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Abstract 

Background  High tumor mutational burden (TMB) was reported to predict the efficacy of immune checkpoint 
inhibitors (ICIs). Pembrolizumab, an anti-PD-1, received FDA-approval for the treatment of unresectable/metastatic 
tumors with high TMB as determined by the FoundationOne®CDx test. It remains to be determined how TMB can 
also be calculated using other tests.

Results  FFPE/frozen tumor samples from various origins were sequenced in the frame of the Institut Curie (IC) 
Molecular Tumor Board using an in-house next-generation sequencing (NGS) panel. A TMB calculation method 
was developed at IC (IC algorithm) and compared to the FoundationOne® (FO) algorithm.

Using IC algorithm, an optimal 10% variant allele frequency (VAF) cut-off was established for TMB evaluation on FFPE 
samples, compared to 5% on frozen samples. The median TMB score for MSS/POLE WT tumors was 8.8 mut/Mb ver‑
sus 45 mut/Mb for MSI/POLE-mutated tumors. When focusing on MSS/POLE WT tumor samples, the highest median 
TMB scores were observed in lymphoma, lung, endometrial, and cervical cancers. After biological manual curation 
of these cases, 21% of them could be reclassified as MSI/POLE tumors and considered as “true TMB high.” Higher TMB 
values were obtained using FO algorithm on FFPE samples compared to IC algorithm (40 mut/Mb [10–3927] ver‑
sus 8.2 mut/Mb [2.5–897], p < 0.001).

Conclusions  We herein propose a TMB calculation method and a bioinformatics tool that is customizable to different 
NGS panels and sample types. We were not able to retrieve TMB values from FO algorithm using our own algorithm 
and NGS panel.
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Background
Over the past decade, immunotherapy, and especially 
immune checkpoint inhibitors (ICIs), has revolutionized 
the management of several cancer types. Given the dura-
ble benefit limited to a minority of patients, the potential 
toxicities related to ICIs, and the high economic cost of 
these treatments, predictive biomarkers of response to 
ICIs are urgently needed.

PD-L1 expression on tumor and/or immune cells using 
immunohistochemistry has been demonstrated to cor-
relate with ICI efficacy in different cancer types [1–5]. 
However, PD-L1 expression as a predictive biomarker of 
efficacy has several limitations, including the lack of sen-
sitivity and specificity, the poor uniformity in the PD-L1 
antibody clones, the different scoring methods, and posi-
tivity cut-off used [6–9].

Microsatellite instability (MSI) is caused by defects in 
the mismatch repair genes (therefore also called dMMR 
and as opposed to microsatellite stable MSS = proficient 
pMMR) MSH2, MLH1, MSH6, or PMS2, leading to an 
increased rate of mismatch errors [10–12]. Pan-cancer 
studies have demonstrated the predictive value of MSI 
(dMMR) on the response to ICIs [13, 14]. However, only 
40% of patients with MSI (dMMR) tumors experience an 
objective response to ICIs. MSI (dMMR) tumors remain 
rare outside of colorectal and endometrial cancers [15, 16].
POLE pathogenic mutations result in ultramutated 

genomes and were shown to predict response to ICIs 
[13, 14, 17]. Specifically, mutations in the POLE proof-
reading domain were shown to induce a high tumor 
mutational burden (TMB). POLE mutations remain 
extremely rare.

TMB is defined as the total number of nucleotidic vari-
ants acquired in a tumor and expressed as a number of 
variants per megabase (Mb). The predictive value of TMB 
on ICIs efficacy was retrospectively evaluated in the 
KEYNOTE-158 phase II basket trial of pembrolizumab 
[18]. High overall response rate was reported in patients 
with TMB-high tumors defined as ≥ 10 mutations per 
Mb using the FoundationOne®CDx assay, leading to 
FDA-approval of pembrolizumab across cancer types in 
TMB-high tumors. Besides the number of variants/Mb, 
the type of variants taken into account when estimating 
the TMB is crucial, because all mutations might not nec-
essarily induce the release of immunogenic peptides and 
should reflect as close as possible the overall neoantigen 
load [19]. So far, no consensus exists on TMB calculation 
method. Besides variations in bioinformatics processing, 
including variant calling methods and variants filtering, 

many other factors could influence the TMB estima-
tion [20, 21]. These variations limit the harmonization of 
TMB calculation and robust effective cut-offs [22–24].

In this study, we aimed to estimate the TMB values 
from next generation sequencing (NGS) data generated 
from both FFPE and frozen samples using our own panel 
and bioinformatics algorithm and to compare the values 
using the FoundationOne® (FO) algorithm [25, 26]. We 
eventually propose customizable bioinformatics tool that 
allows estimating TMB values using other assays than the 
FO one.

Results
Patient characteristics
Tumor samples from 763 patients with various cancer 
types sequenced through the IC Molecular Tumor Board 
of using an in-house NGS panel were analyzed in this 
study. After removing the samples that did not fit the 
quality criteria (n = 78), 685 samples including 390 FFPE 
and 295 frozen samples from 43 different cancer types 
were assessed for estimation of the TMB (Table  1 and 
Fig. 1). In total, 28 samples were MSI high (dMMR) and 
four samples had a POLE mutation (Table 1).

Development of the in‑house TMB estimation algorithm (IC 
algorithm)
In order to select only potential immunogenic somatic 
variants, we only considered high-quality, coding, non-
synonymous, nonsense, driver variants, and small 
insertion/deletions (indels), absent from the known poly-
morphisms/germline database (Fig. 2 and the “ Methods” 
section). For the same reason, we also decided to deter-
mine the minimum VAF to take into account to avoid 
false positives. To study this parameter, we assessed the 
evolution of all TMB scores based on the VAF and the 
sample type (FFPE or frozen), among the MSS/POLE WT 
cases (Fig.  3). The TMB score inversely correlated with 
the minimum VAF (Fig. 3 and Additional file 1: Table S1). 
Higher TMB high scores were observed in FFPE sam-
ples compared to frozen samples. TMB scores in frozen 
tumors rapidly decreased, reaching a plateau for a mini-
mal VAF value around 5%, whereas much heterogeneous 
results were observed in FFPE tumors with a decrease of 
TMB scores in much higher VAF cut-offs (Fig. 3). With a 
minimal VAF threshold fixed at 5%, only 114/362 (31%) 
FFPE samples had a TMB score between 0 and 10 mut/
Mb compared to 147/291 (50%) for frozen samples. 
Similarly, 44/362 (12%) FFPE samples had a TMB score 
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Table 1  Cohort characteristics

Cancer type n Sample type n MSI/MSS status n POLE status n

Breast 126 FFPE 60 MSI 3 POLE mut 1

Frozen 66 MSS 123 POLE WT 125

Colorectal 72 FFPE 52 MSI 14 POLE mut 1

Frozen 20 MSS 58 POLE WT 71

Sarcoma 72 FFPE 40 MSS 72 POLE WT 72

Frozen 32

Ovarian 59 FFPE 41 MSI 3 POLE mut 1

Frozen 18 MSS 56 POLE WT 58

CNS tumor 58 FFPE 19 MSS 58 POLE WT 58

Frozen 39

Pancreatic carcinoma 42 FFPE 35 MSI 2 POLE WT 42

Frozen 7 MSS 40

Endometrial 28 FFPE 17 MSI 4 POLE WT 28

Frozen 11 MSS 24

Thyroid 20 FFPE 18 MSS 20 POLE WT 20

Frozen 2

HNSCC 19 FFPE 15 MSS 19 POLE WT 19

Frozen 4

Lymphoma 18 Frozen 18 MSS 18 POLE WT 18

Cholangiocarcinoma 17 FFPE 12 MSS 17 POLE WT 17

Frozen 5

Lung 17 FFPE 8 MSS 17 POLE WT 17

Frozen 9

Cervical 13 FFPE 10 MSS 13 POLE WT 13

Frozen 3

ACUP 12 FFPE 5 MSI 1 POLE WT 12

Frozen 7 MSS 11

Rhabdoid tumor 11 FFPE 2 MSS 11 POLE WT 11

Frozen 9

Anal 10 FFPE 7 MSS 10 POLE WT 10

Frozen 3

Gastric 10 FFPE 5 MSS 10 POLE WT 10

Frozen 5

Adenoid cystic carcinoma 8 FFPE 5 MSS 8 POLE WT 8

Frozen 3

Bladder 7 FFPE 2 MSS 7 POLE WT 7

Frozen 5

Mesothelioma 7 FFPE 3 MSS 7 POLE WT 7

Frozen 4

Vaginal 6 FFPE 3 MSS 6 POLE WT 6

Frozen 3

Prostate 5 FFPE 3 MSS 5 POLE WT 5

Frozen 2

Uveal melanoma 5 Frozen 5 MSS 5 POLE WT 5

Cutaneous melanoma 4 FFPE 2 MSS 4 POLE WT 4

Frozen 2

Sex chord tumor 4 FFPE 3 MSS 4 POLE WT 4

Frozen 1

Appendix 3 FFPE 3 MSS 3 POLE WT 3
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Table 1  (continued)

Cancer type n Sample type n MSI/MSS status n POLE status n

Esophageal 3 FFPE 1 MSS 3 POLE WT 3

Frozen 2

Salivary gland tumor 3 FFPE 3 MSS 3 POLE WT 3

UCNT 3 FFPE 3 MSS 3 POLE WT 3

GIST 2 FFPE 2 MSS 2 POLE WT 2

Neuroendocrine 2 FFPE 1 MSS 2 POLE WT 2

Frozen 1

Renal 2 Frozen 2 MSS 2 POLE WT 2

Vulva 2 FFPE 2 MSS 2 POLE mut 1

POLE WT 1

Craniopharyngioma 1 FFPE 1 MSS 1 POLE WT 1

Cutaneous SCC 1 FFPE 1 MSS 1 POLE WT 1

Duodenal carcinoma 1 FFPE 1 MSS 1 POLE WT 1

Hepatoblastoma 1 FFPE 1 MSS 1 POLE WT 1

Leiomyosarcoma 1 Frozen 1 MSS 1 POLE WT 1

Peritoneum 1 FFPE 1 MSS 1 POLE WT 1

Small bowel carcinoma 1 FFPE 1 MSI 1 POLE WT 1

Thymoma 1 FFPE 1 MSS 1 POLE WT 1

Waldenstrom 1 Frozen 1 MSS 1 POLE WT 1

Other 6 FFPE 4 MSS 6 POLE WT 6

Frozen 2

FFPE Formalin-fixed paraffin-embedded, mut mutated, WT Wild-type, SCC Squamous cell carcinoma, CNS Central nervous system, HNSCC Head and neck squamous 
cell carcinoma, ACUP Adenocarcinoma of unknown primary, UCNT Undifferentiated carcinoma of nasopharyngeal type, GIST Gastrointestinal stromal tumor

Fig. 1  Analysis workflow. MSS, microsatellite stable; WT, wild-type
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Fig. 2  Distribution of TMB score variation among the cohort according to variant filters applied. IC, Institut Curie; Mut, Mutations; TMB, Tumor 
Mutational Burden

Fig. 3  TMB score variation according to variant allele frequency (VAF) cut-off, and sample type (FFPE or frozen). FFPE, formalin-fixed 
paraffin-embedded; Mut, mutations; TMB, tumor mutational burden; VAF, variant allele frequency
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greater than 100 mut/Mb compared to only 3/291 (1%) 
for frozen samples (Additional file 1: Table S1).

With a VAF threshold fixed at 10%, 236/362 (65%) FFPE 
samples had a TMB score ranging from 0 to 10 mut/Mb, 
compared to 209/291 (72%) for frozen samples. A total 
of 11/362 (3%) of FFPE samples had a TMB score greater 
than 100 mut/Mb compared to 1/291 (0.3%) for frozen 
samples. When moving the VAF threshold from 5 to 10%, 
55 FFPE samples switched from a TMB score higher than 
30 mut/Mb to lower than 30 compared to only 6 frozen 
samples (Additional file 1: Table S1).

We then focused on the tumors for which both frozen 
and FFPE pairs were analyzed (Additional file 2: Fig. S1). 
For frozen samples, a plateau (which likely represents the 
true TMB) was reached for a VAF at 5%. For FFPE sam-
ples, we were able to distinguish high-quality DNA and 
low-quality DNA based on pre-analytical parameters as 
defined in the “ Methods” section. For high-quality FFPE, 
the steady state was reached with VAF below or around 
10%. For low-quality FFPE, the steady state was either 
reached with a higher VAF or never reached.

We therefore established the minimum VAF threshold 
used to consider a variant in the TMB estimation to be 
5% for frozen samples and 10% for FFPE samples.

Repartition of TMB scores using IC algorithm
We then evaluated the TMB on the 685 contributive 
samples. The median TMB score calculated with IC algo-
rithm of MSS/POLE-WT tumors was 8.8 mut/Mb [2.5–
897] versus 45 mut/Mb [16–584] for MSI/POLE-mutated 
tumors (Fig.  4 and Additional file  1: Table  S2). When 
focusing on MSS/POLE-WT tumors (n = 653), main can-
cer types analyzed included breast (19%), sarcoma (11%), 
central nervous system (CNS) (9%), colorectal (9%), and 
ovarian (8%) cancers. The highest median TMB scores 
among the MSS/POLE-WT tumors were found in lym-
phoma (11 mut/Mb [6.3–276]), lung (11 mut/Mb [4.4–
24]), endometrial (11 mut/Mb [5.0–58]), and cervical 
cancer (11 mut/Mb [3.2–46]). The lowest scores among 
the MSS/POLE-WT tumors were found in uveal mela-
noma (5.0 mut/Mb [4.4–11]) and mesothelioma (5.0 mut/
Mb [3.8–204]) (Fig. 4 and Additional file 1: Table S2).

Fig. 4  Repartition of TMB scores according to tumor types using the algorithm of the Institut Curie (IC). Tumor types with less than n = 5 samples 
were groups into “Others” in this plot which comprise the following tumor types: cutaneous melanoma, sex chord tumor, appendix, esophageal, 
salivary gland tumor, UCNT, GIST, neuroendocrine, renal, vulva, craniopharyngioma, cutaneous SCC, duodenal carcinoma, hepatoblastoma, 
leiomyosarcoma, peritoneum, small bowel carcinoma, thymoma, and Waldenstrom. HNSCC, head and neck squamous cell carcinoma; CNS, central 
nervous system; ACUP, adenocarcinoma of unknown primary; TMB, tumor mutational burden
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Biological curation of TMB‑high cases
In order to distinguish true positive TMB-high cases 
from false positives and to investigate if some cases 
could be reclassified as MSI-high tumors (dMMR), we 
focused on the top 10% samples (n = 65) with the high-
est TMB scores among the non-MSI pMMR cases (the 
MSS/POLE-WT tumors). We removed 8 out of these 
65 cases with a bad quality of sequence and considered 
them as non-contributive for TMB evaluation, leaving 57 
TMB high cases. On those cases, 12/57 cases (21%) were 
found to have either a MSI score ≥ 10% using MSIsensor, 
a pathogenic variant in one of the MMR genes and/or a 
mutational signature suggesting a MSI profile, or POLE 
proofreading deficiency, or APOBEC mutational signa-
ture (Additional file 1: Table S3 and Table S4). These sam-
ples could be reclassified as MSI/POLE mutated tumors 
and considered as “true TMB high” cases with a high con-
fidence. For the remaining 45 cases, the high TMB score 
could not be explained by an MSI status, POLE mutation, 
or APOBEC signature. For information, we also veri-
fied the presence of pathogenic variants (with an allelic 
ratio ≥ 10%) among 3 candidate genes implicated in DNA 
damage repair (i.e., TP53, PTEN, and ARID1A). Interest-
ingly, 17/57 cases harbored at least one pathogenic vari-
ant in these 3 candidate genes, leaving 28/57 cases (49%) 
with no explanation for high TMB status.

TMB scores evaluation using FO algorithm
The TMB score using the FO algorithm was calculated 
on the 685 contributive samples of the cohort (Additional 
file 1: Table S2), with a focus on FFPE samples (n = 390) 
to better reproduce the FoundationOne®CDx test con-
ditions. We observed that all TMB values exceeded 10 
mut/Mb, the FDA-approved cut-off to consider a tumor 
TMB-high (Additional file  1: Table  S2). When compar-
ing the distribution of TMB scores obtained with the 
IC algorithm to the one obtained with FO algorithm on 
the same NGS data derived from all FFPE MSS/POLE-
WT tumors (n = 362), the median TMB values obtained 
with IC algorithm were significantly lower compared to 
the one obtained with the FO algorithm (8.2 mut/Mb 
[2.5–897] versus 40 mut/Mb [10–3928], p < 0.001) (Addi-
tional file 2: Fig. S2). Individually, all samples but one had 
higher TMB from FO algorithm compared to IC algo-
rithm (Additional file 1: Table S2).

Discussion
We demonstrate that both sample types (FFPE and fro-
zen) and DNA quality (measured with Cp) had an impact 
on the TMB scores. False positive deamination artifacts 
(C > T transitions) created by formalin fixation in low-
quality FFPE DNA is a well-known effect that can lead 
to an overestimation of the TMB [20, 24, 27, 28]. This 

prevents using the same minimum VAF threshold for 
both FFPE and frozen samples.

Deduplication was not used in our study. Although it 
could have an impact on the variant calling accuracy, and 
thus affect the TMB score [20, 29], other studies showed 
that deduplication was not always mandatory [30, 31] or 
could be overcome by applying a 10% VAF threshold [20, 
32]. We have demonstrated that the use of UMI-based 
deduplication did not impact our results by calculating 
the VAFs of all variants with or without UMI process-
ing and computing the correlation between VAFs values 
for each patient. An average correlation of 0.952 for the 
FFPE samples and 0.983 for the frozen samples demon-
strated that the UMI processing has very little impact on 
the VAFs (Additional file 2: Fig. S3). This is in line with 
other publications [30, 31, 33].

Based on our analysis of more than 750 samples and 
previous recommendations [20, 34], we proposed a 10% 
VAF cut-off for FFPE samples and a 5% cut-off for frozen 
samples. The high TMB scores found in FFPE samples, 
possibly due to fixation artifacts, represents a clini-
cal reality to be dealt with for routine TMB calculation, 
across all laboratories [20, 24, 27, 28]. In this study, we 
propose a general algorithm with appropriate filters and 
threshold to limit the impact of such artifacts, but a man-
ual curation step for this kind of samples will always be 
unavoidable. Using a fixed threshold allows to (i) simplify 
the variant calling process, making it more standardized 
and easier to implement across different samples and 
studies, (ii) provide consistency when comparing TMB 
across samples, and (iii) homogenize the interpretation of 
results. These points are particularly important in clinical 
settings where uniformity in methodology is required.

To overcome this problem upstream of the analysis, 
we applied the most rigorous possible filters to remove 
the false positives while preserving the true variants. 
Other possibilities might include the implementation of 
dedicated computational algorithm to rectify formalin-
induced artifacts for FFPE samples [35] or optimization 
of the chemistry with the use of enzymes involved in base 
excision repair before library preparation [36].

Using the FO algorithm, all TMB scores exceeded 10 
mut/Mb, which differs from what has been reported in 
the literature [25, 37]. These results suggest that the level 
of information provided by FoundationOne® does not 
enable to reproduce their algorithm and consequently 
to directly transpose the FO algorithm to other targeted 
NGS panels.

The choice of variants to take into account when esti-
mating the TMB is crucial, because all mutations do not 
necessarily induce the release of immunogenic peptides, 
and should reflect as close as possible the overall neoan-
tigen load [19]. As targeted panels include mainly cancer 
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genes, which are more likely to be mutated in the tumor, 
some methods have been proposed to filter out known 
cancer variants for TMB quantification. We chose to 
keep cancer hotspots variants in our algorithm for the 
TMB estimation, since they could also generate immu-
nogenic peptides. We also chose to filter out synonym 
and non-coding variants as they are unlikely to generate 
neoepitopes and the size of the coding sequence of our 
in-house NGS panel is sufficient to assure TMB reliability 
[26]. Compared to whole exome sequencing, NGS pan-
els are not constantly associated with the germline paired 
DNA sequencing. This requires a substantial method-
ology to filter out the polymorphisms that come from 
the germline and hence might not induce an immune 
response. Germline variants are commonly filtered using 
databases of known germline mutations. Some algo-
rithms use complementary germline removal algorithm 
such as somatic-germline-zygosity [38]. Here, due to par-
tially available information on the SGZ algorithm pro-
posed by FoundationOne® as part of their commercial 
product (FoundationOne®CDx), we used different data-
bases of known germline mutations as references (Exac, 
1000G or GnomaD all ethnicities) to remove as many 
germline variants as possible and only retain private or 
extremely rare germline polymorphisms, which may 
increase TMB score [39].

Overall, several parameters including biological fac-
tors to pre-analytics, sequencing, and bioinformatics can 
impact the TMB scores estimation, explaining the diver-
sity of published TMB algorithms, the heterogeneity of 
the results, and the complexity to harmonize methods 
[20]. The bioinformatics tool used in this study is freely 
available for the community and highly customizable 
to fit different targeted NGS panels and sample types 
(both FFPE and frozen). Other tools for TMB calcula-
tion have been developed and reported in the literature. 
Their applicability still needs to be tested, since they 
often require to have paired targeted NGS and WES data 
for each patient. In addition, the sample type (frozen or 
FFPE) and quality are not taken into account in the esti-
mation [33, 40].

The TMB estimation using our algorithm revealed 
variations in the medians and ranges across tumor types, 
with the highest median TMB score found in MSI/POLE-
mutated tumors. Our results are in line with previous 
reports in the literature [18, 25, 37, 41]. We observed that 
some tumors harbored very high TMB scores, although 
not associated with MSI status (dMMR) or POLE muta-
tions at first glance. After biological manual curation of 
these cases, 21% of them could be reclassified as MSI/
POLE tumors and considered as “true TMB high” with a 
high level of confidence, and 30% had at least one path-
ogenic variant among 3 candidate genes implicated in 

DNA damage repair that could be related to high TMB 
(i.e., TP53, PTEN, and ARID1A) [42–44]. However, for 
the remaining cases, the high TMB scores could not 
find a biological explanation. The more detailed manual 
observation of TMB-high cases represents the reality of 
TMB status validations carried out by the experts within 
the framework of clinical routine use.

Conclusions
In conclusion, we show that the TMB values obtained 
from the same NGS data but with different calculation 
methods are not comparable. In order to optimize the 
implementation of TMB as a robust predictive biomarker 
of efficacy of ICIs, the determination of the method to be 
used to identify the right threshold is key. Studies from 
cohorts of patients treated with ICIs will be needed to 
identify these thresholds as well as studies on larger 
series of matched FFPE and Frozen samples to determine 
the most optimal way to avoid artifacts in the calculation 
of TMB (i.e., using different algorithms with a possible 
different VAF cut-off for variant calling, or using different 
cut-offs on TMB values for high or low statuses accord-
ing to a FFPE or frozen sample).

Methods
Patient selection
Patients with recurrent and/or metastatic cancers whose 
tumor was sequenced in the frame of Molecular Tumor 
Board of the Institut Curie (IC) [45] were included in this 
study. Informed consent with regard to the collection 
of tumor samples and molecular analysis was obtained 
from patients within the IC institutional general consent 
signed by every patient treated at the IC.

In‑house next generation sequencing panel
Samples were sequenced using an in-house NGS panel 
covering 1.6  Mb. Indexed paired-end libraries of tumor 
DNA were performed using the Agilent Sureselect 
XT-HS library prep kit. Fifty nanograms of input DNA 
were used to build the libraries according to manufactur-
er’s protocol. Libraries were sequenced on the NovaSeq 
6000 (Illumina) Sp 2 × 100 bp flow cell.

Bioinformatics
After tumor DNA sequencing, bioinformatics analy-
ses were performed as detailed below in order to detect 
single-nucleotide variants (SNVs) and indels, micros-
atellite instability statuses, mutational signatures, and 
TMB scores (detailed in Additional file 3: Supplementary 
Methods and above).
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Variant calling
Variant calling of both SNVs and indels was carried out 
on the aligned sequencing data as previously described 
[46]. Annotations from several databases [RefSeq [47], 
dbsnp v150 [48], COSMIC v86 [49], 1000  g project 
08/2015 version [50], ESP6500 [51] gnomAD (all and eth-
nicities) [39], ICGC v21 [52], and dbnsfp v35 [53] predic-
tions] were provided by Annovar (04/16/2018 version, 
Wang *et al.* [54]).

TMB calculation
After removing low NGS quality samples, i.e., samples 
with < 20 million sequencing reads or < 15% of the cap-
tured regions sequenced above 1000X, the TMB values 
were calculated using two different algorithms: (1) the 
FO algorithm on FFPE samples and (2) our IC algorithm 
on all samples including both FFPE and frozen (Fig. 1).

FoundationOne® (FO) TMB algorithm was repro-
duced based on the Summary of Safety and Effective-
ness (https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​pdf17/​
P1700​19S01​6B.​pdf ). Low-quality variants were removed 
based on the absence of “PASS” tag from varScan2 vari-
ant calling results. Germline variants were also removed 
from the vcf files using the somatic-germline-zygosity 
(SGZ) algorithm (v1.0.0) [38] as well as polymorphisms 
database (variants found in 1000 Genomes or Exac [55] 
databases for all ethnicities with a minor allelic fre-
quency (MAF) higher than 0.1%). Non-coding variants 
and driver mutations found at least once in COSMIC 

database were also removed. Hence, all coding variants 
including synonymous, splicing (defined as every intronic 
nucleotide within 2  bp at the exon/intron boundaries), 
and indels were considered for the final TMB calculation 
if their VAF was higher than 5% and the depth of cover-
age higher than 100X. Of note, with the information pro-
vided by FoundationOne®, we were not able to reproduce 
their exact capture regions and thus based our TMB cal-
culation on our own design and dividing the number of 
variants by 1.6 Mb to obtain the number of mutations per 
Mb.

For IC TMB algorithm, recurrent variants detected in 
more than 15% of the samples within the same sequenc-
ing run were considered as false positive and removed 
from the TMB calculation. Polymorphisms found in 1000 
Genomes, Gnomad, or Exac databases for all ethnicities 
with a MAF higher than 0.1% were also removed. Given 
that the goal of TMB is to identify likely immunogenic 
tumors that ultimately could respond to ICI, and that 
only somatic, acquired, coding variants encode potential 
neoantigens, we decided to consider in the IC algorithm 
the coding, non-synonymous, and indels variants but to 
remove non-coding, synonymous, and splice (defined as 
every intronic nucleotide within 2 bp at the exon/intron 
boundaries) variants. Finally, only variants with a VAF 
higher than 5% for frozen samples or 10% for FFPE sam-
ples and a depth of coverage higher than 100X were con-
sidered for TMB estimation.

In order to standardize the TMB estimation, we developed 
a bioinformatics tool named pyTMB that can be applied to 

Table 2  Filters applied for TMB calculation with Foundation One ® (FO) algorithm and Institut Curie (IC) algorithm

The FO algorithm was applied on FFPE samples only as required by the FoundationOne®CDx test, while the IC algorithm was used on both frozen and FFPE samples

FFPE Formalin-fixed paraffin-embedded, VAF Variant allele frequency, SGZ Somatic-germline-zygosity, COSMIC Catalogue of Somatic Mutations in Cancer, 
MAF Mutation allele frequency, SNP Single-nucleotide polymorphism

FoundationOne® algorithm Institut Curie algorithm

Metrics

  Low-quality variant removal YES
PASS tag from VarScan2

YES
Intra-run recurrence

  Minimum VAF 5% 5% for frozen tumors
10% for FFPE tumors

  Minimum depth of coverage 100X 100X

  Germline removal SGZ algorithm
And SNP from 1000 Genomes or Exac with a MAF > 0.1% 
were filtered

SNP from 1000 Genomes, Gnomad 
or Exac with a MAF > 0.1% were 
filtered

Variants types

  Drivers Excluded
COSMIC

Included

  Synonymous Included Excluded

  Splicing Included Excluded

  Indels Included Included

  Nonsense Included Included

  Non-coding Excluded Excluded

https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S016B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S016B.pdf
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any sequencing data type. pyTMB can be easily installed 
with conda either directly from the source code (https://​
github.​com/​bioin​fo-​pf-​curie/​TMB) or from the bioconda 
channel. PyTMB v1.1.0 has been used by this study (https://​
doi.​org/​10.​5281/​zenodo.​10573​735). pyTMB requires a list 
of annotated variants and successively applies the different 
filters that can then be adapted by the users. The version 
1.1.0 supports.vcf files generated with the Mutect2 and Var-
scan2 tools and annotated with either ANNOVAR or snpEff 
(Table 2 and Additional file 3: Supplementary Methods).

Biological curation of TMB high cases
To avoid false positives related to bad quality DNA, we 
focused on the top 10% samples with the highest TMB 
scores (corresponding to a TMB > 17.5 mut/Mb using the 
IC algorithm) among the non-MSI (pMMR) cases (MSS/
POLE WT tumors). To further investigate the high TMB 
cases, we individually assessed: (i) the MSI score using 
MSI sensor, (ii) mutations in MMR-related genes (e.g., in 
MSH2, MSH1, MSH6, or PMS2 gene), and (iii) the pres-
ence of MMR or APOBEC-related mutational signatures 
(see Additional file 3: Supplementary Methods).

Notes
Role of the funder
The authors are all part of the Institut Curie which pro-
vided the resources for the personnel as well as the 
equipment, reagents, materials, and structures needed 
for the Molecular Tumor Board and for the analyses. 
Amgen France, La Ligue Contre le Cancer, and Cancéro-
pole Ile-de-France provided funding for reagents, sample 
processing, and personnel resources through grants.
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