
RESEARCH PAPER

MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer 
cells by binding ITGB4/LAMB3 to activate the AKT signaling pathway
Ding Ma a,b#, Shuwen Liua#, Kua Liua#, Lingkai Konga, Lingjun Xiaoa, Qilei Xinc, Chunping Jianga,c*, and Junhua Wu a,c*

aState Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory 
of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China; bDepartment of Gastroenterology, Third Xiangya Hospital, Central 
South University, Changsha, Hunan, China; cJinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, 
Shandong Province, China

ABSTRACT
Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and 
protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the 
activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from 
the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results 
were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect 
of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression 
experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation 
assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, 
MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT path
way by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC 
cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. 
In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, 
partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our 
findings provide a possible molecular target for CRC therapy.
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Introduction

Colorectal cancer (CRC) is one of the most common malig
nant digestive tract cancers in the world. CRC accounts for 
approximately 1/10 of all tumor deaths.1 An in-depth analysis 
of the potential mechanism of CRC occurrence and develop
ment is urgent and essential for the development of effective 
therapeutic targets and new clinical treatment strategies.

Single-cell RNA sequencing (scRNA-seq) has enabled the 
systematic study of all kinds of human diseases, especially for 
tumors.2,3 Wang et al. discovered that cancer epithelial cells are 
important in tumor CRC progression, and key targets corre
lated with the prognosis of CRC have been found via single-cell 
RNA sequencing (scRNA-seq).4

The molecular landscapes and phenotypes of CRC have been 
revealed through extensive multiomics studies.5,6 The scRNA-seq 
method revealed the dynamic relationships among cellular com
ponents and the diversity of their functions, and CRC molecular 
subtypes were determined by scRNA-seq.7,8 To reveal an 
unbiased mechanism resulting in CRC tumorigenesis and devel
opment, we performed detailed analyses of scRNA-seq data from 
the GSE144735 dataset. The differentially expressed genes 
between normal epithelial cells and tumors were identified. 
Pathway analyses were then performed to identify pathways that

were enriched in DEGs, after which we used WGCNA to identify 
the gene group (module) that had the strongest pathway correla
tion. Finally, we identified the unbiased relationship between the 
pathway and the genes. The results revealed that the PI3K-AKT 
pathway was active in tumor cells and that MDFI upregulated the 
PI3K-AKT pathway by directly regulating LAMB3 and ITGB4.

MDFI is an inhibitor of the MyoD family. It has a highly 
conserved carboxyl terminal functional domain, the I-mfa 
domain (an inhibitor of the MyoD family a). As an important 
myogenic inhibitory protein in early embryonic development, 
MDFI is generally considered to regulate the development of 
biological segments by inhibiting myogenesis through two 
mechanisms: 1. Shielding the nuclear localization signal of 
the MyoD family and maintaining it in the cytoplasm; 2. 
Regulating the function of myogenic transcription factors in 
cells and inhibiting DNA binding activity.9 With the contin
uous progression of MDFI research, MDFI was found to have 
significantly higher expression in pancreatic cancer, hepato
cellular carcinoma, prostate cancer and ovarian cancer tissues 
than in adjacent normal tissues.10,11 In CRC, the MDFI pro
moter is highly methylated, which is a key event in tumorigen
esis and progression.12 Wu T et al. confirmed that MDFI is
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closely related to drug action in breast cancer.13 However, the 
role of the MDFI in CRC has not been fully elucidated.

Coant N et al. demonstrated that AKT signaling acceler
ates the progression of the cell cycle and promotes cell 
proliferation in CRC.14 It was further confirmed that activa
tion of the AKT signaling pathway in CRC led to increased 
CCND1 protein expression.15 Mutations in upstream regu
lators, such as ITGB4 and LAMB3, are often responsible for 
abnormal activation of AKT signaling pathways. Abnormal 
expression of ITGB4 and LAMB3 has been proven to be 
a marker of poor prognosis in CRC patients, and ITGB4 
and LAMB3 overexpression induces the activation of the 
AKT pathway and promotes cell proliferation, tumor growth 
and metastasis in CRC.16–18 Leng et al. discovered that 
ITGB4 activated the AKT pathway by binding FAK.18 

LAMB3 is an extracellular matrix protein (ECM),19 which 
is also known to interact with integrins and further regulate 
the AKT pathway.20 Zhang et al. also found that inhibition 
of LAMB3 suppresses PI3K/Akt signaling pathway 
activation.21 However, the regulatory mechanism of ITGB4 
and LAMB3 in CRC is still vague.

In this study, bioinformatics analysis and biological experi
ments confirmed that MDFI promoted CRC progression and 
hindered the antitumor activity of chemotherapeutic drugs in 
CRC. The knockdown of MDFI in CRC significantly inhibited 
proliferation, induced cell cycle arrest and restored the ther
apeutic efficacy of 5-fluorouracil (5-FU) and oxaliplatin in 
CRC. We further confirmed that direct interactions between 
MDFI and LAMB3 and between MDFI and ITGB4 mediate the 
AKT pathway. These results help us better understand the 
cancer-promoting characteristics of the MDFI gene, overcome 
the limitations of CRC treatment and develop effective treat
ment regimens.

Results

Differences between tumor epithelial cells and normal 
epithelial cells in CRC

The most prevalent forms of cancer are of epithelial origin. We 
obtained scRNA-seq data from gse144735, which contains 
27,414 cells from 6 Belgian patients with CRC.8 We also 
obtained an annotation dataset from gse144735 (Table S1). 
Then, we selected epithelial cells based on the annotation 
dataset (Table S1), and 6168 epithelial cells were analyzed. 
All percent.mt (the percentage of mitochondrial genes) were 
below 20% in cells from the tumor group, the normal 
(matched normal mucosa) group, and the border group 
(Figure 1a), which indicated that the cells were not strongly 
disrupted. The nFeature (the number of genes present in the 
sample) and nCount (the total UMI count) data were plotted 
for each sequenced cell (Figure 1a). The three groups were 
similar with respect to nCount and nFeature, which demon
strated the reliability of the data (Figure 1b).

To classify the cells, we performed PCA dimensionality 
reduction (Figure 1c–d) and then applied the uniform mani
fold approximation and projection (UMAP) dimensional 
reduction technique to cluster the cells (Figure 1e). We

discovered that cells from the tumor and matched normal 
mucosa could be separated by UMAP (Figure 1e). The 
border had both tumor and matched normal mucosa. 
Therefore, in the follow-up study, to identify DEGs in 
CRC, we examined the gene pool between tumor epithelial 
cells and normal epithelial cells.

Activation of the PI3K-AKT pathway in CRC epithelial cells

We divided the normal and tumor epithelial cells based on the 
annotation dataset and obtained the expression matrices of 3356 
cells. Differential gene expression analysis was performed using 
Seurat,22 and 715 genes were found to be differentially expressed 
(Table S2). We performed KEGG analysis to further understand 
the functions, pathways and upstream regulators of the differen
tially expressed genes. We discovered that the PI3K-AKT signal
ing pathway, which is closely associated with the development of 
tumors, was activated in tumor cells (Figure S1A). All PI3K-AKT 
signaling pathway-associated genes were identified via the KEGG 
dataset. In CRC tumor tissues, 14 genes associated with the PI3K- 
AKT signaling pathway were significantly overexpressed com
pared with those in normal tissues (Figure S1B-S1C, Table 1).

The expression of the 420 genes was correlated with the 
expression pattern of the AKT pathway associated genes 
in CRC

We chose the top 5000 variant genes for WGCNA in normal 
and tumor epithelial cells, and we set the power of β = 7as the 
soft‐thresholding (scale‐free R2 = 0.85) (Figure S2A-S2B). We 
further divided the genes into four modules based on average 
linkage hierarchical clustering (Figure S2C). Among these 
modules, the gray module was strongly correlated with most 
of the PI3K-AKT signaling pathway-associated genes 
(COL1A1, ITGB4, COL1A2, COL6A1, DDIT4, SPP1, 
LAMB3, ITGA3, EPHA2 and ITGB1) and tumor stage 
(Figure S2D). A total of 420 genes in the gray module were 
used for further analysis (Table S3).

MDFI regulated the AKT pathway by directly interacting 
with LAMB3 and ITGB4 in CRC

To find the direct relationship between 420 genes in the gray 
module and PI3K-AKT signaling pathway associated genes, we 
obtained help from human binary protein interactions 
(HuRIs). We calculated the level 1, level 2, and level 3 counts 
(see Methods for details) between genes in the gray module 
and PI3K-AKT pathway associated genes (Table S4). The 
sorting was done by the sum of level 1, level 2 and level 3 
counts, with the MDFI ranked as number 1 (Table S4). MDFI 
can directly contact LAMB3 and ITGB4 (Figure 2a). Therefore, 
MDFI is a potential gene that can influence the PI3K-AKT 
pathway.

Our findings were confirmed by using the validation 
dataset TCGA and the CCLE dataset. MDFI expression 
was clearly correlated with LAMB3 and ITGB4 expression 
(Figure 2b). We also found that the expression of MDFI in 
the colorectal cell line was closely associated with that of 
ITGB4 and LAMB3 (Figure 2c).
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The MDFI is correlated with tumour malignancy, as 
indicated by the Ann Arbor stage, survival time and 
chemotherapy sensitivity in CRC

The TCGA database showed that MDFI gene expression 
levels were upregulated in colorectal tumor tissues compared

with those in normal tissues (Figure 2d). Subsequently, we 
analyzed the clinical manifestations of CRC patients and 
found that CRC patients’ MDFI expression levels were posi
tively correlated with their Ann Arbor stage (Figure 2e–h). 
The MDFI reduced disease-specific survival (Figure 2i–j).

Figure 1. Identification information of epithelial cells based on scRNA‐seq data. A. nCount, nFeature and percent.Mt in colorectal epithelial cells (n = 6168). B. The 
relationship between nCount and nFeature in colorectal epithelial cells. C-D. PCA discriminated normal (n = 1144), tumor (n = 2212) and border (n = 2812) colorectal 
epithelial cells. E. UMAP representation of the colorectal epithelial cell landscape. Upper left: total epithelial cells. Upper right: matched normal mucosal epithelial cells. 
Lower left: tumor epithelial cells. Lower right: border epithelial cells.
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Lymph node metastasis was detected by HE staining. Then, 
the chi-square test was used to analyze the data of HE- 
stained CRC samples from the TCGA (n = 260). There was 
a significant positive correlation between lymph node HE 
staining positivity and MDFI expression. Tissues with high 
MDFI expression had a higher proportion of positive HE 
staining (Table 2).

The TCGA database showed that chemotherapy is an impor
tant treatment for colorectal cancers (Table S5). Of the 154 
patients treated with chemotherapy, MDFI reduced overall sur
vival and disease-specific survival (Figure 2k–l). These results 
suggested that CRC patients treated with chemotherapy and 
with high MDFI expression have shorter survival and poorer 
prognosis than CRC patients with low MDFI expression. 
Therefore, CRC prognosis is significantly affected by the MDFI.

MDFI promoted CRC cell proliferation in vitro and CRC 
growth in vivo

To investigate the effect of MDFI on the progression of 
CRC in vitro and in vivo, we transfected MDFI- 
knockdown shRNA (shMDFI#1, shMDFI#2) and MDFI- 
overexpressing lentiviral vector plasmids (LvMDFI) into 
HCT116 and SW620 cells to construct MDFI-dysregulated 
CRC cells. The successful construction of CRC cell lines 
with MDFI knockdown or overexpression was confirmed at 
the mRNA and protein levels, respectively (Figure 3a–d). 
We subsequently explored the effect of the MDFI on the 
proliferation phenotype of CRC cells. The CCK8 assay 
showed that the survival rate of CRC cells significantly 
decreased after MDFI knockdown for 24–72 h, while the 
proliferation of CRC cells significantly increased after 
MDFI overexpression for 24–72 h (Figure 3e–f). Compared 
with that of control cells, the colony formation ability of 
CRC cells was significantly inhibited after MDFI knock
down for 48 h, while the result was the opposite after 
MDFI overexpression (Figure 3g–h), indicating the positive 
regulation of the MDFI gene on CRC progression in vitro. 
To verify the promoting effect of MDFI on the progression 
of CRC in vivo, we performed subcutaneous tumor loading 
on Balb/c nude mice. In nude mice transfected with lvMDFI 
CRC cells, tumor growth was faster than that in nude mice 
transfected with empty vectors (Figure 3i–j). Meanwhile,

MDFI-overexpressing CRC tumors showed elevated Ki67 
expression (Figure 3k). Based on these findings, MDFI 
may promote the proliferation of CRC cells both in vitro 
and in vivo.

MDFI promotes cell cycle progression by upregulating 
CCND1 expression in CRC

To investigate the promoting effect of MDFI on CRC cell 
proliferation, we determined the cell cycle distribution of 
CRC cells with MDFI knockdown or overexpression. MDFI 
knockdown resulted in a significantly increased cell ratio of 
G2/M phase both in HCT116 (37.3 ± 3.2% in control vs 43.8 ±  
1.4% and 46.7 ± 0.4%, respectively, in shMDFI#1 and 
shMDFI#2 group, p < .001) and SW620 cells (16.6 ± 0.2% in 
control vs. 20.5 ± 0.5% and 24.1 ± 0.4%, respectively, in 
shMDFI# 1 and shMDFI#2 group, p < .001) (Figure 4a–b). In 
contrast, the overexpression of MDFI caused a reduction in the 
proportion of HCT116 (26.7 ± 0.8% in the Lvcontrol group vs. 
23.5 ± 0.4% in the LvMDFI group, p < .05) and SW620 (2.14 ±  
0.26% in the Lvcontrol group vs. 0.64 ± 0.14% in the LvMDFI 
group, p < .001) cells in G2/M phase (Figure 4c–d). CCND1 is 
a cyclin protein that ensures the normal progression of 
mitosis.23 The expression levels of CCND1 were significantly 
decreased in CRC cells when MDFI was knocked down but 
increased after MDFI was overexpressed (Figure 4e–h), which 
confirmed the occurrence of cell cycle arrest induced by MDFI 
in CRC cells. Our study showed that MDFI accelerated the 
regular transition from the G2/M to G0/G1 phase to sustain 
CRC proliferation. Inhibition of MDFI expression induced 
G2/M phase arrest in CRC cells, thus blocking cell cycle pro
gression and inhibiting CRC proliferation.

MDFI was coexpressed with ITGB4 and LAMB3 and jointly 
promoted AKT pathway activation in CRC

Preliminary bioinformatic results indicate that MDFI plays 
a key role in regulating PI3K-AKT signaling in CRC cells. 
Additionally, MDFI gene expression was significantly corre
lated with ITGB4 and LAMB3, and MDFI had a direct inter
action with ITGB4 and LAMB3. Immunoprecipitation 
indicated a physical link between MDFI and ITGB4 and
LAMB3 in HCT116 cells (Figure 5a). In addition, MDFI-

Table 1. Changes in the expression of PI3K-AKT pathway genes in tumor and normal colorectal 
epithelial cells.

gene p_val avg_logFC pct.tumor pct.normal

COL1A1 1.43E–133 0.77424 .459 .044
ITGB4 8.40E–51 0.66919 .502 .309
COL1A2 2.74E–103 0.626934 .43 .073
HSP90AA1 1.15E–59 0.60432 .852 .77
COL6A1 1.05E–91 0.554993 .339 .027
DDIT4 2.50E–28 0.488327 .483 .335
SPP1 4.28E–76 0.486835 .259 .003
RHEB 1.16E–38 0.413941 .557 .383
ATF4 3.34E–19 0.390848 .594 .53
LAMB3 6.68E–45 0.358764 .43 .201
ITGA3 1.12E–29 0.357098 .386 .225
EPHA2 2.54E–36 0.329499 .298 .113
ITGB1 5.92E–25 0.270036 .398 .248
HSP90AB1 8.88E–06 0.325112 .786 .71
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Figure 2. The PI3K-AKT signaling pathway and malignant phenotype regulation by MDFI in colorectal epithelial cells. A. The contact details of MDFI. B. The correlation 
between the expression of MDFI and the expression of ITGB4 and LAMB3 in TCGA-COAD (n = 462). C. The correlation between the expression of MDFI and the 
expression of ITGB4 and LAMB3 in CCLE (n = 57). D. The expression of MDFI (mean with SD) between tumor tissue (n = 470) and normal tissue (n = 44) in TCGA-COAD 
cohort. E. The expression of MDFI (mean with SD) in patients with different stages (stage I = 78, stage II = 182, stage III = 131, stage Ⅳ = 65). F. The expression of MDFI 
(mean with SD) in patients with different T stages (T1 = 11, T2 = 80, T3 = 318, T4 = 58). G. The expression of MDFI (mean with SD) in patients with different N stages (N0
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overexpressing HCT116 cells were used to construct 
a xenotransplantation model in nude mice, and compared 
with the control group, tumor tissues expressed significantly 
higher levels of p-AKT473, while the expression level of t-AKT 
(total AKT) was not significantly different. MDFI promoted 
AKT pathway activation (Figure 5b).

Several studies have demonstrated that AKT signaling 
accelerates the progression of CRC cells.14 In addition, 
ITGB4 and LAMB3 are important upstream activators of 
AKT, which is why we focused on the AKT signaling path
way. After MDFI knockdown, ITGB4, LAMB3 and 
p-AKT473 expression levels in HCT116 and SW620 cells 
were significantly decreased (Figure 5c–d). Compared with 
control cells, t-AKT expression was not significantly differ
ent (Figure 5c–d). The expression of ITGB4, LAMB3 and 
p-AKT473 was significantly upregulated after overexpres
sion of MDFI (Figure 5e–f).

These results suggested that MDFI interacted directly with 
ITGB4 and LAMB3 to jointly induce AKT phosphorylation to 
promote the activation of the AKT signaling pathway and the 
progression of CRC.

The AKT inhibitor MK2206 exerted an antitumor effect by 
inhibiting the activation of the AKT signaling pathway 
induced by MDFI in CRC

Using MK2206, we confirmed the mechanistic effect of MDFI 
on CRC, and MK2206 is an AKT-specific inhibitor.17 

Compared with that of HCT116 and SW620 cells without the 
treatment of MK2206, the survival rate of CRC cells decreased 
significantly after treatment with MK2206 for 24 h (Figure 6a– 
b). Subsequently, we examined why MK2206 inhibited MDFI- 
induced AKT activation. According to the western blotting 
results, the protein levels of p-AKT473 and CCND1 in the 
LvMDFI group were significantly decreased after treatment 
with 1 μM MK2206, while there was no significant difference 
in t-AKT (Figure 6c–d). These results indicated that MDFI 
induced the activation of the AKT pathway in HCT116 and 
SW620 cells, while MK2206 reversed the activation and inhib
ited CRC cell viability.

The MDFI reduced chemotherapy sensitivity in CRC cells

Oxaliplatin and 5-fluorouracil (5-FU) are important compo
nents of systemic chemotherapy for CRC, and antitumor effi
cacy is mainly achieved by inhibiting thymidylate synthase to 
disrupt DNA replication and inhibit DNA damage repair.24,25

With the development of drug resistance in CRC, it is difficult 
to obtain continuous antitumor effects of chemotherapy drugs 
and overcome clinical drug resistance. The foregoing studies 
indicated that MDFI played an important role in regulating the 
malignant phenotype of CRC. To further investigate whether 
MDFI affects the chemotherapeutic sensitivity of CRC, we 
investigated the effect of MDFI on oxaliplatin and fluorouracil 
resistance by cytotoxicity and colony formation assays.

Following treatment with oxaliplatin and 5-FU for 24  
hours, the CRC cell survival rate decreased in a concentration- 
dependent manner. Compared to those in the control group, 
the proliferation levels in shMDFI#1 and shMDFI#2 decreased 
significantly, which was consistent with what was observed in 
SW620 cells. Compared with that of the control group, the 
colony formation ability of the shMDFI#1 and shMDFI#2 
CRC cells was significantly decreased (Figure 7a–d). The pro
liferation level in the LvMDFI groups increased significantly 
compared with that in the control group, which was consistent 
with the SW620 results. Compared with that of the control 
group, the colony formation ability of MDFI-overexpressing 
CRC cells was significantly increased (Figure 7e–f).

These results suggested that MDFI could antagonize the 
inhibitory effects of oxaliplatin and 5-FU on CRC cell prolif
eration. Reducing the expression level of MDFI in CRC could 
effectively improve the chemotherapy effect of oxaliplatin and 
5-FU in CRC.

Discussion

Undoubtedly, CRC is one of the most aggressive and lethal 
forms of cancer in humans.1 The main task of CRC clinical 
research is to deeply analyze the potential mechanism of CRC 
occurrence and find more effective CRC molecular diagnostic 
and therapeutic targets. In recent years, some new technologies 
have been used to search for these targets, among which single- 
cell sequencing and PPIs have revolutionized cancer 
research.26,27 Using single-cell sequencing, Yuan Zhou et al. 
identified prevalent genomic alterations in the tumor stroma 
of CRC patients.28 Kennedy SA et al. discovered effective CRC 
molecular targets and their network in CRC cells by PPIs.29 In 
this article, we performed detailed analyses of single-cell 
sequencing data from the GSE144735 by PPIs and revealed 
that MDFI was a potential CRC therapeutic target. Single-cell 
sequencing and PPIs are increasingly being used in diagnostic 
and therapeutic target research, with a recent increase in the 
number of studies published. In studies by Tan YQ, Zhang
Q and others, numerous genes were initially identified as

= 277, N1 = 107, N2 = 84). H. The expression of MDFI (mean with SD) in patients with different M stages (M0 = 344, M1 = 65). I. Overall survival (OS) of MDFI in TCGA- 
COAD (n = 458). J. Disease free survival (DFS) of MDFI in TCGA-COAD (n = 458). K. Overall survival (OS) of MDFI in 154 patients treated with chemotherapy in TCGA- 
COAD. L. Disease-free survival (DFS) of MDFI in 154 patients treated with chemotherapy in TCGA-COAD.

Table 2. Pearson chi-square test between positive lymph nodes and the expression of MDFI.

Group

Lymph node metastasis detected by HE staining Pearson 
chi-square p valuePositive Negative

MDFI high 66 64 6.933 0.008
MDFI low 45 85
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Figure 3. Effect of MDFI on CRC progression in vivo and in vitro. A. in HCT116 cells following shMDFI treatment, MDFI protein and mRNA expression were detected 
(mean with SEM, n = 3). B. in SW620 cells following shMDFI treatment, MDFI protein and mRNA expression were detected (mean with SEM, n = 3). C. in HCT116 cells 
following LvMDFI treatment, MDFI protein and mRNA expression were detected (mean with SEM, n = 3). D. in SW620 cells following LvMDFI treatment, MDFI protein 
and mRNA expression were detected (mean with SEM, n = 3). E. HCT116 and SW620 cells were treated with shMDFI, and cell viability was detected (mean with SEM, n  
= 3). F. HCT116 and SW620 cells were treated with LvMDFI, and cell viability was detected (mean with SEM, n = 3). G. HCT116 and SW620 cells were treated with 
shMDFI, and colony formation ability was detected (mean with SEM, n = 4). H. HCT116 and SW620 cells were treated with LvMDFI, and colony formation ability was

CANCER BIOLOGY & THERAPY 7



tumor-associated genes.30–32 However, none of these studies 
investigated the underlying mechanism of these diagnostic and 
therapeutic targets. We took this issue into account; thus, our 
results could provide additional comprehensive information 
about diagnostic and therapeutic targets. To identify an effec
tive diagnostic and therapeutic target, it has been of great 
interest to study the relationship between genes and tumor- 
specific characteristics. On the one hand, researchers can 
identify tumor-specific genetic alterations, gene effects on 
immune infiltration, gene effects on survival and gene effects 
on drug sensitivity by visualization and analysis of genes, 
samples, and clinical data33–36; on the other hand, researchers 
can identify gene effects on cell migration, invasion and pro
liferation by in vitro and in vivo experiments.37,38 In this study, 
TCGA expression and clinical database analysis and in vitro/ 
vivo experiments were performed to further verify that MDFI 
was an effective CRC diagnostic and therapeutic target.

Available studies indicate that the MDFI is a novel bio
marker for poor prognosis in tumors, including colorectal, 
brain, gastric lung and pancreatic tumors.10,39–41 Chen Mi 
and Sui Y et al. discovered that inhibition of MDFI attenu
ates proliferation in both studies.10,42 However, the direct 
regulatory mechanism of MDFI in tumors has not been 
elucidated. MDFI was originally cloned as a transcription 
factor in the MyoD family that interacts with MyoD by 
masking nuclear localization signals and preventing DNA 
binding, and it interferes with myogenic factor function.9 

Chen CM and Kusano S et al. discovered that the primary 
localization of MDFI is in the cytoplasm, while the second
ary localization seems to be in the nucleus; thus, MDFI 
seems to have effects other than interaction partners of 
transcription factors belonging to the MyoD family. In 
this article, we discovered that MDFI can directly interact 
with LAMB3 and ITGB4, and that MDFI can considerably 
increase the expression of ITGB4 and LAMB3. These find
ings indicate for the first time that MDFI plays a novel role 
in mediating tumor progression by directly affecting 
tumor-related mechanistic pathways.

Over the past few years, the role of ITGB4 and LAMB3 
in tumor progression has begun to be uncovered.16,18 Chao 
Leng et al. discovered that anoikis susceptibility was sig
nificantly increased through inhibition of AKT signaling 
when ITGB4 was knocked down and that ITGB4-EGFR 
activated the focal adhesion kinase (FAK) and AKT signal
ing pathways in hepatocellular carcinoma.18 Zhehui Zhu 
et al. discovered that high LAMB3 protein expression was 
a marker for poor prognosis due to its role in advancing 
tumors via the AKT pathway.16 However, the regulators of 
the LAMB3 and ITGB4 proteins have still not been 
detected. Existing studies have shown that ITGB4 and 
LAMB3 expression is regulated by miRNAs and 
lncRNAs.43–45 In this study, we discovered that MDFI 
regulates the expression of LAMB3 and ITGB4 by binding

directly to LAMB3 and ITGB4. Ching-Yi Chen et al. dis
covered that KCNF1 is a regulator of ECM-integrin inter
actions and positively regulates ITGB4 downstream 
signaling and that KCNF1 knockdown enhanced the polar
ized deposition of the basement membrane. They also 
found that the expression of ITGB4, LAMC1 and LAMC2 
was reduced in cells with KCNF1 downregulation.46 We 
speculate that MDFI is also a regulator of ECM-integrin 
interactions. Furthermore, MDFI attenuates extracellular 
matrix deposition, thereby leading to an increase in the 
expression of LAMB3 and ITGB4 detected by Western 
blotting.

Chen Mi et al. discovered that the Wnt/β-catenin path
way is activated by MDFI in gastric cancer cells, which 
promotes their proliferation,42 and our results showed that 
MDFI mediates CRC malignancy by regulating the AKT 
pathway. In Chen Mi’s study, MDFI was shown to regulate 
glycolysis, which affects the proliferation of gastric cancer 
cells via the Wnt/β-catenin pathway. In this study, we dis
covered that MDFI promoted cell cycle progression and 
reduced chemotherapy sensitivity. Coant N et al. demon
strated that the AKT signaling pathway could accelerate cell 
cycle progression and cell proliferation in CRC in vitro and 
vivo.14 Hai Huang et al. discovered that cell cycle arrest at 
the G2/M phase can be regulated by the suppression of AKT 
phosphorylation in vitro.47 In our study, we observed that 
CCND1 played a key role in the promotion of cell cycle 
progression by MDFI. In addition, we found that CCND1 
was the cell cycle protein most closely associated with MDFI 
through TCGA data analysis (Figure S3A). Shuohui Dong 
et al. discovered that CRC resistance to 5-FU is caused by 
AKT signaling, which is activated nonoxygen-dependently 
by reactive oxygen species.48 Ye Zhang et al. discovered 
that the resistance of CRC to oxaliplatin can be reversed 
through inhibition of the AKT pathway. Therefore, we con
firmed that MDFI promotes the CRC cell cycle by activating 
the AKT pathway and that MDFI inhibits CRC chemother
apy sensitivity. Furthermore, analysis of human samples 
treated with fluorouracil or oxaliplatin from TCGA database 
revealed that high expression of MDFI was correlated with 
drug resistance (Figure S3B). ROC curve analysis revealed 
that the MDFI might be a biomarker for drug tolerance in 
patients with colorectal cancer (Figure S3C). The MDFI can 
be involved in CRC malignancy regulation by several path
ways. The search for the direct targets that MDFI interacts 
with and the signaling pathways involved are the key 
strengths of the present study. This provides another direc
tion for studying MDFI function.

Our study sheds light on the significance of the MDFI 
as a compelling therapeutic target in colorectal cancer 
(CRC). Through a comprehensive analysis of single-cell 
sequencing data and protein-protein interactions, we
unveil that MDFI plays a pivotal role in CRC progression

detected (mean with SEM, n = 3). I. The volume of subcutaneous xenograft tumors from nude mice inoculated with HCT116 cells following LvMDFI treatment (mean 
with SEM, n = 8). J. at day 24, the volume of subcutaneous xenograft tumors isolated from nude mice inoculated with HCT116 cells following LvMDFI treatment (mean 
with SEM, n = 8). K. at day 24 subcutaneous xenograft tumors were isolated from nude mice inoculated with HCT116 cells following LvMDFI treatment, then MDFI and 
Ki67 protein were detected by immunohistochemistry.
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Figure 4. Effect of MDFI on the cell cycle in CRC cells A. HCT116 cells were subjected to shMDFI, after which the cell cycle distribution was detected via flow cytometry 
(mean with SEM, n = 3). B. SW620 cells were subjected to shMDFI, after which the cell cycle distribution was detected via flow cytometry (mean with SEM, n = 3). 
C. HCT116 cells were treated with LvMDFI, and the cell cycle distribution was detected by flow cytometry (mean with SEM, n = 3). D. SW620 cells were treated with 
LvMDFI, and the cell cycle distribution was detected by flow cytometry (mean with SEM, n = 3). E. CCND1 protein was detected in HCT116 and SW620 cells following 
shMDFI treatment (mean with SEM, n = 3). F. CCND1 protein was detected in HCT116 and SW620 cells following LvMDFI treatment (mean with SEM, n = 3).
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by orchestrating the AKT pathway. This study also unveils 
a novel function of MDFI by directly binding to LAMB3 
and ITGB4, leading to the activation of the AKT pathway. 
Our findings expand our understanding of MDFI’s invol
vement in CRC and highlight its potential as a promising 
avenue for targeted CRC treatment. The identification of 
downstream pathways influenced by MDFI and a deeper 
exploration of its mechanisms of action represent promis
ing directions for future research endeavors. By elucidat
ing the complex role of MDFI in CRC, our study opens

new doors toward more effective therapeutic strategies for 
this aggressive malignancy.

Materials and methods

Data processing

We downloaded GSE144735 scRNA-seq from the Gene 
Expression Omnibus (GEO) database. With marker-
based annotations, we selected the epithelial cells by an

Figure 5. Effect of MDFI on the AKT pathway in CRC cells A. Co-immunoprecipitation was used to examine the direct interaction between MDFI and ITGB4/LAMB3. B. in 
HCT116 cells following LvMDFI treatment, AKT and p-AKT473 protein were detected by immunohistochemistry. C. HCT116 cells were subjected to shMDFI, and the 
levels of ITGB4, LAMB3, AKT and p-AKT473 proteins were detected by western blotting (mean with SEM, n = 3). D. in SW620 cells following shMDFI treatment, ITGB4, 
LAMB3, AKT and p-AKT473 proteins were detected by western blotting (mean with SEM, n = 3). E. in HCT116 cells following LvMDFI treatment, ITGB4, LAMB3, AKT and 
p-AKT473 proteins were detected by western blotting (mean with SEM, n = 3). F. in SW620 cells following LvMDFI treatment, ITGB4, LAMB3, AKT and p-AKT473 proteins 
were detected by western blotting (mean with SEM, n = 3).

10 D. MA ET AL.



annotation information table. Then, the ScaleDate func
tion was used to transform the data linearly. Next, using 
the RunPCA function, we performed PCA on the scaled 
data. To cluster cells, we used the FindNeighbors and 
FindClusters functions.49 Finally, we performed dimen
sionality reduction with the UMAP algorithm to visualize 
and explore these datasets.

Differentially expressed biomarker genes between normal 
and tumor tissues

We identified markers of a mild group compared to a severe 
group by the FindAllMarkers function (Seurat package). 
Differential analysis was carried out on genes with > 1 CPM 
in over 25% of cells.

Gene enrichment analysis

With the help of the gseKEGG function (clusterProfiler pack
age), we performed Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis of the differentially 
expressed biomarker genes for annotation.50

Construction of the co-expression module

The 5000 genes were first evaluated for their usability. Here is 
the definition of adjacency matrix Amn:

Amn = |Smn|β

Amn = The contiguity of genes m and n, Smn = The Pearson 
correlation between gene m and gene n. β as the soft‐thresholding 
parameter (scale‐free R2 = 0.85). We then transformed the adja
cency matrix into a topological overlap matrix (TOM). According

to the TOM‐based dissimilarity measure, genes with high absolute 
correlation were divided into gene modules.

Direct genetic association identification

We define the level of relationship. Level 1: gene A contacts 
directly with gene B, as confirmed by yeast two-hybrid identi
fying endogenous protein – protein interactions or published 
systematic screening efforts at the Center for Cancer Systems 
Biology. Level 2: gene A interacts indirectly with gene B by 
gene C, as confirmed by yeast two-hybrid assays identifying 
endogenous protein – protein interactions or published sys
tematic screening efforts at the Center for Cancer Systems 
Biology. Level 3: gene A interacts indirectly with gene B by 
gene C and gene D, as confirmed by yeast two-hybrid assays 
identifying endogenous protein – protein interactions or pub
lished systematic screening efforts at the Center for Cancer 
Systems Biology.

Validation of the genes that have the most direct 
connections

TCGA-COAD was used for further validation, Kaplan – Meier 
plotter was used for survival analysis, and the association 
between MDFI expression and tumor stage was evaluated by 
violin plot. We compared the expression of MDFI and LAMB3 
and ITGB4 in the TCGA-COAD and CCLE datasets by using 
Pearson correlation.

Cell culture

HCT116 and SW620 cells were obtained from Shanghai Cell 
Bank, Chinese Academy of Sciences (Shanghai, China).

Figure 6. Effect of MK2206 on the activation of the AKT signaling pathway induced by MDFI in CRC cells A. Cell viability and colony formation ability were detected in 
control HCT116 cells and MDFI-overexpressing HCT116 cells following MK2206 treatment (mean with SEM, n = 3). B. Cell viability and colony formation ability were 
detected in control SW620 cells and MDFI-overexpressing SW620 cells following MK2206 treatment (mean with SEM, n = 3). C. AKT, p-AKT473 and CCND1 proteins were 
detected in control HCT116 cells and MDFI-overexpressing HCT116 cells following MK2206 treatment (mean with SEM, n = 3). D. AKT, p-AKT473 and CCND1 protein 
were detected in control SW620 cells and MDFI-overexpressing SW620 cells following MK2206 treatment (mean with SEM, n = 3).
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McCoy’s 5A medium was used to culture HCT116 cells (317– 
010, WISENT). RPMI 1640 medium was used to culture 
SW620 cells (350–007, WISENT).

Lentivirus and shRNA

The MDFI-overexpressing lentivirus and shRNA-MDFI were 
obtained from Keygene Nanjing Kaiji Biotechnology Co., Ltd. 
(Nanjing, China). The sequences for target-specific shRNAs 
are as follows:

shMDFI#1: caCCGGAAGTTGCAGACGCAT;
shMDFI#2: ctGAACAGCATTGACCTCGAT;
The sequence of MDFI-overexpressing lentiviral particles of
p1: 5′- 

AGGTCGACTCTAGAGGATCCCGCCACCATGTACCAG
GTGAGCGGCCAG-3′;

p2: 5′- 
TCCTTGTAGTCCATACCGGAGGAGAAGCAGAGCCCA
CAGCACTCCATG-3′.

Western blot analysis

Cells were gathered and lysed in NP40 buffer (comprising 
150 mM NaCl, 0.5% EDTA, 50 mM Tris, and 0.5% NP40) 
before being centrifuged at 12,000×g and 4°C for 15 min
utes. Subsequently, either ten or twenty micrograms of 
total harvested protein were loaded and separated on an 
8, 10, or 12% SDS-polyacrylamide gradient gel. The pro
teins were then transferred to polyvinylidene difluoride 
membranes and blocked with 5% nonfat milk at room 
temperature for 2 hours. Following this, the membranes 
were exposed to primary antibodies overnight at 4°C,

Figure 7. Effect of the MDFI on the chemotherapy sensitivity of CRC cells A. HCT116 and SW620 cells were treated with shMDFI#1 and oxaliplatin, and colony formation 
ability was detected (mean with SEM, n = 4). B. HCT116 and SW620 cells were treated with shMDFI#1 and 5-fu, and colony formation ability was detected (mean with 
SEM, n = 4). C. HCT116 and SW620 cells were treated with shMDFI#2 and oxaliplatin, and colony formation ability was detected (mean with SEM, n = 4). D. HCT116 and 
SW620 cells were treated with shMDFI#1 and 5-fu, and colony formation ability was detected (mean with SEM, n = 4). E. HCT116 and SW620 cells were treated with 
LvMDFI and oxaliplatin, and colony formation ability was detected (mean with SEM, n = 4). F. HCT116 and SW620 cells were treated with LvMDFI and 5-fu, and colony 
formation ability was detected (mean with SEM, n = 4).
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succeeded by HRP-conjugated secondary antibodies at 
room temperature for 2 hours. After undergoing three 
washes in TBST, protein bands were visualized using an 
ECL chemiluminescence system from Bio-Rad, and the 
protein bands were quantified by using ImageJ. Each 
experiment was replicated three times.

Colony formation assay

Cells were plated in cell culture dishes and incubated at 37°C in 
5% CO2. The cells were treated, followed by incubation in 
medium alone for the next 6 days. After this 6-day period, 
colonies were fixed with 4% paraformaldehyde for 1 hour 
and consecutively stained with 0.5% crystal violet for 20 min
utes. Subsequently, the number of colonies was enumerated, 
and photographs were captured. Each experiment was repli
cated three times.

Cell cycle assay

The cell cycle distribution of diverse cell types was 
assessed using flow cytometry. Cells (approximately 1 ×  
106 cells per well) were collected after various treatments 
and fixed overnight in 70% ethanol at 4°C. Following 
fixation, the cells were centrifuged at 1,000 × g for 5 min
utes to eliminate ethanol, washed, and stained with pro
pidium iodide (PI) (10 μg/mL) and RNase A (100 μg/mL) 
at room temperature for 30 minutes. Propidium iodide 
signals were detected using a BD FACSCalibur flow cyt
ometer (Becton – Dickinson, San Jose, CA, USA). The 
distribution of cells in different phases of the cell cycle 
was analyzed and quantified using FlowJo software (Tree 
star, San Carlos, CA, USA). In the cell cycle distribution 
figure, the blue, green, and red segments represent cells in 
G1 phase, S phase, and G2/M phase, respectively. Each 
experiment was replicated three times.

Immunohistochemical

Samples were fixed using a 4% formaldehyde solution and 
subsequently embedded in paraffin. The paraffin- 
embedded system was then sectioned into 4-μm slices. 
For sample incubation at 4°C, MDFI (Santa Cruz), ki-67 
(Abcam) AKT (CST) and p-AKT473 (CST) primary anti
bodies were applied, with an incubation time of 12 hours. 
Subsequently, the slices underwent incubation at room 
temperature using an HRP-conjugated secondary antibody 
for 1 hour. Detection of the samples was achieved through 
3,3′-diaminobenzidine and hematoxylin staining methods. 
Each experiment was replicated three times.

Coimmunoprecipitation (co-IP) assay

Cells were lysed with RIPA buffer (Beyotime, China). After 
preclearing with rabbit IgG for 2 h, lysates were immunopre
cipitated at 4°C overnight with the indicated antibodies and 
Protein A/G PLUS-Agarose beads (Santa Cruz). 
Immunoprecipitated proteins were collected for Western blot
ting after three washes with lysis buffer.

In vivo tumorigenesis assay

From Nanjing University’s Model Animal Research Center, 
BALB/c nude mice aged 4 weeks were obtained (Nanjing, 
China). To test tumorigenicity in vivo, mice were injected 
with one million HCT116 cells into the right infra-axillary 
dermis. The size of the tumors was measured every three 
days until the experiment ended. It was ensured that the 
mice were kept in a temperature-controlled and humidity- 
controlled environment free of specific pathogens. Each 
group consists of 8 mice.

Statistical analysis

The statistical analysis was performed using GraphPad Prism 
5.0 and SPSS Statistics 22. Differences between the two groups 
were compared by using an independent t-test, and 
a statistically significant difference was defined as *, p < .05; 
**, p < .01; ***, and p < .001.
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