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a b s t r a c t 

Unmanned vehicles have become increasingly popular in the 

underwater domain in the last decade, as they provide bet- 

ter operation reliability by minimizing human involvement 

in most tasks. Perception of the environment is crucial for 

safety and other tasks, such as guidance and trajectory con- 

trol, mainly when operating underwater. Mine detection is 

one of the riskiest operations since it involves systems that 

can easily damage vehicles and endanger human lives if 

manned. Automating mine detection from side-scan sonar 

images enhances safety while reducing false negatives. The 

collected dataset contains 1170 real sonar images taken be- 

tween 2010 and 2021 using a Teledyne Marine Gavia Au- 

tonomous Underwater Vehicle (AUV), which includes enough 

information to classify its content objects as NOn-Mine-like 

BOttom Objects (NOMBO) and MIne-Like COntacts (MILCO). 

The dataset is annotated and can be quickly deployed for 

object detection, classification, or image segmentation tasks. 

Collecting a dataset of this type requires a significant amount 

of time and cost, which increases its rarity and relevance to 

research and industrial development. 
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pecifications Table 

Subject Computer Vision and Pattern Recognition 

Specific subject area Side-scan sonar imaging for NOn-Mine-like BOttom Objects (NOMBO) and MIne-Like 

COntacts (MILCO) object detection. 

Data format Raw and Processed data. 

Type of data .jpg and .txt files (dataset with the captured sonar images and the respective 

annotation). 

Data collection The data was collected in situ using a 90 0–180 0 kHz Marine Sonic dual frequency 

side-scan sonar of a Teledyne Marine Gavia Autonomous Underwater Vehicle (AUV) 

between 2010 and 2021. Then, all the data was carefully analyzed, and each image was 

annotated with the NOn-Mine-like BOttom Objects (NOMBO) and MIne-Like COntacts 

(MILCO) object type Bounding Box (BB) coordinates. 

• Year: 2010 | Images: 345 | MILCO occurrences: 22 | NOMBO occurrences: 12 

• Year: 2015 | Images: 120 | MILCO occurrences: 238 | NOMBO occurrences: 175 

• Year: 2017 | Images: 93 | MILCO occurrences: 28 | NOMBO occurrences: 2 

• Year: 2018 | Images: 564 | MILCO occurrences: 95 | NOMBO occurrences: 46 

• Year: 2021 | Images: 48 | MILCO occurrences: 49 | NOMBO occurrences: 0 

Data source location The data was collected over the years along the Portuguese coast during missions 

performed by the Portuguese Navy’s sappers’ divers group number three 

( Destacamento de Mergulhadores Sapadores - DMS 3). This group is responsible for all 

activities related to mine warfare at sea. 

Data accessibility Repository name: Figshare 

All data can be accessed at the following link: 

https://dx.doi.org/10.6084/m9.figshare.24574879 

The archive content can be publicly accessed and downloaded without needing any 

registration. 

. Value of the Data 

• Using this data can unlock the full potential of sonar image object detection and classifi-

cation, facilitating the development of new algorithms and applications. 

• These data were gathered in real-time using a state-of-the-art Autonomous Underwater

Vehicle (AUV) and hold immense potential for validating developed models. Utilizing this

data makes it possible to unlock new research possibilities, enabling the achievement of

breakthroughs that would otherwise be impossible. 

• Utilizing this dataset allows the researcher to eliminate the costly and time-intensive pro-

cess of collecting field data. This will save resources and enable the researchers to focus

on the critical aspects of their projects. 

• Investing in a real dataset is a crucial step towards improving the safety and efficacy of

mine detection systems. By incorporating real-world data, we can significantly reduce the

probability of accidents and enhance the existing architectures to serve their purpose bet-

ter. 

• Civilian and military scientists can benefit from accurate data gathered by AUVs, which

have already been annotated, facilitating algorithms and machine learning implementa-

tions. 

http://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.6084/m9.figshare.24574879
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2. Background 

The data was collected over the years along the Portuguese coast during missions performed

by the Portuguese Navy’s sappers’ divers group number three ( Destacamento de Mergulhadores

Sapadores - DMS 3). Due to the research and development effort s developed by the Portuguese

Navy (PoN), every opportunity is used to gather data that is usually used when participating in

national and international projects in the maritime domain. The last project where the PoN Re-

search Center ( Centro de Investigação Naval - CINAV) was responsible for the gathering and use

of underwater sonar images for mine detection was the Open Cooperation for European Mar-

itime Awareness (OCEAN 2020) project, funded under the European Union’s Preparatory Action

Plan on Defence Research (PADR) that occurred between 2018 and 2021 [1] . This project sup-

ported maritime surveillance and interdiction missions at sea using Unmanned Vehicles (UVs)

integrated into fleet operations [2] . 

3. Data Description 

The dataset contains 1170 side-scan sonar images [3] collected using a 90 0–180 0 kHz Ma-

rine Sonic dual frequency side-scan sonar of a Teledyne Marine Gavia Autonomous Underwater

Vehicle (AUV) [4] , as illustrated in Fig. 1 . All the images were carefully analyzed and annotated,

including the image coordinates of the Bounding Box (BB) of the detected objects divided into

NOn-Mine-like BOttom Objects (NOMBO) and MIne-Like COntacts (MILCO) classes. The number

of dataset images and the respective number of MILCO and NOMBO occurrences per year are
described in Table 1 . 

Fig. 1. Example of a side-scan sonar image. 

Table 1 

Summary of the dataset. 

Date Images MILCO NOMBO 

2010 345 22 12 

2015 120 238 175 

2017 93 28 2 

2018 564 95 46 

2021 48 49 0 
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Table 2 

Annotation format description with an example. 

Class Center coordinate xBB Center coordinate yBB Height hBB Width wBB 

0 0.768 0.918 0.047 0.021 

Fig. 2. Side-scan sonar image showing the location of a MILCO object, represented by the BB given by 

(xBB , yBB , wBB , hBB ) = (0 . 768 , 0 . 918 , 0 . 047 , 0 . 021 ) . 
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The dataset is divided into five “.zip” files, one for each considered year, containing the num-

ered images “XXXX_YYYY .jpg” and an annotation file per image “XXXX_YYYY .txt” with the same

umber. The description “XXXX” corresponds to the index for a specific year, and “YYYY ” corre-

ponds to the considered year. The annotations include the object class and the BB coordinates

f the object in the image. The annotation format is described in Table 2 , where one example

as provided, as illustrated in Fig. 2 . The class “0” corresponds to a MILCO object, and the class

1” corresponds to a NOMBO object. The BB follow the representation illustrated in Fig. 3 , and

he absolute object BB coordinates (x, y, w, h ) can be obtained using the following relation: 

( xBB , yBB , wBB , hBB ) =
(

x 

wimage 

,
y 

himage 

,
w 

wimage 

,
h 

himage 

)
(1)

here x, y are the absolute coordinates of the BB in the image and w, h are its absolute width

nd height. This representation follows the standard You Only Look Once (YOLO) object detec-

ion deep neural network format [5] , and the annotation can be easily verified using LabelImg,

 graphical image annotation tool commonly used during the image annotation process [6] . It is

lso possible to use LabelImg to convert the performed annotations to Pattern Analysis, Statisti-

al Modelling, and Computational Learning (PASCAL) Visual Object Classes (VOC) [7] , the format

sed by ImageNet [8] or Create Machine Learning (CreateML) [9] formats. Fig. 4 illustrates an-

otated images from each year, showing the complexity of the annotation process. 

Object detection is a common task in Computer Vision (CV), which involves estimating the

oordinates of the bounding box of objects in an image. Regardless of the object detection algo-
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Fig. 3. Image annotation illustration following the YOLO format. 

Fig. 4. Examples of annotated images per year, with the image number in the top left corner. 

Fig. 5. – Standard schematic used for object detection in CV. 

 

 

 

 

rithm used, the annotation format must be adapted or converted to suit the chosen architecture.

The dataset provides annotations in the YOLO format, but using LabelImg or another equivalent

tool, it can be easily converted as required. Fig. 5 shows a standard schematic used for object de-

tection, where most algorithms, after being trained (in supervised training), provide confidence

values for the classes and the respective estimated BB coordinates. 
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To perform an initial object detection using the provided dataset, we have implemented the

OLO v4 algorithm [10] . The necessary files were customized to meet the specific requirements

f our object detection task, changing the original “yolov4.cfg ” file to configure the batch size

number of samples used in a single training iteration) to 64, the subdivisions (assumed divi-

ion in the training batches) to 16, the maximum number of batches (after reaching this value

he training stops) to 60 0 0, and configuring steps (batches were the learning rate is adjusted

ultiplying it by a 0.1 factor) at 4800 and 5400. We also set the network image input dimen-

ions to 512 × 512 pixels (width x height) to optimize detection accuracy. As initial implementa-

ion, we have initialized the network weights with pre-trained values in the Common Objects in

ontext (COCO) dataset [11] using the file “’yolo4.conv.137 ” to perform transfer learning. In this

reliminary test, using our dataset of 1170 images, over the first 50 0 0 training iterations, we

chieved an average Intersection over Union (IoU) of 60%, a mean Average Precision (AP) of 75%,

 Precision of 82%, and a Recall of 64% with a confidence threshold of 0.25. All the considered

les, including the final training weights “yolov4-custom_50 0 0.weights ” and a Jupyter Notebook

xample “Real_time_object_classifier.ipynb ” with some implementation notes, are available in the

ataset repository in a separate file named “Training.zip.” It is worth noting that this implemen-

ation provides a basic algorithm for initial object detection training. With detailed tuning and

ptimization of the model parameters and training process, significantly better results can be

chieved. 

. Experimental Design, Materials and Methods 

As described, the dataset was acquired using a 90 0–180 0 kHz Marine Sonic dual frequency

ide-scan sonar of a Teledyne Marine Gavia Autonomous Underwater Vehicle (AUV) [4] , as illus-

rated in Fig. 6 . The vehicle is composed of several modules that are 200 mm in diameter. These

odules can be adapted to fit a variety of AUV missions. The vehicle’s weight can range from 48

o 100 kg, and its size can vary from 1.7 to 3 m. The maximum depth that the vehicle can reach

s 200 m, and its maximum speed is 5 knots. In addition to the side-scan sonar described ear-

ier, the vehicle is also equipped with a Global Positioning System (GPS), an inertial navigation

ystem, and a high-resolution camera. 
Fig. 6. – Teledyne Marine Autonomous Underwater Vehicle (AUV). 



N. Pessanha Santos, R. Moura and G. Sampaio Torgal et al. / Data in Brief 53 (2024) 110132 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limitations 

In the world of data, particularly in image processing, the more images there are, the better

it is to apply and develop algorithms. The dataset presents 1170 side-scan sonar images, which

can be limited for some application and algorithm development. 

Ethics Statement 
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Data Availability 

Side-scan sonar imaging for Mine detection (Original data) (Figshare). 
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