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Importance: Brain–computer interface (BCI) decodes and converts brain signals into machine instructions 
to interoperate with the external world. However, limited by the implantation risks of invasive BCIs and the 
operational complexity of conventional noninvasive BCIs, applications of BCIs are mainly used in laboratory 
or clinical environments, which are not conducive to the daily use of BCI devices. With the increasing 
demand for intelligent medical care, the development of wearable BCI systems is necessary. Highlights: Based 
on the scalp-electroencephalogram (EEG), forehead-EEG, and ear-EEG, the state-of-the-art wearable BCI 
devices for disease management and patient assistance are reviewed. This paper focuses on the EEG 
acquisition equipment of the novel wearable BCI devices and summarizes the development direction of 
wearable EEG-based BCI devices. Conclusions: BCI devices play an essential role in the medical field. 
This review briefly summarizes novel wearable EEG-based BCIs applied in the medical field and the latest 
progress in related technologies, emphasizing its potential to help doctors, patients, and caregivers better 
understand and utilize BCI devices.

Introduction

Brain–computer interface (BCI) establishes a connection bet­
ween the brain and the machine to replace, restore, supplement, 
or enhance brain functions. A BCI system has 4 functional mod­
ules: signal acquisition, data pre-processing, feature extraction 
and classification, and output equipment [1]. According to the 
brain signal acquisition method, there are 3 main types of BCI: 
invasive BCI, semi-invasive BCI, and noninvasive BCI [2]. 
Invasive BCIs realize external devices controlled by decoding 
neuronal activities inside the brain. Since the recording elec­
trodes are close to the brain signals’ source and unaffected by 
the brain tissues’ attenuation and filtering, invasive BCIs can 
record and analyze the information in neural signals with the 
highest temporal–spatial resolution and accuracy. At present, 
invasive BCIs have been applied in motion control [3–6], disease 
diagnosis and treatment [7–9], communication assistance [10–13], 
cursor control [14–16], and other aspects. However, invasive 
BCIs require the surgical implantation of signal acquisition 
devices into the brain, which may bring risks of damage or infec­
tion to the brain. In addition, the immune response surrounding 
the implanted electrode will decrease signal quality over time, 

degrading the performance and lifespan of invasive BCIs [2]. To 
minimize the damage to the brain, semi-invasive BCIs have been 
proposed. The electrodes of semi-invasive BCIs are usually placed 
under the skull or below the dura mate to record electrocorti­
cography (ECoG). Compared with invasive BCIs, semi-invasive 
BCIs are less invasive to the brain. Invasive BCIs and semi-invasive 
BCIs can be collectively referred to as invasive BCIs.

To avoid the risk of infection and brain damage caused by 
electrode implantation, noninvasive BCIs have been proposed. 
Brain signal acquisition of noninvasive BCIs does not require 
surgical implantation of electrodes, which has a low risk of 
brain damage and can reduce the psychological and physical 
burden of the users. Standard noninvasive techniques include 
electroencephalogram (EEG), magnetoencephalogram (MEG), 
functional near-infrared imaging (fNIR), and functional mag­
netic resonance imaging (fMRI) [2]. EEG waves are clusters of 
electrical signals from neurons in the brain and are usually 
obtained through electrodes placed on the scalp, forehead, and 
behind the ears [17], while MEG, fMRI, and fNIR need to be 
collected with bulky specialized acquisition equipment.

For medical applications of BCIs, intermittent neurological 
diseases (epilepsy, migraine, etc.) require long-term continuous 
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monitoring with BCI systems to diagnose and predict, and the 
assistive devices (prosthetics, robotic arms, wheelchairs, etc.) 
controlled by BCI systems must be used in real scenarios. Long-
term continuous signal monitoring and daily device control rely 
on the wearability of BCIs. It is of great importance to make 
BCIs wearable. Wearability is defined as a performance that can 
be carried out in daily activities without notably obstructing the 
subject and affecting the devices’ operation. For ease of use, 
wearable devices are mainly placed outside the user’s body and 
can be worn and taken off by users independently. Invasive BCIs 
require surgical implantation of signal acquisition electrodes 
and are normally defined as implantable devices. Although some 
wearable BCI systems are composed of semi-invasive brain sig­
nal acquisition devices and wearable actuators [18–20], the rel­
evant work is limited. Noninvasive BCIs based on MEG, fMRI, 
and fNIR are limited by large signal acquisition devices and can 
only be used in hospitals and other specific places, which cannot 
meet the requirements for daily wearable use. On the contrary, 
EEG-based BCI devices do not need electrode implantation for 
signal acquisition and the use is not restricted by the venue, 
making EEG-based BCIs suitable for daily wearable applications. 
Hence, EEG-based BCIs for wearable medical applications are 
mainly focused in this review.

Nowadays, wearable EEG-based BCIs mainly rely on the wet 
electrode EEG caps for stable and reliable EEG signal acquisition 
and have been applied to the diagnosis and auxiliary treatment 
of various diseases, such as disorders of consciousness [21–23], 
Parkinson’s disease [24], paralysis [25–27], stroke [28–30], de­
pression [31], autism [32], and sleep disorders [33]. Besides, 
EEG-based BCIs are also used for wheelchair control [34–36]. 
However, wet electrodes require skin preparation and the appli­
cation of conductive gels for low electrode-skin impedances and 
high-quality EEG signals are obtained. Because the conductivity 
of the gel decreases with time, it is hard to realize long-term EEG 
signal acquisition with the wet electrode caps. Moreover, con­
ventional EEG-based BCI systems also have limitations such as 
bulky size, complex wires, and dependence on large apparatus 
(e.g., the EEG amplifier), which increase the discomfort of wear­
ing and limit the daily use of EEG-based BCIs.

For wearable BCI systems, brain signal acquisition equip­
ment is of great importance not only because the quality and 
reliability of brain signal acquisition will affect the performance 
of the BCI systems but also the signal-acquiring methods will 
influence the wearability of the BCIs to some extent. Therefore, 
this topic review introduces wearable EEG-based BCIs from 
the perspective of EEG acquisition equipment and focuses on 
their applications in the medical field. According to the distri­
bution of recording electrodes, EEG-based BCIs reviewed in 
this paper are divided into scalp-EEG-based BCIs, forehead-
EEG-based BCIs, and ear-EEG-based BCIs, as shown in Fig. 1. 
The applications of wearable EEG-based BCIs in the medical 
field are summarized as disease management (including disease 
prevention and diagnosis), rehabilitation therapy, health mon­
itoring, communication assistance, and equipment control.

Scalp-EEG-Based BCI
Brain signals of EEG-based BCIs are usually obtained from the 
scalp. Compared with the forehead and behind-/in-ear areas, 
the scalp offers more sampling space, which is conducive to 
arranging more EEG signal recording points. The number of 
signal-recording electrodes ranges from a few (for targeted BCI 

applications) to 256 [2]. In the past 2 decades, many scalp-EEG-
based BCIs with conventional EEG caps have been applied in 
medical, education, military, and other fields. However, due to 
inconvenience of skin preparation and conductive gels, and the 
complexity of wire connection, the EEG-based BCIs with con­
ventional EEG caps cannot meet the requirements of daily use.

Scalp-EEG recording has experienced a long development 
history. To improve the wearability of the scalp-EEG-based BCIs, 
scalp-EEG acquisition devices with unique structures and mate­
rials have been proposed. In this section, 3 commercial scalp-
EEG headsets, Emotiv EPOC (Fig. 2A), DSI-24 (Fig. 2B), and 
OpenBCI Ultracortex “Mark IV” (Fig. 2C), and their wearable 
BCI applications in the medical field are introduced in detail.

Emotiv EPOC
Emotiv EPOC is a typical consumer-oriented EEG equipment 
released by Emotiv Systems Company of the United States. 
Emotiv EPOC is an octopus structure that gives users good flex­
ibility and movement. The device has 14 saline-based recording 
electrodes and 2 reference electrodes [37]. The headset can wire­
lessly connect to computer or mobile devices and continuously 
work for up to 12 h. Emotiv EPOC has been widely used in 
research, since its development [38].

Here, we review some of the representative wearable BCI 
work by using Emotiv EPOC. For the neuro-rehabilitation of 
stroke patients, Jure et al. [39] presented a functional electrical 
stimulation (FES)-based BCI system (Fig. 2D), which was made 
up of an Emotiv EPOC headset for EEG signal recording and 
a 2-channel controlled stimulator for neuromuscular system 
stimulation. When the BCI system detected cerebral activities 
related to motor imagery (MI), the electrical stimulator would 
be activated to realize therapeutic intervention. Tabernig et al. 
[40] used the proposed BCI-FES system to perform neuro­
rehabilitation therapy for patients with sequelae of ischemic 
stroke and evaluated the effects. The cerebral cortex activation 

Fig.  1.  Categories of novel wearable EEG-based BCIs and the primary medical 
applications.
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during the presence of MI and the sensory feedback produced 
by the movement were used to facilitate neuroplasticity. Before 
and after the intervention, the upper limb was assessed by the 

Fugl–Meyer score, and marked posttreatment improvement 
was detected (Fig. 2E), suggesting that the proposed therapy 
could benefit stroke individuals’ neuro-rehabilitation.

Fig. 2. Wearable scalp-EEG-based BCIs and their medical applications. (A) Emotiv EPOC headset [43]. ©2016 EDP Sciences. Reprinted with permission from Swee et al. 
[43]. (B) DSI-24 headset (https://www.neurospec.com/Products/Details/1079/dsi-24). (C) OpenBCI Ultracortex “Mark IV” headset (https://docs.openbci.com/AddOns/
Headwear/MarkIV/). (D) Block diagram of the BCI-FES system [39]. ©2016 IOPscience. Reprinted with permission from Jure et al. [39]. (E) Scores of the quality of movement 
(left) and quality of life (right) were measured for each stroke patient [40]. Used with permission from Tabernig et al. [40]; permission conveyed through Copyright Clearance 
Center Inc. (F) BCI-NFB system (left) and power spectrum density in one representative participant (right) [41]. ©2019 BMC. Reprinted with permission from Al-Taleb et al. 
[41]. (G) User with Emotiv EPOC headset, BCI program, and FES electrodes on the arm [42]. ©2021 BMC. Reprinted with permission from Zulauf-Czaja et al. [42]. (H) The 
percentage of true positive activation (left) and time to activate FES (right) out of all attempted trials [42]. ©2021 BMC. Reprinted with permission from Zulauf-Czaja et al. 
[42]. (I) Illustration of mu suppression in affected and unaffected hemispheres [52]. ©2019 MDPI. Reprinted with permission from Choi et al. [52].
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Besides the neurological rehabilitation of stroke patients, 
wearable BCI with the Emotiv EPOC can also be used to detect 
central neuropathic pain (CNP), which is a frequent chronic 
condition in spinal cord injury (SCI) patients. Al-Taleb et al. 
[41] designed a BCI system based on the Emotiv EPOC device 
(Fig. 2F, left) for self-managed neurofeedback (NFB) treatment 
of people with chronic SCI. According to the visual feedback 
of selected frequency EEG band power, users had to self-regu­
late their primary motor cortex brain activity with the BCI-NFB 
system. Results showed that users had successfully regulated 
their brainwaves in a frequency-specific manner (Fig. 2F, right). 
The reduction in pain experienced was clinically obvious 
(greater than 30%) in 8 participants, demonstrating that the 
BCI-NFB system could reduce CNP in people with SCI. In 
2021, the same research team presented a BCI-FES system 
based on an Emotiv EPOC headset (Fig. 2G) for hand function 
rehabilitation and evaluated its usability [42]. Hand therapy was 
performed by producing the attempted movement of one hand 
to lower the 8- to 12-Hz frequency band power and activate 
FES to induce wrist flexion and extension. The system obtained 
an accuracy of 70 to 90%, and the median activation time of 
FES remained constant across sessions (Fig. 2H).

BCIs based on the Emotiv EPOC headset also play an impor­
tant role in patient assistance. To meet the needs of some para­
lyzed patients for wheelchair control without joysticks, different 
BCI-controlled wheelchairs have been developed. In 2016, Swee 
et al. [43] developed a brainwave-controlled wheelchair with 
an Emotiv EPOC headset. Based on the EEG signal, the electric 
wheelchair performed the desired movement and achieved up 
to 90% accuracy [44]. Voznenko et al. [45] developed a robotic 
wheelchair controlled by the onboard computer that received 
commands from the extended Emotiv EPOC BCI. To improve 
system control accuracy, the robotic wheelchair could also be 
controlled by voice and gestures. Zgallai et al. [46] designed a 
smart wheelchair for paralyzed people who are unable to con­
trol their bodies. The wheelchair BCI system completed 4 kinds 
of command recognition and achieved an accuracy rate of up 
to 96%. Shahin et al. [47] proposed a wheelchair control BCI 
system that could switch between the automatic control mode 
and the manual control mode. Three types of input, EEG sig­
nals, head gestures, and facial expressions, were collected and 
translated into 4 control instructions.

Besides direction control, Bousseta et al. [48] designed a 
novel BCI system with an Emotiv EPOC headset for robotic 
arm control. Participants were instructed to imagine the exe­
cution of hand or foot movements. After command translation, 
subjects achieved control of the robotic arm in 4 directions 
and obtained an average accuracy of 85.45%, which had the 
potential to provide a helpful aid for the disabled.

DSI-24
DSI-24 is a wireless EEG headset developed by the Wearable 
Sensing Company of the United States. DSI-24 has 21 signal-
recording dry electrodes, including 19 electrodes on the head 
for full head coverage, 2 ear clip electrodes, and 3 auxiliary sen­
sors [49]. The electrodes are spring-loaded to provide constant 
and comfortable pressure, which enhances the contact between 
electrodes and the skin and, at the same time, reduces motion 
artifacts. With the unique structure, DSI-24 can obtain the EEG 
signal with a quality comparable to that of wet electrodes even 
with dry electrodes. The electrodes use active/passive shielding 
technology to prevent electromagnetic interference.

Eldeeb et al. [50] developed an EEG-based BCI system to 
analyze the distress effect on the brain activity of autism spec­
trum disorder (ADS) individuals [51]. Based on the affective 
Posner task, the proposed BCI identified the patterns associated 
with emotion regulation. The EEG signals were obtained from 
21 ADS with DSI-24 EEG headsets. Choi et al. [52] designed an 
action observation BCI system based on the DSI-24 EEG head­
set and detected the participants’ attention level by analyzing 
Mu rhythm (i.e., alpha wave, 8 to 13 Hz) power when watching 
a video of repetitive grasping actions. The system provided the 
steady-state visual evoked potentials (SSVEPs) as the feedback. 
Results showed that, compared with conventional action obser­
vation (AO), the proposed BCI-AO suppressed stroke patients’ 
Mu rhythm more (Fig. 2I), suggesting that the proposed para­
digm was an effective tool for stroke patients’ rehabilitation. Kim 
et al. [53] combined BCI-AO with peripheral electrical stimu­
lation (PES) and assessed the effect of the system on corticos­
pinal plasticity for motor recovery. In this work, participants 
watched a video of repeated gripping movements under 4 dif­
ferent tasks, and visual feedback was provided by BCI. Motor-
evoked potentials (MEPs) were measured during the task. 
According to the results, 4 tasks all realized that the MEP latency 
decreased and had the potential in promoting corticospinal 
plasticity in stroke patients.

Zhang et al. [54] designed an SSVEP-BCI system for robotic 
arm control in patient assistance. To improve the system oper­
ation effectiveness, an adaptive decoding FBCCA algorithm 
was adopted, which could adapt to individual differences. In 
this work, an average recognition success rate of 95.5% was 
obtained, proving that the proposed system allowed the hand­
icapped to grasp objects by controlling the mechanical arm 
through the brain in daily life.

OpenBCI Ultracortex “Mark IV”
Ultracortex “Mark IV” is an EEG headset designed to work 
with OpenBCI boards. The headset can record research-grade 
EEG signals and sample up to 16 channels from all 35 recording 
locations [55]. Spikey (for the scalp with hair) and nonspikey 
(for the scalp without hair) dry electrodes could be screwed at 
the locations. Since the Ultracortex “Mark IV” headset could 
be 3D-printed in different sizes, it is adjustable for different 
head shapes and sizes and enables all electrodes to contact the 
scalp closely. Compared with other consumer-grade EEG head­
sets, the OpenBCI “Mark IV” is cost-effective [56]. The BCIs 
based on the Ultracortex “Mark IV” EEG headset are mainly 
used for emotion recognition [57–59] and assistance technol­
ogy [60–63].

To help disabled persons control a robotic arm, Lim and Quan 
[60] presented an EEG-based BCI system for robotic arm con­
trol. EEG signals were classified into 8 mental commands with 
convolutional neural network (CNN) model to realize 6-degree-
of-freedom operations. The recall rate and precision of the sys­
tem were 91.9% and 92%. Saragih et al. [61] applied CNN and 
long short-term memory (LSTM) networks in an EEG-based 
BCI system for effectively controlling the artificial hand. In the 
hand operations classification, the accuracy of the CNN model 
was 95.45%, while that of the LSTM model was 93.64%. Bolaños 
et al. [62] created a room prototype that allowed people with 
motor disabilities to realize the control of the light and bed, and 
request assistance with a buzzer through an EEG-based BCI. 
EEG data recorded with Ultracortex “Mark IV” headset were 
filtered in the alpha band to train a one-dimensional (1D) CNN 
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model. The proposed system achieved a real-time classification 
accuracy of 78.75%.

To enhance cognitive control, Dutta et al. [63] developed a 
BCI-based application with interactive media. Corresponding 
alpha and beta waves were obtained from the recorded EEG 
signals and regarded as parameters of attention to move the 
object in the proposed game. This work provided doctors with 
a new choice for psychological disorder treatment.

Although the wearable BCIs based on scalp-EEG have been 
widely used, the influence of hair on EEG signal acquisition 
cannot be ignored. Obtaining high-quality EEG signals on the 
scalp is challenging without the aid of conductive agents. Even 
if the spring pressurized structure is applied in scalp-EEG head­
sets to improve the contact between the electrodes and scalp, 
the contact impedance is still high, which cannot guarantee 
long-term stable EEG recording and is easily affected by motion 
artifacts.

Forehead-EEG-Based BCI
Forehead-EEG-based BCI converts the EEG signals recorded 
from the forehead area into commands to realize actuators’ con­
trol. The forehead is an ideal place for electrodes attaching as a 
non-hair-bearing area. Recording EEG on the forehead requires 
no complex preparation work prior to signal acquisition and 
avoids the interference from hair. Besides, forehead-EEG includes 
rich information associated with cognitive abilities and dysfunc­
tions [64]. Given this unique feature, the research on wearable 
forehead-EEG-based BCIs has gained wide attention in recent 
years, and forehead-EEG BCIs are often used for attention mon­
itoring and then to realize functions such as sleep monitoring, 
cursor control, and external device control.

Nowadays, many existing consumer-grade wearable BCIs 
and clinical applications rely on forehead-EEG. This section 
introduces wearable BCI systems’ development and medical 
application based on forehead-EEG acquisition devices. Three 
forehead-EEG acquisition devices introduced in this section 
are shown in Fig. 3.

Mindo EEG device
The Mindo 4S EEG device developed by the Brain Research 
Center of National Chiao Tung University consists of 4-channel 
dry recording electrodes and 2 extra reference channels (Fig. 
3A). To realize appropriate electrode-skin contact impedance, 
spring-loaded dry electrodes were adopted in the Mindo 4S 
EEG device, whose wearing position can be adjusted [64]. The 
flexible substrate acting as a buffer can eliminate pain when a 
force is applied, which is conducive to wear comfort and long-
term EEG acquisition. The sampling rate of Mindo 4S is up to 
512 Hz and can be adjusted according to the system’s require­
ments. The system uses Bluetooth to realize wireless data trans­
mission and can work continuously for 20 h [65].

In 2017, Lin et al. [64] proposed a silicon-based dry sensor 
for forehead-EEG acquisition, the Mindo 4S EEG device pro­
totype. The proposed system successfully realized 5 sleep stages 
identification, headache prevention, and a rapid antidepressant 
agent assessment. In 2018, Cao et al. [66] from the same research 
team used the Mindo 4S EEG device to assess the ketamine 
effect in patients with treatment-resistant depression. The band 
power and asymmetry of the alpha band as the feedback of the 
BCI system were detected. Results showed that the BCI system 
classified the responders and nonresponders with 81.3 ± 9.5% 

accuracy based on the support vector machine with radial basis 
function (SVMRBF) predictor. Compared with the previous 
work, the accuracy improved.

Chiu et al. [67] built an SSVEP-based BCI eating assistive 
system (Fig. 3D). In this system, different frequencies of visual 
stimulation caused EEG waves with specific characteristics so 
as to achieve different functional selections. Users can also use 
this system for subjective training to optimize the current user’s 
model. The SSVEP-based BCI enabled the disabled to have meals 
by themselves, obtaining 91.35% average accuracy and 20.69 bits 
per minute information transfer rate. To further improve the 
practicability of the system, Lin et al. [65] integrated more enter­
tainment and interaction functions into the system and gained 
a 90.91% average accuracy.

BrainLink Lite
BrainLink Lite is a head-mounted EEG sensor developed by 
Shenzhen Macrotellect Company for iOS and Android systems. 
It has 3 gold-plated copper dry electrodes, including an EEG 
recording electrode, a ground electrode, and a reference electrode 
[68], as the Fig. 3B shows. BrainLink Lite can be easily worn on 
the forehead. Because the sensor connects to the smart terminals 
via Bluetooth, it avoids complicated leads and is convenient to 
acquire EEG signals in nonlaboratory environments.

Japaridze et al. [69] used the BCI based on the BrainLink Lite 
to detect absence seizures. The BrainLink Lite was used for fore­
head-EEG acquisition, and a predefined algorithm was used for 
the automated detection of absence seizures in real time. This 
work obtained an average sensitivity of absence seizure detection 
of 78.83% with the proposed BCI system, which showed the 
potential to detect absence seizures with wearable BCIs in every­
day life. For children with autism NFB training, Mercado et al. 
[70] designed a BCI video game named FarmerKeeper. The 
attention of children with autism was read by BrainLink Lite 
and used to control a runner in the BCI video game. The results 
showed that the proposed BCI video game improved attention 
and reduced the anxiety of children with autism.

To restore motor function through robot-assisted rehabilita­
tion therapy, Li et al. [71] introduced a BCI system for wrist 
rehabilitation (Fig. 3E). In the system, the attention level was 
measured to activate a flexible wrist exoskeleton for wrist reha­
bilitation training. The overall actuation success rate was 95%, 
proving the feasibility of attention-based control.

MindWave Mobile
MindWave Mobile developed by the NeuroSky Company is 
made up of a headset, an ear clip, and a sensor arm (Fig. 3C). 
The only EEG recording electrode of the MindWave Mobile 
is located on the forehead above the eye (FP1 position accord­
ing to the 10-20 International System) with a reference elec­
trode and grounding electrode inside the ear clip. Therefore, 
the MindWave Mobile EEG headset is commonly used for eye 
blink detection [72–75]. The device outputs 12-bit 3- to 100-Hz 
original brainwaves with a sampling rate of 512 Hz and can 
achieve an 8-h battery run time. With only one recording elec­
trode, MindWave Mobile is more portable and more accessible 
to wear than multi-channel EEG sensors.

For neurotherapy, Mercado et al. [76] used MindWave 
Mobile for attention detection and used FarmerKeeper [70] as 
an assistant tool. Results showed that participants who used 
FarmerKeeper were more focused during NFB sessions. The 
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pre- and post-assessment indicated that all autistic children 
improved their attention. This technique helps researchers real­
ize real-time attention monitoring and regulation through 
wearable BCIs.

To help the disabled communicate with the outside world, 
Salih and Abdal [77] designed a BCI-based visual keyboard using 
the MindWave Mobile headset. Participants were demanded to 
write “Help” words for 9 sessions on visual keyboards. For print­
ing proposes, voluntary blinks and attention were detected using 

EEG signals. With 2 designed visual keyboards, an average text 
entry speed of about 1.55 to 1.8 words per minute and an error 
rate of 5 to 5.25% were obtained (Fig. 3F).

However, because only a single recording electrode is placed 
on the forehead, the richness and accuracy of the EEG signals 
recorded with the MindWave Mobile headset are limited, and 
less electrode recording may be more obvious interference by 
artifacts. The accuracy of the wheelchair control studies [78–80] 
that relied only on EEG signals collected with the MindWave 

Fig. 3. Wearable forehead-EEG-based BCIs and their medical applications. (A) Mindo 4S EEG device [64]. ©2017 IEEE. Reprinted with permission from Lin et al. [64]. 
(B) BrainLink Lite [69] (https://www.epihunter.com/brainlink-headset). (C) MindWave Mobile [80]. ©2020 IEEE. Reprinted with permission from Tiwari et al. [80]. 
(D) Eating assistive BCI system based on SSVEP [67]. ©2017 IEEE. Reprinted with permission from Chiu et al. [67]. (E) Diagrammatic sketch of brain-controlled wrist 
rehabilitation BCI [71]. Used with permission from Li et al. [71]; permission conveyed through Copyright Clearance Center Inc. (F) Text error rate and entry speed of 
QWERTY virtual keyboard (left) and ABC virtual keyboard (right) [77]. ©2020 UAD. Reprinted with permission from Salih et al. [77].
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Mobile headset was lower than that of other BCI-controlled 
wheelchair studies. To improve the control accuracy, Girase and 
Deshmukh [81] used not only the EEG signals but also the 
blinking eye signal as a control reference in the BCI-controlled 
wheelchair system, and a control accuracy of about 95% was 
obtained.

Although the acquisition of forehead-EEG is relatively sim­
ple because there is no need for complex skin processing, the 
application of forehead-EEG in wearable BCI may be proble­
matic since the forehead-EEG is easy to be affected by ocular 
artifacts and facial muscle artifacts, which will influence the 
quality of signal acquisition and the accuracy of the whole BCI 
system. As the forehead region is far from the occipital region 
and temporal lobe, the characteristic EEG signals of the relevant 
brain regions are difficult to collect. Moreover, for everyday 
use, most forehead-EEG acquisition devices are conspicuous 
and unsuitable for daily wear.

Ear-EEG-Based BCI
EEG signal recorded by ear-EEG-based BCIs comes from the 
ear canals or the area behind the ear. The areas in and behind 
the ears are favorable positions for EEG signal acquisition for 
non-hair bearing. Compared to other EEG acquisition devices, 
ear-EEG acquisition devices are more miniaturized, and only a 
small part of the head is covered with electrodes, which is more 
comfortable to wear and is suitable for daily use. In addition, 
ear-EEG can map more brain regions than the forehead-EEG.

Recently, many research teams have developed different ear-
EEG sensors, studied the information contained in ear-EEG, and 
designed corresponding wearable BCI systems. According to the 
position where the ear-EEG sensor is worn, there are 2 categories 
ear-EEG-based BCIs: (a) in-ear EEG-based BCIs with recording 
electrodes placed in the ear canals, and (b) behind the ear EEG-
based BCIs with recording electrodes placed behind the ear. The 
corresponding 2 types of ear-EEG acquisition devices are shown 
in Fig. 4.

In-ear EEG-based BCI
In 2011, Looney et al. [82] from Imperial College London 
designed an in-the-ear (ITE) electrode (Fig. 4A) for wearable 
ear-EEG recording. The proposed ITE system used 2 or more 
electrodes embedded into an earplug to record EEG signals. 
The earplug was produced based on the 3D printing of the ear 
canal, and the mounted electrodes were made from silver/silver 
chloride (Ag/AgCl). ITE electrode showed excellent correlation 
and coherence with on-scalp electrodes and was proven to 
extract several key EEG features, including the auditory steady-
state response (ASSR), alpha attenuation response (AAR), and 
P300 paradigms, which illustrated the potential of ear-EEG in 
BCI application [83,84]. A further study demonstrated that the 
signal-to-noise ratio of the ear-EEG signal was comparable to 
that of the EEG recorded in the temporal region [85].

Since ITE earphones need custom earpieces, the cost of time 
and money is relatively high. In 2015, Goverdovsky et al. from 
the same laboratory proposed a novel in-ear sensor (Fig. 4B) for 
high-quality long-term EEG monitoring [86]. The in-ear sensor 
used viscoelastic substrates and conductive clothes to realize 
stable electrical contact between the sensors and the ear canals. 
To establish a low-impedance contact, only saline solution was 
required. The in-ear sensor was proved to be useful in capturing 
a wide frequency range of EEG and all of the standard EEG 

responses. Zibrandtsen et al. [87] compared the in-ear EEG and 
scalp-EEG recorded from patients with suspected temporal lobe 
epilepsy. Results suggested that ear-EEG was a reliable signal 
source to detect EEG patterns associated with focal temporal 
lobe seizures.

Although there are some feasibility studies on in-ear EEG 
for BCI applications [88–90], in-ear EEG has not been widely 
applied in wearable medical BCIs.

Behind the ear EEG-based BCI
In 2015, based on funding from TSMi (Oldenzaal, The Netherlands), 
Debener et al. [91] from the University of Oldenburg designed a 
flexible c-shape ear-EEG acquisition sensor (cEEGrid), as shown 
in Fig. 4C, which is made up of 10 printed Ag/AgCl electrodes and 
placed behind the ear. To realize signal recording, the electrode gel 
was applied to the cEEGrid’s electrodes. Researchers proved that 
the cEEGrid electrodes array could record reliable EEG data for 
the first time. One year later, the same research team found clear 
attention-modulated event-related potential (ERP) effects in EEG 
signals recorded with cEEGrid sensors, which agreed with the sig­
nals recorded with classical EEG caps in morphology and effect 
size. The discovery demonstrated that the cEEGrid sensor could 
measure well-described ERPs and be expected to replace classical 
EEG-cap in auditory attention monitoring [92]. In a further study, 
the visual and cognitive ERPs (N1, P1, P300) and event-related 
lateralizations (ERLs) were recorded with cEEGrid, while motor-
related cortical potentials were not well measured [93,94].

For the hearing impaired, the function of target speaker iden­
tification in assistive devices is of great importance. In 2016, the 
research team used EEG signals recorded by the cEEGrid sensor 
and EEG caps to identify the attended speaker [95]. Based on 
the ear-EEG, the positive correlation of the performance scores 
was evident (Fig. 4E). The decoding accuracy of ear-EEG was 
69.3%, suggesting that the cEEGrid sensor has the potential to 
apply for BCI control of hearing aids. To evaluate the cEEGrid 
in attention selection, normal-hearing and cochlear implant 
participants were recruited [96]. For the cEEGrid data, only half 
of both the cochlear implant and normal-hearing users obtained 
decoding accuracies above the chance level (Fig. 4F).

Other research teams have also carried out a series of stud­
ies on wearable BCIs based on the behind the ear EEG. Millard 
et al. [97] recorded individual peak alpha frequency (PAF) 
with cEEGrid sensors to predict future pain severity in patients 
undergoing thoracotomy. Segaert et al. [98] took use of the 
cEEGrid setups for early language comprehension impairment 
detection in mild cognitive impairment (MCI). The proposed 
system showed outstanding classification ability when detect­
ing patients with MCI from the healthy controls.

In addition to pain prediction and language comprehension 
impairment detection, behind the ear EEG signal is also used 
for seizure detection. However, most studies rely on experi­
enced epileptologists to analyze and annotate the ear-EEG data, 
rather than using a complete BCI system [99,100]. Swinnen 
et al. [100] developed a semiautomatic absence seizure detec­
tion algorithm to label ear-EEG, which could reduce the con­
sumption of the recording review time and the workload of 
epileptologists to some extent.

For home appliance control, Kaongoen et al. [101] designed 
a novel online BCI system. The system used speech imagery 
(SI) and ear-EEG recorded with a custom-made wearable BCI 
headphone (Fig. 4D). Each side of the headphone has 4 record­
ing semi-dry electrodes distributed behind the ear. During the 
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Fig. 4. Wearable ear-EEG-based BCIs and their medical applications. (A and B) In-the-ear electrodes [82,86]. (C and D) Behind the ear electrodes [101,124]. (E) Correlation 
between performance scores [95]. (F) Selective attention accuracies for normal hearing (NH, left) and cochlear implants (CI, right) across lags [96]. Used with permission 
from Looney et al. [82]; permission conveyed through Copyright Clearance Center Inc. (A). Used with permission from Goverdovsky et al. [86]; permission conveyed through 
Copyright Clearance Center Inc. (B). ©2021 Taylor & Francis Ltd. Reprinted with permission from Knierim et al. [124] (C). ©2022 Elsevier Ireland Ltd. Reprinted with permission 
from Kaongoen et al. [101] (D). ©2016 Frontiers. Reprinted with permission from Mirkovic et al. [95] (E). ©2019 Frontiers. Reprinted with permission from Nogueira et al. [96] (F).
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online experiments, a few users could control the home appli­
ance freely with the ear-EEG SI-based BCI system.

Compared with scalp-EEG-based BCIs and forehead-EEG-
based BCIs, the wearable ear-EEG-based BCI is still in the stage 
of practical exploration and improvement and the medical 
applications are relatively insufficient. The possible limitations 
and challenges of ear-EEG-based BCIs are listed as follows.

a. Ear-EEG signal is weak and can be easily affected by muscle 
artifacts when the jaw moves, such as speaking and swallowing. 
For wearable BCI applications, the hardware and software of 
signal processing need to be further improved.

b. The signals from different brain regions overlap at the ear 
area, resulting in the difficulty of extracting the characteristic 
signals. The current methods and technologies for feature extrac­
tion and classification are still not efficient or accurate enough.

c. Compared with the scalp-EEG, the ear-EEG mapping 
model to the brain region is not perfect and the algorithm is not 
yet mature. Perfecting the model and algorithm is the key to 
expanding the wearable application of the ear-EEG-based BCIs.

Limitations and Challenges of Wearable  
EEG-Based BCIs
Currently, wearable BCIs based on scalp-EEG, forehead-EEG, 
and ear-EEG have played an important role in medical applica­
tions such as disease diagnosis and prediction, neurological 
rehabilitation, health monitoring, and auxiliary equipment con­
trol, providing a new form of medical treatment. However, wear­
able BCI technology is still in the research stage. At present, the 
volume of BCI is large and brain signal processing relies on back-
end equipment such as a computer. Due to the individual differ­
ences in EEG signal, for each new user, a lot of pre-training and 
professional guidance are indispensable to achieve a relatively 
stable BCI performance. Besides, current wearable BCI systems 
are not robust enough to overcome the interference caused by 
users and the environment. The high cost of time and money 
also makes wearable BCIs hard to be widely used. To meet the 
needs of further application, wearable BCI devices still have a 
lot of room for improvement in high-quality signal acquisition, 
wireless transmission, information security, wearing comfort, 
and so on. Various research teams are active in the frontier 
research of wearable EEG-based BCIs, and the latest research 
progress is briefly introduced in this section.

Acquisition of EEG signals is an important part of BCI. The 
quality of signal acquisition directly influences the performance 
of the BCI system. Since wearable BCIs are commonly used for 
a relatively long period, long-term stable and reliable EEG signal 
recording is required. To realize high-quality EEG signal acqui­
sition, different kinds of electrodes have been proposed. For 
EEG signal recording on a hairy scalp, hair is a natural barrier. 
Standard Ag/AgCl wet electrode uses conductive gel to enhance 
the electrical contact between the electrodes and the scalp. 
However, the properties of the conductive gel decline with time, 
which is difficult to meet the requirement of long-term EEG 
recording. To overcome this shortage, novel hydrogel electrodes 
for long-term stable EEG recording were designed [102–104]. 
The downside of hydrogel electrodes is that hair washing is 
required after the use of hydrogel electrodes, which is not con­
ducive to the daily use of wearable EEG-based BCIs. Therefore, 
dry electrode research has gained more and more attention. 
Comb-shaped active dry electrodes [105–108], annular-shaped 
dry microneedle array electrodes [109], and dry microneedle 

electrodes with soft circuits [110] were proposed for EEG signal 
acquisition in the hairy scalp. Nevertheless, without the aid of 
conductive agents, the contact impedance between the dry elec­
trodes and hairy scalp was generally higher than that between 
the wet electrode and hairy scalp. The proposal of the semi-dry 
electrodes [111,112] has made a compromise between wearing 
comfort and contact impedance.

For non-hair-bearing areas like the scalp without hair, fore­
head, and behind-/in-the-ear, there are more kinds of electrodes 
to choose from. Increasing the number of electrodes is beneficial 
to obtain a richer EEG signal, so G.tec Company designed a 
high-density pangolin wet electrode system, g.PANGOLIN, and 
up to 1024 EEG channels were recorded on the head to achieve 
high-resolution signal acquisition. For improving the quality of 
signal acquisition, various flexible electrodes have also been 
applied for wearable EEG-based BCIs [113–115]. In addition, 
flexible electrodes can also reduce motion artifacts and provide 
better wearing comfort. For wearable BCIs based on ear-EEG, 
the morphology of the ear canal and auricle should also be con­
sidered for electrode designing [116,117].

Artifact is another key factor affecting EEG signal quality. 
For wearable EEG-based BCIs, random noise and unexpected 
signal artifacts, such as muscle artifacts, ocular artifacts, cardiac 
artifacts, and extrinsic artifacts, will affect EEG signal acquisition 
during daily activities [118]. The main artifact elimination meth­
ods can be divided into 2 categories. One approach is to opti­
mizing the EEG electrodes to realize low electrode-skin contact 
impedance, which can apparently reduce the artifact coupling. 
The other way is setting the electrocardiogram (ECG), electrooc­
ulogram (EOG), and electromyogram (EMG) leads to record 
the 3 main sources of the artifacts synchronously with EEG and 
then remove the artifacts in EEG signals with the algorithm for 
artifact elimination. Different artifact removal algorithms have 
been proposed to minimize the influence of artifacts in recent 
years. For instance, Lee et al. [119] proposed a method called 
constrained independent component analysis with online learn­
ing (cIOL) to search and reject the movement artifacts in EEG 
signals. Chang et al. [120] optimized the parameters of the arti­
fact subspace reconstruction (ASR) artifacts removal approach, 
demonstrating that ASR successfully removed ocular and muscle 
artifact components. Egambaram et al. [121] proposed unsu­
pervised eye blink artifact detection algorithms and achieved 
an over 90% average artifact removal accuracy.

The complicated lead connection increases the installation 
complexity and system weight, which brings inconvenience to 
the wearer’s daily activities. In order to improve the wearability 
of BCI devices, it is important to realize low power consump­
tion, high bandwidth, and high-precision wireless data trans­
mission. At present, because of the mature technology, stable 
performance, and low cost, Bluetooth and WiFi modules are 
commonly used wireless signal transmission methods. Recently, 
novel wireless transmission methods have been proposed. For 
instance, Qiu et al. [122] designed a low-power data acquisi­
tion front-end solution based on the field programmable gate 
array (FPGA), and realized scalp-EEG signal real-time wireless 
transmission.

In addition to the use of wireless transmission, improving 
the flexibility, minimization, and lightweight of the wearable 
BCI system is also conducive to increasing the wearing comfort 
of users. With the development of technology, multi-source 
acquisition and multi-function integrated wearable BCI sys­
tems have become a new development trend [123]. However, 
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with the use of wireless transmission technology and the wide­
spread application of wearable BCIs, a large amount of user 
information has been collected, and data security needs to be 
paid more attention to.

Conclusion
EEG acquisition is an important component of wearable BCI 
systems. In this paper, novel wearable EEG-based BCIs designed 
for medical applications are reviewed from the perspective of 
EEG signal recording. According to the recording electrode 
position, wearable EEG-based BCIs are divided into 3 categories: 
scalp-EEG-based BCI, forehead-EEG-based BCI, and ear-EEG-
based BCI. Table 1 summarizes the wearable EEG-based BCI 
devices reviewed in this paper and their related applications in 
the medical field. Table 2 lists the work of wearable EEG-based 
BCIs for equipment control and the corresponding accuracies. 

As can be seen from Tables 1 and 2, the wearable BCIs based on 
scalp-EEG and forehead-EEG are relatively mature and have 
been successfully commercialized, while the ear-EEG-based 
wearable BCI has not been sufficiently applied in the medical 
field yet.

The characteristics of the 3 types of EEG are discussed in 
the corresponding sections, and each type of EEG has its own 
strengths and weaknesses for wearable BCI applications. Scalp-
EEG contains relatively rich brain information compared with 
the forehead-EEG and ear-EEG. As the mainstream wearable 
BCI solution, both hardware and software of scalp-EEG-based 
BCI technology are the most mature. Nevertheless, the scalp-
EEG acquisition equipment is complicated to wear and signal 
recording can be easily interfered with hair. Both forehead-EEG 
and ear-EEG are recorded from hairless or less hairy areas, 
which reduces for the inconvenience of wearing to some extent. 
However, forehead-EEG is easily affected by artifacts, and hard 

Table 1. Summary of wearable EEG devices and corresponding BCI applications in medical field

Reference EEG device EEG recorded Electrode type Recording channels BCI applications

Emotiv Systems 
Company, USA

Emotiv EPOC Scalp-EEG Semi-dry electrode 14 Rehabilitation therapy 
[40–42] 

Equipment control 
[43–48]

Wearable Sensing 
Company, USA

DSI-24 Scalp-EEG Dry electrode 21 Rehabilitation therapy 
[50,52,53] 

Equipment control 
[54]

OpenBCI 
Company, USA

OpenBCI Ultracortex 
“Mark IV”

Scalp-EEG Dry electrode 16 Equipment control 
[60–62] 

Rehabilitation therapy 
[63]

National Chiao Tung 
University, CHN

Mindo 4S EEG 
device

Forehead-EEG Dry electrode 4 Health monitoring 
[64] 

Disease management 
[64] 

Rehabilitation therapy 
[64,66] 

Equipment control 
[65,67]

Macrotellect 
Company, CHN

BrainLink Lite Forehead-EEG Dry electrode 3 Disease management 
[69] 

Rehabilitation therapy 
[70,71]

NeuroSky 
Company, USA

MindWave 
Mobile

Forehead-EEG Dry electrode 1 Rehabilitation therapy 
[76] 

Communication  
assistance [77] 

Equipment control 
[78–81]

Debener et al. [91] and 
TSMi, NLD

cEEGrid Ear-EEG Wet electrode 10 Communication  
assistance [95,96] 

Disease management 
[97,98]

Kaongoen et al. [101] Custom-made  
headphone

Ear-EEG Semi-dry electrode 8 Equipment control 
[101]
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to record the brain signals produced by the regions far from 
the frontal head, while the ear-EEG is hard to accurately extract 
and classify the characteristic signal because of the low intensity 
and high signal overlap. With the gradual improvement of the 
ear-EEG signal mapping model and the data processing algo­
rithm, wearable ear-EEG-based BCI is expected to become the 
mainstream technology in the next generation.

In order to meet the needs of daily use, wearable EEG-based 
BCI still needs to be further improved to meet the requirements 
of high-quality brain signal acquisition, efficient and stable 
wireless data transmission, long-term wearing comfort, and 
high control accuracy. In the foreseeable future, owing to the 
advanced electrode technology, the optimized montage con­
figuration, and the powerful algorithm, wearable EEG-based 
BCI devices and systems will continue to develop in the form 
of simplicity, comfort, high performance, and automation—
reasons to believe that wearable EEG-based BCIs will bring an 
innovation of medical technology, fully employed in disease 
prediction, diagnosis, treatment, auxiliary equipment control, 
and other broad medical applications.
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