveals a novel role of GNE in
angiogenesis during embryonic development. Recently, we have
reported that deletion of a CMP-sialic acid transporter (Slc35a1),
which leads to a complete loss of sialylation, specifically in platelets/
megakaryocytes in mice, results in macrothrombocytopenia.34 Thus,
the macrothrombocytopenic phenotype in our patient is presumably
caused by limited bioavailability of sialic acid in megakaryocytes and
platelets. Besides, eMKs and platelets are indispensable for main-
taining the structure of the vasculature, and we observed that the
count of circulating eMKs and platelets was significantly decreased,
while plenty of eMKs were abnormally accumulated in the vascula-
ture in mt/mt embryonic brains, which is similar to the phenotypes of
the T-syn-/-, Pdpn-/- and Clec-2-/- embryos.22 Recently, an associa-
tion study of SNPs and platelet counts has been published. The
meta-GWAS analysis of platelet counts using data from 536 974
Europeans identified 577 variants.43 However, GNE gene was not
found in the variant list, which may be due to the extreme rarity of
GNE variants in the data used. The molecular mechanisms under-
lying GNE in angiogenesis also remain to be determined, and
whether GNE regulates vascular development by influencing eMKs
or other growth factors such as angiopoietin-2 (Angpt2) would be
an interesting direction for future studies. Our bulk RNA-seq data
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revealed differentially expressed genes mainly involved in angio-
genesis and platelet functions in E11.5 mt/mt embryos compared to
wild-type embryos. Unexpectedly, we also found altered sugar
metabolism (related to energy production). Interestingly, this is
partially consistent with the finding of altered skeletal muscle protein
composition in patients with GNE myopathy.44

In summary, our data demonstrate that novel missense variants of
GNE cause macrothrombocytopenia in human and embryonic
lethality in mouse development. Importantly, this study provides
insights into the unexpected function of GNE in angiogenesis. Our
findings may lead to new insights and novel treatments for these
GNE-related diseases.
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