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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease with heterogenous pathophysiological 

changes that develop years before the onset of clinical symptoms. These preclinical changes have 
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generated considerable interest in identifying markers for the pathophysiological mechanisms 

linked to AD and AD related disorders (ADRD). Based on our prior work integrating 

cerebrospinal fluid (CSF) and brain proteome networks, we developed a reliable and high 

throughput mass spectrometry selected reaction monitoring (SRM) assay that targets 48 key 

proteins altered in CSF. To test the diagnostic utility of these proteins and compare them to 

existing AD biomarkers, CSF collected at baseline visits were assayed from 706 participants 

recruited from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We found the targeted 

CSF panel of 48 proteins (CSF 48 panel) performed at least as well as existing AD CSF 

biomarkers (Aβ42, tTau, and pTau181) for predicting clinical diagnosis, FDG PET, hippocampal 

volume, and measures of cognitive and dementia severity. Additionally, for each of those outcomes 

the CSF 48 panel plus the existing AD CSF biomarkers significantly improved diagnostic 

performance. Furthermore, the CSF 48 panel plus existing AD CSF biomarkers significantly 

improved predictions for changes in FDG PET, hippocampal volume, and measures of cognitive 

decline and dementia severity compared to either measure alone. A potential reason for these 

improvements is that the proteins in the CSF 48 panel reflect a range of altered biology previously 

observed in AD/ADRD. In conclusion, we show that the CSF 48 panel complements existing AD 

CSF biomarkers to improve diagnosis and predict future cognitive decline and dementia severity.

One Sentence Summary:

Cerebrospinal fluid proteins that reflect the diverse pathobiology of AD improve AD diagnosis 

and predictions of future decline.

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline 

and dementia in the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) 

in the brain (1, 2). The presence of hallmark AD pathologies years before the onset 

of clinical symptoms has generated interest in markers to identify individuals at risk of 

progressive neurodegeneration (2–4). Imaging and cerebrospinal fluid (CSF) biomarkers that 

measure these hallmark AD pathologies include selective PET ligands that quantify and 

localize both amyloid plaques and tau pathologies in the brain and biochemical assays that 

measure CSF Aβ42, total Tau (tTau), and phospho-Tau181 (pTau181) abundance. Moreover, 

FDG PET and structural MRI are used as surrogate measures for neurodegeneration or 

synaptic loss in AD (5). Based on these findings, the AT(N) research framework has been 

proposed to classify AD based on the presence of amyloid plaques (A), neurofibrillary 

tangles (T), and neurodegeneration (N) (1).

While current biomarkers have provided critical advances, expansion of biomarkers for 

AD and AD-related disorders (ADRD) is important for several reasons. First, pathological 

complexity and heterogeneity is the rule, rather than the exception, with most AD dementia 

syndromes attributable to varying combinations of age-related pathologies, and amyloid 

plaque and neurofibrillary pathology responsible for dementia in only ~40% of cases (6–8). 

The ATN framework also anticipates future development of additional biomarkers, ATX(N), 

with X representing other pathophysiological mechanisms beyond amyloid and tau (1, 5). 

Second, biomarkers of amyloid and tau do not accurately predict the extent of cognitive 
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impairment, with cognitively impaired individuals often showing normal amyloid PET and 

CSF amyloid, and 30–40% of cognitively unimpaired elderly individuals showing AD 

pathology (6–8). Third, biomarkers of the hallmark pathologies have limited prognostic 

ability for predicting disease progression. For these reasons, additional markers are needed 

for accurate tracking of a broader spectrum of pathophysiological mechanisms linked to AD.

Recent advances in large-scale molecular profiling technology have identified genetic, 

transcriptomic, and proteomic alterations in AD and led to the development of data-driven 

models of AD pathophysiology in postmortem human brain. In our prior work, we 

performed mass spectrometry (MS) based proteomics of ~2,000 brain tissues from the 

Accelerating Medicine Partnership for AD (AMP-AD) (9–15). To find suitable candidates 

for AD/ADRD markers, we recently used deep discovery-based proteomics on CSF samples 

to identify proteins alterations in CSF that reflect brain AD/ADRD pathophysiologies (16). 

Based on the CSF findings, we developed an accurate and reliable targeted MS assay using 

selected reaction monitoring (SRM) that measures a panel of 48 proteins with isotopically 

labeled peptide standards (17).

In this work, we tested the diagnostic and predictive utility of the CSF 48 panel in 

706 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Overall, 

the CSF 48 panel improved upon the ability of existing ATN biomarkers to monitor 

pathophysiological mechanisms strongly linked to AD and ADRD and improved prediction 

of disease progression, future cognitive decline and hippocampal atrophy compared to 

existing ATN measures.

RESULTS

All participants were recruited by ADNI study sites. Inclusion criteria in the current study 

were enrollment in either ADNI-2 or ADNI-GO and availability of baseline CSF. The 

dataset consisted of 706 eligible participants with an average age of 72.2 ± 7.3 years-old 

and 48% female (Table 1). The baseline diagnoses in ADNI were made by the investigators 

based on clinician judgment as described in Study Design and blinded to biomarker status, 

with participants assigned as cognitively normal (31%), mild cognitive impairment (MCI, 

53%), and AD (16%). Using previously established CSF thresholds for CSF Aβ42 of less 

than 980 pg/ml and pTau181 greater than 21.8 pg/ml, samples were categorized into four 

groups: 36% A+T+, 18% A+T-, 16% A-T+, and 30% A-T- (Table 1).

The CSF 48 panel estimates baseline clinical diagnosis

The CSF 48 panel targets 62 peptides to measure 48 proteins (Fig. 1A, Table S1). Among 

the 48 proteins, 18 proteins were significantly increased in AD while 4 were significantly 

decreased in AD (p < 0.05, t-test, FDR corrected). To understand the diagnostic utility of 

the CSF 48 panel compared to canonical AD CSF biomarkers Aβ42, pTau181, and tTau, 

we used logistic regression to estimate differences between control and AD participants 

for each CSF analyte (Fig. 1A, Table S1). As expected, Aβ42, pTau181, and tTau were the 

top single estimators of AD diagnosis, with AUCs of 0.84, 95% CI [0.79, 0.8], 0.82, 95% 

CI [0.77, 0.87], and 0.80, 95% CI [0.75, 0.85], respectively. We found the most abundant 

proteins and the strongest individual classifiers of AD in the CSF 48 panel were tyrosine 
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3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) and beta 

(YWHAB), 14-3-3 proteins, with AUCs of 0.78. These proteins have been previously linked 

to AD and Creutzfeldt-Jakob Disease (CJD) in CSF (16, 18, 19) and are associated with 

many aspects of brain function including neural signaling, neuronal synaptogenesis, and 

neurodifferentiation (20). We also found an increased abundance and AUC of 0.70 for 

SPARC related modular calcium binding 1 (SMOC1), a protein previously identified as a 

hub protein for the matrisomal/extracellular matrix (ECM)-associated co-expression module, 

with the strongest associations to AD global pathology in post-mortem brain (9, 10, 16). 

We also found modest increases in pyruvate kinase M1/2 (PKM1/2), malate dehydrogenase 

1 (MDH1), enolase 1 (ENO1), and aldolase, fructose-bisphosphate A (ALDOA), proteins 

central to glycolysis, gluconeogenesis, and the citric acid cycle (Table S1). The proteins 

most decreased in abundance in AD CSF were VGF nerve growth factor inducible (VGF), 

and secretogranin II (SCG2), neurosecretory granins involved in axonal or synaptic vesicle 

transport, and NPTXR and NPTX2, proteins involved in glutamatergic synaptic transmission 

and implicated in synaptic plasticity and memory (Fig. 1A, Table S1). These data suggest 

that several proteins measured by the targeted approach could differentiate control and AD 

participants nearly as well as the gold standard CSF biomarkers.

To understand the collective performance of the CSF 48 panel for predicting clinical AD 

dementia, we used penalized logistic regression to model the relationship between all 

proteins in the CSF 48 panel and AD clinical dementia. For comparison, the same model 

was fitted using the CSF 48 panel plus the canonical CSF biomarkers. For the CSF 48 panel, 

we estimated an AUC of 0.94, 95% CI [0.91, 0.97], while for canonical CSF biomarkers 

(Aβ42, pTau181, and tTau) we estimated an AUC of 0.90, 95% CI [0.86, 0.94] (Fig. 1B). 

The AUC for the CSF 48 panel was significantly higher than that for the canonical CSF 

biomarkers alone (p < 0.01, permutation procedure; Fig. 1B). Notably, the combination 

of the CSF 48 panel and canonical CSF biomarkers had the highest AUC of 0.96, 95% 

CI [0.94, 0.99] (Fig. 1B) and significantly improved the AUC compared to existing CSF 

biomarkers (p < 0.001, permutation procedure; Fig. 1B). These results demonstrate the 

cumulative ability of the CSF 48 panel to accurately differentiate clinical AD dementia as 

well or better than the gold standard markers of AD CSF biomarkers.

The CSF 48 panel accurately estimates baseline FDG PET and hippocampal volume

Synaptic dysfunction and neuronal loss occur many years before overt clinical AD dementia 

and strongly correlate with dementia severity, motivating the development of biomarkers 

for assessing synaptic function in AD. FDG-PET, a measure of the cerebral metabolic rate 

of glucose, and volumetric MRI, including hippocampal volume, have been used to reflect 

neurodegeneration; the “N” indicated in the ATN framework. To understand whether the 

proteins in the CSF 48 panel were associated with these changes in AD pathogenesis, we 

performed an association analysis which included synaptic proteins dysregulated in AD 

brain, FDG PET and MRI derived hippocampal volume, separately. We found that 20 of 

the proteins in the CSF 48 panel associated with FDG PET and 15 proteins associated with 

both FDG PET and hippocampal volume (p < 0.01, t-test, FDR corrected; Fig. S1). The 

individual CSF analyte most strongly associated with FDG PET and hippocampal volume 

was CSF Aβ42, with positive correlation coefficients of 0.43 and 0.35, respectively (Fig. S1). 
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We found both FDG PET and hippocampal volume were positively associated with synaptic 

proteins decreased in AD, neuronal pentraxin 2 (NPTX2; FDG R=0.32; HV R=0.28), 

neuronal pentraxin receptor (NPTXR; FDG R=0.26; HV R=0.22), VGF (FDG R=0.24; HV 

R=0.13), and SCG2 (FDG R=0.2; HV R=0.14). We also found FDG PET and hippocampal 

volume were negatively associated with CSF pTau181 (FDG R=−0.36; HV R=−0.30), CSF 

tTau (FDG R=−0.34; HV R=−0.31), YWHAZ (FDG R=−0.34; HV R=−0.28), YWHAB 

(FDG R=−0.30; HV R=−0.26), and to a lesser extent SMOC1 (FDG R=−0.23; HV R=−0.14; 

Fig. S1). Notably, FDG PET and hippocampal volume showed even lower associations or 

were not associated with metabolic proteins PKM, ALDOA, calmodulin 2 (CALM2), and 

malate dehydrogenase 1 (MDH1; R < 0.15, Fig. S1). Hemoglobin A/B (HBB, HBA) and 

albumin (ALB), blood-based proteins serving as negative internal controls in this study, did 

not vary with FDG PET and hippocampal volume (Fig. S1). Together these data suggest that 

a reduction in FDG PET and hippocampal volume were linked to similar sets of proteins 

in CSF. The altered proteins indicate shared pathophysiologic changes, including reduced 

abundance of synaptic proteins and CSF Aβ42, increased abundance of the CSF tTau, 

pTau181, and two 14-3-3 proteins. In contrast, there were comparatively weak associations 

with metabolic proteins.

To assess the cumulative performance of the CSF 48 panel for estimating both FDG PET 

and hippocampal volume, we trained a penalized regression model for each of the following: 

the CSF 48 panel with and without canonical CSF biomarkers, CSF biomarkers alone, 

APOE genotype, and age. Canonical CSF biomarkers alone were able to predict FDG PET 

and hippocampal volume with an R of 0.49 and 0.41, respectively (FDG PET, p=6.4 × 

10−43, Fig. 1C; hippocampal volume, p=2.1 × 10−27, Fig. 1D). However, we found the 

highest correlation between the combination of the CSF 48 panel and canonical biomarkers 

could estimate FDG PET and hippocampal volume with an R of 0.60 and 0.55 (FDG PET, 

p=1.2 × 10−68, Fig. 1D; hippocampal volume, p=9.1 × 10−53, Fig. 1D) that significantly 

outperformed canonical CSF biomarkers alone (p < 0.001, permutation procedure). The CSF 

48 panel could predict FDG PET and hippocampal volume with an R of 0.57 and R of 0.54 

(FDG PET, p=4.1 × 10−62, Fig. 1C; hippocampal volume, p=5.1 × 10−49, Fig. 1D), and 

outperformed age, APOE genotype, and canonical AD biomarkers (p < 0.001, permutation 

procedure). Since age was a significant estimator of hippocampal volume, we estimated 

hippocampal volume using age, CSF protein panel and canonical biomarkers (R of 0.58, 

p=1.0 × 10−58) and found significant improvement in performance compared to the CSF 

protein panel and canonical biomarkers alone (p < 0.001, permutation procedure).

The CSF 48 panel estimates baseline cognitive function and clinical measures of AD 
dementia severity

Next we examined how proteins in the CSF 48 panel were associated with cognitive 

measures and dementia symptom severity, which are generally not captured by canonical 

CSF biomarkers. We first performed an association analysis of proteins in the CSF 48 

panel for the Montreal Cognitive Assessment (MoCA) and Clinical Dementia Rating scale 

Sum of Boxes (CDR-SB), separately. We found 24 proteins associated with the MoCA 

score and 19 proteins associated with CDR-SB (p < 0.01, t-test, FDR corrected; Fig. S1). 

As expected, the plasma proteins hemoglobin A/B (HBB, HBA) and albumin (ALB) did 
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not vary with MoCA and CDR-SB (Fig. S1). To understand the collective performance 

of the CSF 48 panel for predicting either baseline MoCA and CDR-SB, we trained a 

penalized regression model as described above for FDG PET and hippocampal volume. 

The canonical CSF biomarkers estimated MoCA and CDR-SB with an R of 0.45 and 0.47, 

respectively (MoCA, p=2.4 × 10−36, Fig. 1E; CDR-SB, p=1.9 × 10−39, Fig. 1F), highlighting 

the limitations of amyloid and tau biomarkers in predicting cognitive status and dementia 

severity. The CSF 48 panel estimated MoCA and CDR-SB with an R of 0.52 and 0.55 

for MoCA and CDR-SB, respectively (MoCA, p=6.6 × 10−50, Fig. 1E; CDR-SB, p=3.8 × 

10−56, Fig. 1F), which was an improvement from canonical CSF biomarkers alone (p < 

0.01, permutation procedure), APOE genotype (p <0.001, permutation procedure), and age 

(p <0.001, permutation procedure). The combination of the CSF 48 panel and canonical CSF 

biomarkers estimated MoCA and CDR-SB with R of 0.53 and 0.56 (MoCA, p=4.1 × 10−52, 

Fig. 1E; CDR-SB, p=2.2 × 10−59, Fig. 1F), outperforming the canonical CSF biomarkers 

alone (p <0.001, permutation procedure). Notably, the performance of the CSF 48 panel for 

predicting either the MoCA or CDR-SB was the same as the performance of the CSF 48 

panel plus canonical AD biomarkers (p > 0.05, permutation procedure; Fig. 1E,F).

The CSF 48 panel predicts changes in cognition, dementia severity, and hippocampal 
volume

Longitudinal studies like ADNI provide a powerful resource to study AD trajectories 

and develop prognostic biomarkers to predict rates of progression. Canonical biomarkers 

of amyloid and tau have limited prognostic ability, likely because additional molecular 

mechanisms contribute to the vulnerability and resilience of individuals that underlies 

variability in disease progression. We examined whether the proteins in the CSF 48 panel 

and canonical CSF biomarkers could predict trajectories of cognition (MoCA), dementia 

severity (CDR-SB) and hippocampal volume. A minimum of at least three visits over a 

minimum of three years were required to estimate the trajectories for each participant (Table 

2; Fig. S2). On average, controls showed a slower rate of cognitive decline compared to 

participants with MCI (MoCA, p=8.51× 10−3, t-test; Fig. S2) or AD (MoCA, p=1.4 × 

10−25, t-test; Fig. S2). Similarly, rates of decline on CDR-SB scores were significantly 

lower in controls than participants with MCI (CDR-SB, p=5.36 × 10−6, t-test) and AD 

(CDR-SB, p=2.2 × 10−44, t-test). Testing for association between estimated trajectories 

and the individual proteins in the CSF 48 panel showed 24, 20, and 3 associated proteins 

with cognitive, dementia severity, and hippocampal changes, respectively (p < 0.01, t-test, 

FDR-corrected, Fig. 2A). Among the individual CSF analytes, CSF pTau181 was most 

strongly correlated with annual MoCA and CDR-SB change, R of −0.49 and 0.42, followed 

by CSF tTau, YWHAZ, YWHAB, and CSF Aβ42 (Fig. S1). CSF Aβ42 was most strongly 

correlated with annual hippocampal volume change with an R of 0.36, followed by CSF 

pTau181 (R=−0.33), YWHAZ (R=−0.31), CSF tTau (R=−0.30), YWHAB (R=−0.27), and 

SMOC1 (R=−0.22) (Fig. 2A, Fig. S1).

We next evaluated the collective prognostic potential of the CSF 48 panel compared to the 

canonical CSF biomarkers to predict each of the trajectories using a penalized multivariate 

linear regression model. First, annual MoCA change was estimated using both canonical 

CSF biomarkers (r=0.52, p =1. 98 × 10−30, Fig. 2B,C) and the CSF 48 panel (r=0.51, 
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p =2.42 × 10−28, Fig. 2C), with no differences between the two measures (p > 0.05, 

permutation procedure). However, combining the CSF targeted peptides with canonical CSF 

biomarkers significantly improved cognitive trajectory prediction (r=0.62, p =9.12 × 10−45, 

Fig. 2C) compared to APOE genotype (p < 0.001, permutation procedure), canonical CSF 

biomarkers (p < 0.001, permutation procedure), or the CSF 48 panel alone (p < 0.001, 

permutation procedure). To predict rate of disease progression, annual CDR-SB change 

was also estimated using the canonical CSF biomarkers (r=0.47, p =1.51 × 10−24, Fig. 

2D) and the CSF 48 panel (r=0.51, p =1.83 × 10−29, Fig. 2D). Combining the canonical 

biomarkers and the targeted panel improved the prediction of CDR-SB (r =0.59, p =1.44 

× 10−41, Fig. 2D) compared to the panel (p < 0.01, permutation procedure) and existing 

biomarkers alone (p < 0.001, permutation procedure). For hippocampal volume trajectories, 

the model that combined the CSF 48 panel and canonical AD biomarkers resulted in the 

highest predicted correlation with observed change (r=0.51, p =1.4 × 10−16, Fig. 2E) and 

was a significant improvement compared to CSF protein panel alone (r=0.49, p=7.4 × 10−15) 

or canonical CSF biomarkers (r=0.39, p=1.2 × 10−9) alone using permutation (p < 0.001). 

Collectively, these results suggest the CSF 48 panel, reflecting additional pathophysiologies 

beyond amyloid and tau, provides substantial value when combined with the canonical 

CSF biomarkers for predictions of cognition, dementia severity, and hippocampal changes 

compared to existing CSF biomarkers alone.

The CSF 48 panel reveals distinct associations between existing CSF and PET biomarkers 
of AD

In vivo measurements of fibrillary amyloid in the brain using florbetapir (AV45) and other 

PET radioligands have emerged as important surrogate endpoints of AD pathophysiology 

(21) and are thought to reflect similar disease measures as CSF amyloid biomarkers due 

to their high concordance (1, 22, 23). Results of association testing between the CSF 

48 panel and AV45 binding and the canonical CSF biomarkers Aβ42, p-tau, and t-tau 

are shown in Fig. 3A. AV45 binding was significantly associated with 25 CSF proteins 

(FDR p < 0.01, t-test), while CSF Aβ42 was associated with 21 proteins, with only 11 

proteins showing an association with both CSF Aβ42 and AV45 (Fig. 3A, Fig. S1). CSF 

Aβ42 was positively associated with VGF and SCG2, neurosecretory granins involved in 

synaptic vesicle transport, and NPTXR and NPTX2, pentraxin associated proteins involved 

in glutamatergic synaptic transmission, indicating that low CSF Aβ42 was associated with 

decreased abundance of synaptic proteins (Fig. 3A). Notably, many of these synaptic 

proteins were not significantly associated with AV45 binding potential (p > 0.01, FDR 

corrected, t-test, Fig. 3A, Fig. S1). Rather, AV45 binding was most strongly associated 

with SMOC1, a matrisomal protein that strongly correlated with amyloid plaques and 

global pathology in AD brain (9, 10), and YWHAZ and YWHAB (Fig. 3A). In contrast to 

CSF Aβ42, AV45 binding was also positively associated with a host of proteins associated 

with glucose metabolism, including PKM, PKM2, CALM2, ALDOA, MDH1, and lactate 

dehydrogenase B (LDHB; Fig. 3A, Fig. S1). These results show a discordance between the 

two amyloid biomarkers within CSF peptide panel, with low CSF Aβ42 most strongly linked 

to synaptic proteins decreased in AD, and amyloid PET binding most strongly linked to 

matrisomal, 14-3-3 signaling, and metabolic proteins increased in AD.
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In contrast to CSF Aβ42 and PET amyloid biomarkers, CSF tTau and pTau181 are thought 

to reflect related but distinct AD pathophysiology with CSF tTau reflecting the intensity 

of synaptic loss and neurodegeneration and pTau181 reflecting an AD-specific pathological 

state associated with paired helical filament tau formation (24). Association testing with the 

CSF 48 panel revealed significant positive associations with CSF tTau and CSF pTau181 with 

the same 36 proteins (p < 0.01, FDR corrected, t-test, Fig. 3A). CSF tTau and pTau181 were 

strongly associated with many proteins within our panel, reaching correlations of 0.70–0.80 

(Fig. 3A). SMOC1, YWHAZ and YWHAB proteins all showed strong, positive associations 

with CSF tTau and pTau181. Both tau markers also showed strong, positive associations 

with neuronal proteins ontologically linked to cellular energy storage and metabolism (Fig. 

3A) (16). PKM1/2, CALM2, ALDOA, and MDH1 are all proteins central to glycolysis, 

gluconeogenesis and the citric acid cycle, indicating the presence of tau pathology is 

tightly linked to altered glucose and energy metabolism in AD. CSF tau measures were 

also associated with aspartate aminotransferase GOT1, an important enzyme in amino acid 

metabolism, and guanine deaminase (GDA), an enzyme associated with purine metabolism 

and microtubule polymerization. These data suggest elevated CSF tTau and pTau181 may 

not only be linked to matrisomal dysfunction and impaired 14-3-3 signaling but also reflect 

widespread dysregulation across cellular energy and metabolism pathways.

The CSF 48 panel accurately estimates existing CSF and PET biomarkers of AD

Following the approach for other studied outcomes, regularized linear regression was used to 

model the relationships between AV45 standard uptake value ratio (SUVR) with canonical 

CSF biomarkers, the CSF 48 panel, and a combination of canonical CSF biomarkers and 

the CSF 48 panel, separately. The performance of the models was assessed by correlating 

the actual and estimated values for each predicted outcome. CSF pTau181 and CSF Aβ42 

estimated AV45 SUVR with an R of 0.55 (p=1.1 × 10−56, Fig. 3B) and 0.67 (p=1.6 × 10−91, 

Fig. 3B), respectively. The CSF 48 panel collectively estimated AV45 SUVR with an R of 

0.66 (p=1.1 × 10−86, Fig. 3B) and the CSF 48 panel combined with CSF Aβ42 improved 

the prediction to an R of 0.75 (p=1.1 × 10−124, Fig. 3B), which reflected a significant 

improvement over the targeted CSF protein panel alone, CSF pTau181 or CSF Aβ42 (p < 

0.001, permutation procedure). Unsurprisingly, CSF tTau estimated CSF pTau181 well at R 

of 0.98 (p ~ 0, Figure 3C), and the CSF 48 panel estimated CSF pTau181 with an R of 0.92 

(p=3.78 × 10−282, Fig. 3C). These results show the CSF 48 panel can accurately estimate 

AV45 binding, CSF Aβ42, and CSF pTau181. Interestingly, some of the discordance between 

the two amyloid biomarkers AV45 SUVR and CSF Aβ42, may be explained by different 

synaptic, matrisomal, and metabolic pathophysiology reflected by the targeted CSF peptides.

The CSF 48 panel accurately estimates baseline ATN status and improves estimation of 
cognitive decline

We next determined which proteins in the CSF 48 panel best classified ATN biomarker 

status and predicted changes in cognitive function or dementia. We stratified participants 

into those with and without evidence for both A and T pathologies (A+T+ vs. A-T-) based 

on the canonical AD CSF biomarkers. An association analysis of proteins in the CSF 48 

panel in A+T+ versus A-T- individuals revealed 34 proteins were significantly increased 

in A+T+ compared to A-T- participants (p < 0.05, t-test, FDR-corrected, Fig. 4A), but no 
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proteins were significantly decreased. SMOC1, YWHAZ, and YWHAB were the strongest 

differentiators of A+T+ and A-T- individuals, with AUCs ranging from 0.90–0.91 (Fig. 4A). 

The metabolic proteins PKM1/2, ALDOA and CALM2 could also differentiate A+T+ and 

A-T- individuals with high accuracy with AUCs of 0.82–0.85 (Fig. 4A, Table S2). Synaptic 

proteins VGF, NPTXR, and SCG2 were much weaker differentiators of A+T+ and A-T- 

individuals with AUCs ranging from 0.50–0.55 (Fig. 4A, Table S2). The combination of 

the proteins in the CSF 48 panel could estimate the differences between A+T+ and A-T- 

individuals with an AUC of 0.97, 95% CI [0.95, 0.98]. Because of the distinct proteomic 

profiles associating with CSF vs PET measures of amyloid shown earlier (Fig. 3), we also 

performed classification of amyloid PET positive (AV45+) and negative individuals (AV45-) 

using an SUVR of 1.1. The CSF 48 panel l could differentiate between AV45+ and AV45- 

individuals with an AUC of 0.89, 95% CI [0.86, 0.92]. For comparison, we also classified 

individuals who were CSF Aβ42+ (A+) and CSF Aβ42- (A-). The SRM proteome could 

separate these two populations with an AUC of 0.88, 95% CI [0.86, 0.91].

While the ATN framework has been useful in identifying individuals at risk of cognitive 

decline, AD dementia syndromes are attributable to varying combinations of pathologies 

and pathophysiological processes and therefore substantial heterogeneity may exist even 

among A+T+ individuals. Trajectories for cognitive decline and dementia severity were 

compared by baseline AT status. A-T- individuals showed a slower rate of cognitive decline 

compared to A+T+ individuals (MoCA, p=3.58 × 10−17, t-test; CDR-SB, p=5.32 × 10−16, 

t-test; Fig. 4B–C), which agrees with a prior study (25). For A+T+ individuals, we trained 

a multivariate linear regression model to predict trajectories of cognition and dementia 

severity using the CSF 48 panel, the canonical CSF biomarkers, and the combination. The 

canonical CSF biomarkers alone modestly predicted disease trajectory (MoCA r =0.32, 

p=1.18 × 10−3, CDR-SB r =0.26, p=5.33 × 10−3, Fig. 4C–D). The CSF 48 panel somewhat 

better predicted these trajectories (MoCA r =0.42, p=1.40 × 10−5, CDR-SB r =0.44, p=8.30 

× 10−7, Fig. 4C–D), but without a significant difference (p > 0.05, permutation procedure). 

However, the combination of the CSF 48 panel plus the canonical CSF biomarkers was 

significant in predicting both MoCA (r =0.60, p=5.17 × 10−11) and CDR-SB trajectory 

(r =0.60, p=2.4 × 10−12, Fig. 4C–D). The CSF 48 panel plus canonical CSF biomarkers 

showed a significant improvement in prediction over the canonical biomarkers (p < 0.001, 

permutation procedure). Overall, the CSF 48 proteome improves prediction of cognitive 

trajectory and dementia severity decline in at risk individuals based on CSF amyloid and tau 

status.

DISCUSSION

Here, we tested the diagnostic and prognostic characteristics of a targeted CSF protein panel 

measured on baseline CSF from 706 ADNI participants. This work builds on prior studies 

of postmortem brain proteomics that identified brain protein networks consistently altered in 

AD brain and proteins alterations in CSF that reflect brain AD/ADRD pathophysiology 

(16). Here, we extended these findings using our recently developed SRM-MS assay 

with isotopically labeled peptide standards (17) to target and quantify 48 key proteins in 

baseline CSF samples from the ADNI study. The CSF 48 panel accurately predicted AD 

pathophysiology and disease as well as or better than the canonical CSF AD biomarkers, 
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Aβ42, tTau, and Tau181, with many individual proteins and the panel providing additional 

diagnostic and prognostic utility. Interestingly, the CSF 48 panel generally showed improved 

performance for predicting baseline AD imaging biomarkers (FDG PET, hippocampal 

volume, and AV45 SUVR) and measures of cognition and dementia severity (MoCA 

and CDR-SB). Moreover, when the CSF 48 panel was combined with the canonical AD 

CSF biomarkers, we observed improved predictive capabilities. Notably, the CSF 48 panel 

showed ability to predict annual change in cognition (MoCA), dementia severity (CDR-SB), 

and neurodegeneration (hippocampal volume, FDG-PET) as well or better than traditional 

AD CSF biomarkers and an additive improvement over existing AD CSF biomarkers alone. 

Unsurprisingly, the ability of the CSF 48 panel to predict progression was more pronounced 

among individuals whose CSF was consistent with a higher risk for having underlying AD 

pathophysiology. Together, the combined diagnostic and prognostic information of the CSF 

48 panel, which measures additional pathophysiological processes beyond amyloid and tau, 

may improve identification of those at risk for AD and future decline.

The CSF 48 panel incorporated proteins across a range of dementia-related biological 

pathways and therefore was able to identify heterogeneity across the various AD markers. 

Due to their high concordance across individuals, CSF Aβ42 and amyloid PET have 

been generally thought to reflect the same underlying pathological state and often used 

interchangeably as amyloid biomarkers (1, 22, 23). However, our findings revealed distinct 

proteomic signatures for CSF Aβ42 and amyloid PET. Low CSF Aβ42 most strongly linked 

to synaptic proteins decreased in AD while amyloid PET binding was most strongly linked 

to increased abundance of matrisomal, 14-3-3 signaling, and metabolic proteins in AD. 

Thus, we advocate against using these biomarkers interchangeably.

A theme that emerged from this study was the strong, positive association between CSF 

tTau and pTau181 with neuronal proteins ontologically linked to cellular energy storage and 

metabolism (16), with many metabolic proteins exhibiting correlation coefficients greater 

than 0.8. The correlation between CSF Tau and glycolytic proteins has been observed in 

other studies (26, 27). Metabolic proteins could differentiate the presence of increased CSF 

tTau and pTau181 with AUCs greater than 0.9. Notably, these metabolic proteins were not 

as strongly associated with CSF Aβ42, AV45, hippocampal atrophy, and surprisingly, FDG 

PET. Unlike SMOC1, YWHAZ, and YWHAB, which were also strongly associated with 

CSF tTau and pTau181, the metabolic proteins were poor estimators of clinical diagnosis. 

Together, our data suggested that CSF tTau and pTau181 are more tightly linked to cellular 

energy and metabolism compared to the other markers of AD. These findings also have 

potential biological implications that warrant future studies.

The CSF 48 panel was selected based on integration of large-scale brain and CSF protein 

networks, providing an unbiased approach that also sheds insights into the potential 

mechanisms underlying their roles in disease biology (10, 16). The divergence in CSF 

protein profiles associated CSF Aβ42 and amyloid PET, respectively, points towards distinct 

pathophysiologies linked to these two amyloid biomarkers. Unlike PET measures of fibrillar 

amyloid deposits in brain, low concentrations of CSF Aβ42 in AD were strongly associated 

with synaptic proteins that increased in CSF and decreased in brain (16). These changes 

begin early in the asymptomatic phases of disease (10, 16, 17) and together with the 
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metabolic changes noted above, may reflect synaptic plasticity, microglial pruning and 

extrusion of synaptic material as we and others have discussed previously (16, 28). We 

speculate that reductions in CSF Aβ42 thus reflect changes in synaptic biology rather than 

deposition into plaques in brain. In contrast, amyloid PET was strongly associated with 

increases in proteins linked to the matrisome and 14-3-3 signaling, including SMOC1, 

YWHAZ, and YWHAB. SMOC1 is one of the most differentially expressed proteins in 

AD brain, and the hub protein in the matrisome module M42, which is highly correlated 

with AD neuropathology (r=0.75) and also contains Aβ42 and Apoe among its 32 protein 

members (9). Many of the proteins in this module bind heparin and are histologically 

associated with Aβ plaques (9, 29), potentially facilitating protein aggregation. As members 

of a synaptic module in brain (16), we speculate that the increased CSF abundance of 

14-3-3 proteins reflect a neuritic response to Aβ42 deposition. Thus, we suggest that these 

biomarkers are good biofluid proxies for Aβ42 plaques in brain.

The CSF 48 panel also demonstrated specific proteins associated with FDG PET and 

hippocampal atrophy, currently considered biomarkers of neurodegeneration. Our results 

suggest that reductions in NPTX2 and NPTXR are associated with reduced FDG uptake and 

hippocampal volume loss. These results align with studies showing NPTX2 and NPTXR 

down-regulation prevents homeostatic scaling of excitatory synapses eventually leading to 

volume loss and cognitive dysfunction in AD 33–36. Surprisingly, FDG PET was more 

associated with decreased abundance of synaptic proteins rather than metabolic proteins, 

indicating that global measure of FDG uptake may reflect synaptic loss (or reduced synaptic 

activity) rather than brain glucose metabolism.

An advantage of this study was a large, well-characterized dataset consisting of a wide 

spectrum of individuals from ages 55–90 and across the US, that were not pre-selected 

based on discrete clinical categories or on the presence of amyloid and tau pathology. By 

using the well-characterized ADNI longitudinal dataset, several striking biological insights 

were identified. The CSF 48 panel significantly improved predictions for future declines in 

cognition, dementia severity, and hippocampal atrophy compared to the canonical AD CSF 

biomarkers and provided additional value when combined with existing CSF biomarkers 

for predicting these outcomes. Even among A+T+ individuals, we found the CSF 48 panel 

could nearly double the estimation of future cognitive decline and dementia risk. Future 

approaches to assess cognitive decline and dementia risk may therefore benefit from the 

incorporation of peptides such as those in our SRM panel representing multiple biological 

pathways.

Our study has limitations. The proteins in the CSF 48 panel were selected based on 

differences in abundance between control and AD cases, with these populations defined 

using Aβ42, tTau, and pTau181 thresholds (16). Thus, the selected proteins may be 

limited in their ability to find proteins relevant to clinical endpoints that are independent 

of amyloid and tau. In future studies, we plan to expand measured proteins that 

relate to clinical endpoints independent of ATN. Another limitation is that the ADNI 

cohort is not representative of the diversity of the population, and the canonical AD 

biomarkers show important racial differences that pose challenges to clinical translation 

in real world practice. Further investigation is needed in populations with greater disease-
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heterogeneity and racial/ethnic diversity to understand the generalizability of these findings. 

Despite these limitations, the CSF 48 panel improves upon existing ATN biomarkers to 

predict many pathophysiological mechanisms linked to AD and ADRD brain, distinguish 

pathophysiological mechanisms based on their proteomic signature, and improve the 

prediction of disease progression, future changes in cognition, dementia severity, and 

hippocampal volume.

MATERIALS AND METHODS

Study Design

The study was designed to identify whether a targeted CSF protein panel predicts future 

cognitive decline or dementia severity. To test the diagnostic utility of these proteins and 

compare them to existing AD biomarkers, CSF collected at baseline visits were assayed 

from 706 participants recruited from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). Samples were randomized and blinded for mass spectrometry analyses.

ADNI is a longitudinal, observational study with participant ages ranging from 55 to 

90 designed to collect and validate biomarkers to predict progression to AD. ADNI was 

launched in 2003 as a public-private partnership with a primary goal to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and AD. Participant recruitment for 

ADNI is approved by the Institutional Review Board of each participating site. All ADNI 

participants undergo standardized diagnostic assessment that renders a clinical diagnosis 

of either control, MCI, or AD using standard research criteria (30). Control participants 

had no subjective memory complaints, tested normally on Logical Memory II of Weschler 

Memory Scale, had an MMSE between 24–30, and a CDR of 0 with memory box score of 

0. MCI participants reported subjective memory concerns and exhibited abnormal memory 

function on Logical Memory II of Weschler Memory Scale, an MMSE between 24–30, 

and CDR of 0.5 with memory box score of at least 0.5. AD participants also exhibited 

subjective memory concerns but also met NINCDS/ARDA criteria for probable AD. AD 

participants also showed abnormal memory function on Logical Memory II subscale from 

the Weschler Memory Scale, an MMSE of 20–26, and CDR of 0.5 or 0.1. Inclusion criteria 

for the current study were enrollment in ADNI2 or ADNI GO and an available baseline 

CSF sample. Notably, there was no overlap between the 706 ADNI participants in this 

study and the Emory ADRC cohort that was used to develop the targeted SRM assay (17). 

Individuals in this study had CSF assessments for Aβ42, tTau, and pTau181 using the Elecsys 

immunoassay detection platform (Roche Diagnostics Corporation, Indianapolis, IN USA) by 

ADNI investigators (31). We used ADNI-established thresholds of CSF Aβ42 less than 980 

pg/ml and pTau181 greater than 21.8 pg/ml to categorize individuals as either positive or 

negative for the respective measure (A+T+, A-T+, A+T-, and A-T-) (31). We also separated 

individuals into AV45+ and AV45- individuals using an SUVR of 1.1. To assess clinical 

outcomes, we used the Montreal Cognitive Assessment (MoCA) scores and CDR sum of 

boxes (CDR-SB).
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Proteomic peptide measurement in CSF

The CSF protein panel measures 48 key proteins that were selected after evaluation of over 

200 tryptic peptides considered from integration of the brain and CSF proteome network 

analysis (16, 17). Technical details of the discovery and validation of the selected peptides 

are described in Watson et al., 2022 (17), The participants in Watson et al., 2022 were 

distinct from the current study. The CSF protein panel targets 62 peptides to measure the 48 

proteins. To select the most informative peptides for the 48 proteins a differential analysis 

of the baseline diagnosis of AD versus normal cognition was performed. For proteins with 

more than one peptide measured, we selected the peptide that most strongly associated with 

AD diagnosis for all subsequent analyses (Fig. 1A, Table S1). In brief, ADNI CSF aliquots 

were thawed and further aliquoted onto 9 shallow-well plates. On each plate, two pooled 

references were included that mimic AD-like (A+T+) and control-like (A-T-) CSF for 

quality control. In parallel, 50 µL each sample CSF and quality control aliquot were reduced, 

alkylated, and denatured with tris-2(-carboxyethyl)-phosphine (5 mM), chloroacetamide (40 

mM), and sodium deoxycholate (1%) in triethylammonium bicarbonate buffer (100 mM) at 

95°C for 10 min, followed by a 10-min cool down at room temperature. CSF proteins were 

digested with Lys-C (Wako; 0.5 µg; 1:100 enzyme to protein ratio) and trypsin (Promega; 5 

µg; 1:10 enzyme to protein ratio) overnight at 37°C. After digestion, heavy labeled standards 

(15 µL per 50 µL CSF) were added to the peptide solutions followed by acidification with 

a 1% trifluoroacetic acid (TFA) and 10% formic acid (FA) solution to a final concentration 

of 0.1% TFA and 1% FA (pH ≤ 2). Sample plates were placed on an orbital shaker at 300 

rpm for at least 10 minutes to ensure proper mixing. Plates were centrifuged (4680 rpm) for 

30 minutes to pellet the precipitated surfactant. Peptides were desalted with Oasis PRiME 

HLB 96-well, 30mg sorbent per well, solid phase extraction (SPE) cleanup plates from 

Waters Corporation (Milford, MA) using a positive pressure system. Each SPE well was 

conditioned (500 µL methanol) and equilibrated twice (500 µL 0.1% TFA) before 500 µL 

0.1% TFA and supernatant were added. Each well was washed twice (500 µL 0.1% TFA) 

and eluted twice (100 µL 50% acetonitrile/0.1% formic acid). All eluates were dried under 

centrifugal vacuum.

Each aliquot was reconstituted in 50 µL mobile phase A (0.1% FA). Resuspended peptides 

(20µL) were separated on an AdvanceBio Peptide Map Guard column (2.1×5mm, 2.7 μm, 

Agilent) connected to AdvanceBio Peptide analytical column (2.1×150mm, 2.7 μm, Agilent) 

by a 1290 Infinity II system (Agilent) and monitored on an TSQ Altis Triple Quadrupole 

mass spectrometer (Thermo Fisher Scientific). The sample was developed over a 14-min 

gradient using mobile phase A (MPA; 0.1% FA in water) and mobile phase B (B; 0.1% FA 

in acetonitrile) with flow rate at 0.4 mL/min. The gradient was from 2% to 24% B over 12.1 

minutes, then from 24% to 80% over 0.2 min and held at 80% B for 0.7 min. The mass 

spectrometer was set to acquire data in positive-ion mode using single reaction monitoring 

acquisition. Three transitions were acquired for each target analyte cycle time set to 0.8 sec, 

Q1 resolution 0.7 FWHM, Q2 resolution 1.2 FWHM, and CID gas 1.5 mTorr. Total area 

ratios for each peptide were calculated by summing the area for each light (3) and heavy (3) 

transition and dividing the light total area by the heavy total area using Skyline. There were 

9 total sample plates. Each plate was run independently with two quality control aliquots at 

the beginning, end, and after every 20 samples per plate.
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Statistical analysis

Cognitive and Volumetric Trajectories—Cognitive trajectories were estimated by 

calculating the slope of the MoCA change from baseline for each participant with a 

minimum of three visits and a minimum follow-up three years. Cognitive trajectories 4SD 

above or below the mean were removed given the inherent variability associated with 

cognitive trajectories calculated from small number of visits. Trajectories for CDR-SB and 

hippocampal volume were calculated using the same approach for cognitive trajectory. The 

differences in cognitive, CDR-SB, and hippocampal volume trajectories by last cognitive 

diagnosis were compared using an unpaired, two-tailed, t-test.

Differential Expression and Correlational Analysis—All differential expression 

analysis was performed using an unpaired, two-tailed t-test for each outcome. Outcomes 

included AD clinical status and pairwise comparisons of individuals for published CSF 

Aβ42 and tTau threshold. Multiple hypothesis testing was accounted for using FDR adjusted 

p-value by the Benjamini-Hochberg method. We also used Pearson correlation to compare 

outcomes with individual peptide abundance. Hemoglobin A (HBA), B (HBB) and albumin 

(ALU) were not expected to vary with AD pathophysiology and, therefore, used as negative 

internal controls for differential expression and correlational analysis. The outcome variables 

of interest were CSF Aβ42, CSF tTau, CSF pTau181, AV45, FDG PET, hippocampal volume, 

MoCA, CDR-SB, annual MoCA change, annual CDR-SB change, and hippocampal volume 

change. Similar to the analysis of trajectories, outcomes outside 4 standard deviations from 

the mean were removed.

Classification and Regression Analysis—To test the predictive performance of each 

putative CSF protein for estimating clinical diagnosis, a logistic regression classifier (sklearn 

0.24.2) was trained using a five-fold cross validation to classify individuals as cognitively 

normal or AD. Performance was assessed using the area under the true positive and false 

positive rate for the receiver operator curve. To determine the performance of demographic 

data, previously measured biomarkers, or the SRM CSF proteins generated by this study 

for estimating clinical diagnosis or dementia-related outcomes, we used multivariate 

logistic regression classifiers with elastic net regularization for dichotomous outcomes and 

multivariate linear regression with elastic net regularization for continuous outcomes. A 

five-fold cross validation to select the best L1-ratio for regularization was implemented to 

generate classification or regression estimates for all participants. Performance was assessed 

using a single area under the ROC curve for classification models and correlating the true 

and estimated outcomes for regression models. A non-parametric bootstrap procedure was 

used to estimate confidence intervals for AUC measurements. Other multivariate linear 

regressions with elastic net regularization were performed using a similar procedure.

We compared the predictive performance of the CSF peptides to existing biomarker 

or demographic data. A non-parametric permutation procedure was used to compare 

performance for logistic regression models or linear models trained using CSF peptides and 

existing biomarker or demographic data. Our null hypothesis was that across participants the 

CSF peptides showed no difference in performance to existing biomarker or demographic 

data. We computed the true difference in performance for the CSF peptides and existing 
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biomarker data. We then randomly permuted the estimation generated CSF peptides and 

existing biomarkers for each participant and recomputed the difference in performance. 

Significance was established using 1000 permutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The CSF 48 panel estimates baseline cognitive FDG PET, hippocampal volume, cognitive 
status, and dementia severity in ADNI.
(A) Differential association analysis of all CSF analytes for clinical diagnosis of AD versus 

cognitively normal control. Analytes with FDR-adjusted significant association are shown in 

shades of blue that reflects their AUC comparing controls to AD dementia. Non-significant 

proteins are shown in grey (p > 0.05, FDR corrected). B) The cumulative performance of 

canonical AD CSF biomarkers (“CSF Aβ42+Tau”), the CSF 48 panel (“CSF 48”), and the 

existing AD CSF biomarkers plus the CSF protein panel (“CSF 48 + CSF Aβ42 + Tau”), 

estimated as the area under the curve (AUC) for clinical diagnosis of AD versus cognitively 

normal control. Bar plots show the Pearson correlation coefficients between observed and 

predicted values of (C) FDG PET, (D) Hippocampal Volume (“Hipp Volume”), (E) Montreal 

Cognitive Assessment (MoCA), (F) Clinical Dementia Rating scale Sum of Boxes (CDR-

SB) for models using the following predictors: 1) the CSF protein panel plus existing AD 

CSF biomarkers plus (“CSF 48 + CSF Aβ42 + Tau”), 2) the CSF protein panel alone (“CSF 
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48”), 3) canonical AD CSF biomarkers alone (“CSF Aβ42+Tau”), 4) APOE E4 dose alone, 

or 5) Age alone. (*p < 0.05, **p < 0.01, ***p < 0.001. FDG-PET n = 703, Hippocampal 

Volume n = 640, MoCA n = 694, CDR-SB n = 704). NS (non-significant).
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Fig. 2. The CSF 48 panel predicts future change in cognition, dementia severity, and 
hippocampal volume.
(A) A heatmap of FDR-adjusted Pearson correlations are shown for CSF analytes and 

change in CDR-SB, MoCA, or hippocampal volume. The CSF peptides are labeled as their 

respective gene symbols, and the strength and direction of correlation is shown by the red 

to blue scale and non-significant correlations are shown as grey. (B) Line plot of individual 

estimates of MoCA decline over time. The color of each line reflects the baseline clinical 

diagnosis. Bar plots show the Pearson correlation coefficients of between observed and 

predicted values. (C) MoCA, (D) CDR-SB, or (E) Hippocampal volume for models using 

the following predictors: 1) the CSF protein panel plus existing AD CSF biomarkers plus 

(“CSF 48+CSF Aβ42+Tau”), 2) the CSF protein panel alone (“CSF 48”), 3) canonical AD 

CSF biomarkers alone (“CSF Aβ42+Tau”), 4) APOE E4 dose alone, or 5) Age alone. (*p < 

0.05, **p < 0.01, ***p < 0.001. MoCA N=412, CDR-SB n =429, Hippocampal Volume n = 

227). NS (non-significant).
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Fig. 3. The CSF 48 panel estimates amyloid and tau biomarkers.
(A) Heatmaps of Pearson correlations are shown for CSF peptides that were significantly 

associated with one or more of the following outcomes after FDR-adjustment: AV45 SUVR, 

CSF Aβ42, CSF pTau181, and CSF tTau,. The significant CSF peptides are labeled as their 

respective gene symbols, and the strength and direction of the correlations are shown by the 

red to blue scale and non-significant correlations are shown as grey (FDR p < 0.01, t-test ) 

(B) Scatter plot showing Pearson correlations between the observed and predicated estimate 

of AV45 SUVR using CSF pTau181 (top left), CSF Aβ42 (top right), the CSF protein panel 

(“CSF 48”, bottom left), or the CSF protein panel plus CSF Aβ42 (“CSF Aβ42 + CSF 

48”, bottom right). (C) Scatter plot showing Pearson correlations between the observed and 

predicated estimate of CSF pTau181 using either CSF tTau (top) or the CSF protein panel 

(“CSF 48”, bottom) as predictors.
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Fig. 4. The CSF 48 panel predicts future change in cognition and dementia severity among in 
patients with A+T+ biomarker status.
(A) Analytes with FDR-adjusted significant association are shown in shades of blue that 

reflect their AUC comparing A+T+ versus A-T- status. Non-significant proteins are shown 

in grey (p > 0.05, FDR corrected). (B) The left panel is a line plot of individual estimates 

of MoCA decline over time. The color of each line reflects the baseline A/T status. The 

right panel is a box plot of the annual MoCA change for individuals with baseline A-T- and 

A+T+. Bar plots show the Pearson correlation coefficients between observed and predicted 

values of (C) MoCA or (D) CDR-SB for models using the following predictors: 1) the 

CSF protein panel plus existing AD CSF biomarkers plus (“CSF-48+CSF Aβ42+Tau”), 2) 

the CSF protein panel alone (“CSF-48”), 3) canonical AD CSF biomarkers alone (“CSF 

Aβ42+Tau”), 4) APOE E4 dose alone, or 5) Age alone. (*p < 0.05, **p < 0.01, ***p < 

0.001. MoCA, n = 101; CDR-SB, n = 113)
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Table 1.

Demographic and Clinical Characteristics of Study Participants.

Control MCI Dementia Overall

 No. Participants 220 376 110 706

Age at Enrollment

 Mean (SD) 73.1 (6.04) 71.1 (7.57) 74.0 (8.31) 72.2 (7.34)

 Median [Min, Max] 72.7 [56.2, 85.9] 71.1 [55.0, 91.4] 74.8 [55.9, 90.3] 72.3 [55.0, 91.4]

Sex

 Female 123 (55.9%) 172 (45.7%) 45 (40.9%) 340 (48.2%)

 Male 97 (44.1%) 204 (54.3%) 65 (59.1%) 366 (51.8%)

Clinical Diagnosis

 Control 220 (100%) 0 (0%) 0 (0%) 220 (31.2%)

 MCI 0 (0%) 376 (100%) 0 (0%) 376 (53.3%)

 Dementia 0 (0%) 0 (0%) 110 (100%) 110 (15.6%)

ATN Category

 A-T- 91 (41.4%) 116 (30.9%) 3 (2.7%) 210 (29.7%)

 A-T+ 53 (24.1%) 57 (15.2%) 6 (5.5%) 116 (16.4%)

 A+T- 45 (20.5%) 69 (18.4%) 10 (9.1%) 124 (17.6%)

 A+T+ 31 (14.1%) 134 (35.6%) 91 (82.7%) 256 (36.3%)

APOE genotype

 e2-e2 0 (0%) 1 (0.3%) 0 (0%) 1 (0.1%)

 e2-e3 26 (11.8%) 26 (6.9%) 2 (1.8%) 54 (7.6%)

 e2-e4 3 (1.4%) 5 (1.3%) 1 (0.9%) 9 (1.3%)

 e3-e3 131 (59.5%) 165 (43.9%) 34 (30.9%) 330 (46.7%)

 e3-e4 53 (24.1%) 139 (37.0%) 48 (43.6%) 240 (34.0%)

 e4-e4 7 (3.2%) 40 (10.6%) 25 (22.7%) 72 (10.2%)

MoCA

 Mean (SD) 25.9 (2.46) 23.4 (3.14) 17.3 (4.76) 23.2 (4.25)

Median [Min, Max] 26.0 [19.0, 30.0] 23.0 [14.0, 30.0] 18.5 [4.00, 25.0] 24.0 [4.00, 30.0]

 Missing 4 (1.8%) 1 (0.3%) 4 (3.6%) 9 (1.3%)

CDR-SB

 Mean (SD) 0.0500 (0.158) 1.43 (0.853) 4.60 (1.73) 1.49 (1.74)

 Median [Min, Max] 0 [0, 1.00] 1.25 [0.500, 4.50] 4.50 [1.00, 10.0] 1.00 [0, 10.0]
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Table 2.

Trajectories of cognition, dementia severity, and hippocampal volume in ADNI participants.

MoCA CDR-SB Hippocampal Volume (mm3/yr)

 No. Participants 412 429 227

Age at Enrollment 71.4 ± 7.0 71.6 ± 7.0 70.5 ± 7.2

Follow-Up Duration 5.79 ± 1.8 5.85 ± 1.8 4.08 ± 0.55

Number of Visits 6.51 ± 1.5 6.58 ± 1.6 5.74 ± 0.95

Annual Trajectory −0.27 ± 0.90 0.30 ± 0.72 −127 ± 113.2
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