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Sestrin 2 protects human lens epithelial cells
from oxidative stress and apoptosis induced
by hydrogen peroxide by regulating the
mTOR/Nrf2 pathway

Xiao Tian1 and Jie Wei2

Abstract

Objective: We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells
(HLECs).
Methods: To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide
(H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was
taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of
rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor
erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive
oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor
necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay.
Results: SESN2was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treatedwithH2O2. Under treatment
of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD andCAT, inhibited cell apoptosis, and reduced
the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bio-
informatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and
p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2

group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in theH2O2 group. Additionally,
H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2

group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of
SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction.
Conclusion: SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/
Nrf2 pathway.
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Introduction

Cataract is a lesion in which the optical quality of the lens is
reduced due to the decrease in the transparency of the lens
or the color change and is one of the major eye diseases
leading to blindness worldwide.1,2 Cataract can reduce the
quality of life of the elderly, bring huge economic and
mental burden to the patients, and has become a major
global public health problem.3 In the lens, lens epithelial
cell (LEC) is the most active site of metabolism.4 During
the formation of cataract, LEC undergoes many changes,
including cell viability, differentiation, DNA damage, cell
cycle, and so on.5,6 Accumulating evidence indicates that a
major cause of cataract is oxidative stress.7–9 Exposure of
lens to oxidative stress caused by reactive oxygen species
(ROS) may result in LEC apoptosis and eventually lead to
the development of cataract.10,11 For the development of
cataract, LEC apoptosis caused by oxidative stress is re-
garded as a common cellular basis.12,13 At present, surgery
is still the most effective way to treat cataracts, but it is
inevitable for some postoperative complications.14

Therefore, for prevention and treatment of cataract, it is
significant to further study the molecular mechanism of
apoptosis, oxidative damage, and proliferation in human
lens epithelial cells (HLECs).

Sestrins (SESNs) are a family of stress-induced proteins
that are highly conserved in evolution. SESN2 is a member
of the SESN family with a full-length cDNA of 1443bp
encoding 481 amino acids. Activation of SESN2 can re-
duce the accumulation of ROS, maintain energy balance,
reduce protein synthesis, and retard metabolic disease
progression.15,16 Chen et al. found that up-regulation of
SESN2 protected bovine mammary epithelial cells from
hydrogen peroxide (H2O2)-induced oxidative damage
through the kelch-like ECH-associated protein 1 (Keap1)-
nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxi-
dant response element (ARE) pathway.17 Fan et al. have
found that SESN2 protects retinal ganglion cells from
H2O2-induced oxidative stress in glaucoma.18 However,
the effect of SESN2 is not known in cataract.

In addition to antioxidant activity, SESN2 mainly par-
ticipates in the regulation of the two major signal pathways
of AMP-Activated Protein Kinase (AMPK) and mammalian
target of rapamycin (mTOR) to maintain cell homeostasis.19

mTOR is a serine-threonine protein kinase, originally found
in yeast mutants, which forms two complexes, mTORC1 and
mTORC2.20 mTOR is involved in the regulation of energy
metabolism, autophagy, and the synthesis of protein, lipid,
and organelle.21,22 Meanwhile, mTOR plays a significant
role in cell growth, proliferation, differentiation, and apo-
ptosis.23 A study has found that SESN2 regulates the growth,
migration, and ROS production of endometrial cancer
through mTORC1-dependent mechanism.24 In the pres-
ent study, we investigated whether SESN2 alleviated

H2O2-induced oxidative stress and apoptosis. In addition, the
mechanism of SESN2 was explored.

Methods

Tissue samples

The samples of cataract group (n = 25) were taken from the
anterior lens capsule removed during phacoemulsification
of patients with grade III cortical cataract (14 male,
11 female; aged 50–61 years). The samples of normal
group (n = 15) were taken from the anterior lens capsule of
patients (9 male, 6 female; aged 43–59 years) without
cataracts undergoing eyeball enucleation. All patients were
recruited in No. 960 Hospital of PLA Joint Logistic
Support Force from October 2022 to June 2023. The Ethics
Committee of No. 960 Hospital of PLA Joint Logistic
Support Force (approval number: 2022-08063) approved
the protocol of this study. All patients signed written in-
formed consent.

Cell culture and transfection

In a cell incubator at 37°C and 5% CO2, Dulbecco’s
modified Eagle’s medium containing 10% fetal bovine
serum was applied to culture HLEC line (SRA01/04;
American Type Culture Collection, USA). At 80%–90%
confluence, SRA01/04 cells were exposed to different
concentrations of H2O2 (0, 100, 200, and 300 µM) for 24 h.
Additionally, 200 μM H2O2 was taken to treat SRA01/
04 cells for 0, 12, 24, 36, and 48 h. Subsequently,
SESN2 changes were tested utilizing quantitative real-time
polymerase chain reaction (qRT-PCR) and Western blot.

Small interfering (si) RNA of SESN2 (si1-SESN2 and
si2-SESN2) and Nrf2 (si-Nrf2) were synthesized and pu-
rified by RiboBio (Guangzhou, China). SESN2 was cloned
into pCDNA eukaryotic expression vector (Invitrogen,
USA). Si-NC, si-Nrf2, si1-SESN2, si2-SESN2, pcDNA-
NC, and pcDNA- SESN2 were transfected to SRA01/
04 cells using Lipofectamine 2000 reagent (Invitrogen).
After transfection, cells were treated with 200 μMH2O2 for
24 h.

qRT-PCR

From tissues and cells, total RNA was extracted using
TRIzol reagent (Invitrogen). cDNAwas synthesized by the
Revert Aid First Strand cDNA Synthesis Kit (Thermo
Fisher scientific, USA). QRT-PCR was performed with the
PowerUp SYBR Green Master Mix (Thermo Fisher Sci-
entific). Primer sequences were listed as follows: SESN2,
Forward: 50-CTTCCGGGCCCAGGATTATAC-30 and
Reverse: 50-AGCTGGTTCACCTCCCCATA-3’; GAPDH,
Forward: 50-TGAATGGGCAGCCGTTAGGA-30 and
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Reverse: 50-CGCCCAATACGACCAAATCAGAGA-30.
GAPDH was used as internal control, and the relative
mRNA expression was calculated by 2�ΔΔCT method.

Western blot

Proteins were extracted from tissues and cells using RIPA lysis
buffer (Beyotime Biotechnology, China). Next, protein con-
centration was measured via BCA kit (Beyotime Biotech-
nology). Then, proteins were subjected to sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and then transferred
to the polyvinylidene difluoride membrane. After blocking in
Tween 20-Tris buffer containing 5% skimmed milk for 1 h,
membranes were incubated with primary antibodies (SESN2,
Cell Signaling Technology, 8487, 1: 1000; Bax, Proteintech,
50599-2-Ig, 1: 8000; Bcl-2, Cell Signaling Technology, 3498,
1: 1000; p-mTOR, Proteintech, 67778-1-Ig, 1: 10000; mTOR,
Proteintech, 66888-1-Ig, 1: 25000; p-p70S6K, Proteintech,
67898-1-Ig, 1: 20000; p70S6K, Proteintech, 66638-1-Ig, 1:
3000; Nrf2, Abcam, ab62352, 1: 1000; GAPDH, Proteintech,
60004-1-Ig, 1: 200000) and secondary antibody (Abcam,
ab6721 and ab205719, 3: 1000). Protein expression intensity
was determined by ECL kit (Beyotime Biotechnology).

Cell counting kit-8 (CCK-8)

SRA01/04 cells (2 × 105 cells per well) were seeded in a 96-
well plate. After indicated treatment, 10 μLCCK-8 solution
(Sigma-Aldrich, USA) was added to each well for 2 h.
Absorbance value at 450 nm was measured.

Flow cytometry

After indicated treatment, SRA01/04 cells were collected.
Next, the cells were resuspended in Annexin V-FITC
binding buffer and then incubated with 5 μL Annexin
V-FITC and 10 μL PI (Beyotime Biotechnology) for
20 min under dark. Flow cytometer (BD Biosciences) was
applied to detect cell apoptosis.

Detection of superoxide dismutase (SOD), catalase
(CAT), and malondialdehyde (MDA) activity

SOD activity was measured by SOD assay kit (A001-3-2,
Nanjing Jiancheng Bioengineering Institute, China). CAT
activity was measured by CAT assay kit (S0051, Beyotime
Biotechnology). MDA level was measured by MDA assay
kit (S0131S, Beyotime Biotechnology).

Detection of ROS level

After indicated treatment, SRA01/04 cells were incubated
with DCFH-DA (Sigma-Aldrich) at 37°C for 30 min under

dark. Then, cells were washed with PBS. ROS level was
detected through flow cytometer.

Enzyme-linked immuno sorbent assay (ELISA)

After indicated treatment, the levels of IL-1β, IL-18, and
TNF-α were detected by IL-1β ELISA Kit (PI305), IL-18
ELISA Kit (PI558), and TNF-α ELISA Kit (PT518), re-
spectively, referring to manufacturer instructions. Beyo-
time Biotechnology provided the above kits.

Bioinformatics analysis

With “SESN2” as the key word, comparative toxicology
database (CTD) website (https://ctdbase.org/) and STITCH
website (https://stitch.embl.de/) were used to analyze the
pathways regulated by SESN2. The bubble map showing
the significantly enriched KEGG pathways was generated
using ggplot2 (R package).

Statistical analysis

GraphPad Prism 7.0 software (USA) was used for ana-
lyzing the data. One-way ANOVA and Student’s t-test were
used for comparisons. p < .05 was considered statistically
significant.

This is an original research article.

Results

SESN2 expression was down-regulated in cataract
lens tissue and up-regulated in SRA01/04 cells
treated with H2O2

Figure 1 A and B showed that SESN2 expressions in the
anterior lens capsule of patients with cataract were lower
than those of the normal group (p < .01). After treatment
with 0, 100, 200, and 300 μM H2O2, SESN2 expression
was increased in a dose-dependent manner in SAR01/
04 cells (p < .05, Figure 1(c)). Next, we chose 200 μM
H2O2 to treat SAR01/04 cells for different time points (0,
12, 24, 36, and 48 h). Figure 1(d) indicated that
SESN2 expression in SAR01/04 cells was increased at
different time points (12, 24, 36, and 48 h), especially 24 h
(p < .05). In subsequent experiments, 200 μM H2O2 was
applied to treat cells for 24 h to mimic oxidative stress.

SESN2 inhibited cell apoptosis in SRA01/04 cells
treated with H2O2

As displayed in Figure 2(a), compared with the si-NC
group, SESN2 expression in si1-SESN2 and si2-SESN2
groups was decreased, especially the si1-SESN2 group
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(p < .01). H2O2 inhibited cell viability and enhanced cell
apoptosis compared with the control group, and down-
regulation of SESN2 further inhibited cell viability and
increased cell apoptosis (p < .05, Figure 2(b) and (c)).
Furthermore, H2O2 increased Bax expression and de-
creased Bcl-2 expression (p < .01, Figure 2(d)). When the
cells were transfected with si1-SESN2, the changes of
Bax and Bcl-2 expression were more obvious. We also
constructed the overexpression of SESN2 cells. As shown
in Figure 2(e), compared with the pcDNA-NC group,
SESN2 level was increased significantly in cells trans-
fected with pcDNA-SESN2 (p < .01). As suggested in
Figure 2(f)–(h), compared with the H2O2 + pcDNA-NC

group, overexpression of SESN2 improved cell viability,
inhibited cell apoptosis, reduced Bax expression, and
increased Bcl-2 expression (p < .01).

SESN2 inhibited oxidative stress in SAR01/04 cells
treated with H2O2

We detected the effects of SESN2 on oxidative stress in
SAR01/04 cells. Figure 3(a)–(d) showed that H2O2 reduced
SOD and CATactivity and increased the levels of MAD and
ROS (p < .01), but down-regulation of SESN2 further re-
duced SOD and CAT activity and increased the levels of

Figure 1. SESN2 was down-regulated in cataract lens tissues and up-regulated in SRA01/04 cells treated with H2O2. (a) The mRNA level
of SESN2 in the anterior lens capsule of patients with cataract (n = 25) and patients without cataracts (n = 15) was measured by qRT-
PCR. (b) SESN2 protein level in the anterior lens capsule of patients with cataract (n = 3) and patients without cataract (n = 3) was
measured by Western blot. (c) SRA01/04 cells were exposed to 0, 100, 200, and 300 µM H2O2 for 24 h and SESN2 expression was
measured by qRT-PCR and Western blot. (d) SRA01/04 cells were exposed to 200 μM H2O2 for 0, 12, 24, 36, and 48 h and
SESN2 expression was measured by qRT-PCR and Western blot. The mean ± standard deviation is the presentation form of the data.
Compared with normal, 0 μM, or 0 h group, *p < .05 and **p < .01.
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MADand ROS (p < .05). However, compared with the H2O2

+ pcDNA-NC group, overexpression of SESN2 increased
the activity of SOD and CAT and decreased the levels of
MAD and ROS (p < .01, Figure 3(e)–(h)).

SESN2 inhibited H2O2-induced inflammatory
response in SAR01/04 cells

We detected the effects of SESN2 on inflammatory response
in SAR01/04 cells. Figure 4(a)–(c) showed that H2O2 in-
creased the levels of IL-1β, IL-18, and TNF-α (p < .01), and
down-regulation of SESN2 further increased the levels of
IL-1β, IL-18, and TNF-α compared with the H2O2 + si-NC
group (p < .01). Furthermore, compared with the H2O2 +
pcDNA-NC group, overexpression of SESN2 decreased the
levels of IL-1β, IL-18, and TNF-α (p < .01, Figure 4(d)–(f)).

SESN2 regulated the mTOR signaling pathway

The molecular mechanism of SESN2 in SAR01/04 cells was
investigated. We obtained 3 intersection pathways using the
CTD and STITCH website and found that SESN2 regulated
the mTOR signaling pathway (Figure 5(a) and (b)). Next,
p-mTOR protein expression was detected in cataract samples.
Figure 5(c) indicated that p-mTOR protein levels in the an-
terior lens capsule of patients with cataract were lower than
those of the normal group (p < .01). In addition, mTOR
pathway-related proteins were detected. Figure 5(d) showed
that H2O2 inhibited the expression of p-mTOR and p-p70S6K
in comparison with the control group (p < .01). Meanwhile,
compared with the H2O2 + si-NC group, down-regulation of
SESN2 further inhibited the expression of p-mTOR and
p-p70S6K (p < .01, Figure 5(d)). However, compared with
the H2O2 + pcDNA-NC group, overexpression of

Figure 2. SESN2 inhibited SRA01/04 cell apoptosis induced by H2O2. (a) SRA01/04 cells were transfected with si-NC, si1-SESN2, or si2-
SESN2 and SESN2mRNA level was measured by qRT-PCR. (b)–(d) SRA01/04 cells were transfected with si-NC or si1-SESN2 and then
treated with 200 μM H2O2 for 24 h; cell viability (b), apoptosis (c), and apoptosis-related proteins (Bax and Bcl-2) (d) were detected by
CCK-8 assay, flow cytometry, andWestern blot, respectively. (e) SRA01/04 cells were transfected with pcDNA-NC or pcDNA-SESN2,
and SESN2 mRNA level was measured by qRT-PCR. (f)–(h) SRA01/04 cells were transfected with pcDNA-NC or pcDNA-SESN2 and
then treated with 200 μMH2O2 for 24 h; cell viability (f), apoptosis (g), and apoptosis-related proteins (Bax and Bcl-2) (h) were detected
by CCK-8 assay, flow cytometry, and Western blot, respectively. The mean ± standard deviation is the presentation form of the data.
N = 3. Compared with the control group, **p < .01; compared with the H2O2 + si-NC or H2O2 + pcDNA-NC group, #p < .05 and
##p < .01.
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Figure 3. SESN2 inhibited H2O2-induced oxidative stress in SAR01/04 cells. (a)–(d) SRA01/04 cells were transfected with si-NC or si1-
SESN2 and then treated with 200 μM H2O2 for 24 h; SOD activity (a), CAT activity (b), MDA level (c), and ROS level (d) were
measured. (e)–(h) SRA01/04 cells were transfected with pcDNA-NC or pcDNA-SESN2 and then treated with 200 μM H2O2 for 24 h;
SOD activity (e), CAT activity (f), MDA level (g), and ROS level (h) were measured. The mean ± standard deviation is the presentation
form of the data.N = 3. Compared with the control group, **p < .01; compared with the H2O2 + si-NC or H2O2 + pcDNA-NC group,
#p < .05 and ##p < .01.
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SESN2 increased the expression of p-mTOR and p-p70S6K
(p < .01, Figure 5(e)).

Under treatment with H2O2, SESN2 protected
SAR01/04 cells from oxidative stress, inflammation,
and apoptosis by activating the mTOR pathway

We further explored the involvement of mTOR pathway in
SAR01/04 cells treated with H2O2. SAR01/04 cells
transfected with pcDNA-SESN2 were treated with rapa-
mycin (an inhibitor of the mTOR pathway). As shown in
Figure 6(a), up-regulation of SESN2 increased the ex-
pression of p-mTOR and p-p70S6K, but rapamycin in-
hibited the expression of p-mTOR and p-p70S6K in the
H2O2 + pcDNA-SESN2 group (p < .01). As shown in
Figure 6(b) and (c), after treated with rapamycin, cell vi-
ability was inhibited and apoptosis was improved in the
H2O2 + pcDNA-SESN2 group (p < .05,). Furthermore,
rapamycin could reverse the inhibitive effects of over-
expression of SESN2 on oxidative stress, which was
manifested by reducing intracellular activity of SOD and
CAT and increasing the levels of MDA and ROS (p < .05,

Figure 6(d)–(g)). Moreover, compared with the H2O2 +
pcDNA-SESN2 group, rapamycin increased the levels of
IL-1β, IL-18, and TNF-α (p < .01, Figure 6(h)–(j)).

Under treatment with H2O2, SESN2 protected
SAR01/04 cells from oxidative stress, inflammation,
and apoptosis by activating Nrf2

Nrf2 plays a vital role in SESN2-mediated cytoprotection.We
speculated that SESN2might regulate H2O2-induced injury in
LECs through regulating Nrf2. To test this hypothesis, the
influence of SESN2 on Nrf2 was checked in SAR01/04 cells.
As shown in Figure 7(a), H2O2 stimulation increased
Nrf2 protein expression (p < .01); moreover, up-regulation of
SESN2 further increased Nrf2 protein expression (p < .01). To
further verify whether SESN2 alleviated H2O2-induced injury
through activating Nrf2, pcDNA-SESN2 and si-Nrf2 were
co-transfected to SAR01/04 cells, then cell viability, cell
apoptosis, and the levels of SOD, MDA, IL-1β, IL-18, and
TNF-α were investigated. Figure 7(b) and (c) showed that the
knockdown of Nrf2 abrogated SESN2-mediated promotive
effect on cell viability and inhibitory effect on cell apoptosis

Figure 4. SESN2 inhibited H2O2-induced inflammatory response in SAR01/04 cells. (a)–(c) SRA01/04 cells were transfected with si-NC
or si1-SESN2 and then treated with 200 μM H2O2 for 24 h; IL-1β level (a), IL-18 level (b), and TNF-α level (c) were measured. (d)–(f)
SRA01/04 cells were transfected with pcDNA-NC or pcDNA-SESN2 and then treated with 200 μMH2O2 for 24 h; IL-1β level (d), IL-18
level (e), and TNF-α level (f) were measured. The mean ± standard deviation is the presentation form of the data. N = 3. Compared with
the control group, **p < .01; compared with the H2O2 + si-NC or H2O2 + pcDNA-NC group, ##p < .01.
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induced by H2O2 (p < .05). Furthermore, knockdown of
Nrf2 reversed SESN2-mediated inhibitory effect on oxidative
stress, which was manifested by reducing SOD activity and
increasing MDA levels (p < .05, Figure 7(d) and (e)). At the
same time, compared with the H2O2 + pcDNA-SESN2 + si-
NC group, the knockdown of Nrf2 increased the levels of IL-
1β, IL-18, and TNF-α (p < .05, Figure 7(f)–(h)).

Discussion

The damage and apoptosis of HLECs caused by oxidative
stress are the main causes of cataract.25 Studies have
found that SESN2maintains cell growth, metabolism, and

other homeostasis by regulating oxidative stress.26,27 We
first studied the role of SESN2 in cataract and found that
SESN2 expression was down-regulated in cataract lens
tissue. This finding indicated that SESN2 downregulation
might be related to the occurrence of cataract. H2O2 is a
non-free radical member of the reactive oxygen species
family, which can irreversibly damage LECs, leading to
cell death and cataract.28 At present, H2O2 is often used to
establish in vitro cell model for the study of cataract.29 As
an anti-oxidant, the expression of SESN2 can be raised
under environmental stresses, such as mitochondrial
dysfunction, hypoxia, and oxidative stress.30,31 Here, we
found that SESN2 was up-regulated in SAR01/04 cells

Figure 5. SESN2 regulated the mTOR signaling pathway. (a) CTDwebsite and STITCHwebsite were used to analyze pathway related to
SESN2. (b) R package (ggplot2) was used to draw bubble chart. (c) The protein level of p-mTOR in the anterior lens capsule of cataract
patients with cataract (n = 3) and patients without cataract (n = 3) was measured by Western blot. (d) SRA01/04 cells were transfected
with si-NC or si1-SESN2 and then treated with 200 μM H2O2 for 24 h, and the expression levels of p-mTOR, mTOR, p-p70S6K, and
p70S6K were detected by Western blot. (e) SRA01/04 cells were transfected with pcDNA-NC or pcDNA-SESN2 and then treated
with 200 μMH2O2 for 24 h, and the expression levels of p-mTOR, mTOR, p-p70S6K, and p70S6K were detected byWestern blot. The
mean ± standard deviation is the presentation form of the data. N = 3. Compared with the control group, **p < .01; compared with the
H2O2 + si-NC or H2O2 + pcDNA-NC group, ##p < .01.
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Figure 6. SESN2 protected HLECs from oxidative stress, inflammation, and apoptosis induced by H2O2 by activating the mTOR
pathway. SRA01/04 cells were transfected with pcDNA-SESN2 and then treated with 200 μMH2O2 and 50 nM rapamycin for 24 h. (a)
The expression levels of p-mTOR, mTOR, p-p70S6K, and p70S6K in SRA01/04 cells were detected byWestern blot. (b) Cell viability in
SRA01/04 cells was detected by CCK-8 assay. (c) Cell apoptosis in SRA01/04 cells was detected by flow cytometry. (d) SOD activity in
SRA01/04 cells. (e) CAT activity in SRA01/04 cells. (f) MDA levels in SRA01/04 cells. (g) ROS levels in SRA01/04 cells. (h) IL-1β levels in
SRA01/04 cells. (i) IL-18 levels in SRA01/04 cells. (j) TNF-α levels in SRA01/04 cells. The mean ± standard deviation is the presentation
form of the data.N = 3. Compared with the control group, **p < .01; compared with the H2O2 group,

##p < .01; compared with the H2O2

+ pcDNA-SESN2 group, &p < .05 and &&p < .01.
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treated with H2O2. Similarly, SESN2 was up-regulated in
retinal ganglion cells stimulated by H2O2.

18 SESN2 may
be a new target for prevention and treatment of cataract,
and mechanism needs to be investigated in further
experiments.

Apoptosis is a common cellular feature in the
pathogenesis of cataract.32 Studies have shown that
SESN2 exerts a vital role in cell apoptosis under
various stress conditions. For example, under oxidative
stress, knockdown of SESN2 promoted cell apoptosis
in neurological diseases.33 It was also found that
SESN2 protected dendritic cells from endoplasmic
reticulum stress-related apoptosis.34 Moreover, Hanus
J, et al. found that SESN2 activated by gossypol acetic
acid could prevent H2O2-induced apoptosis of retinal
pigment epithelial cells.35 In the present study, down-
regulation of SESN2 inhibited cell activity, and down-
regulation of SESN2 aggravated cell apoptosis induced
by H2O2 via increasing Bax level and inhibiting Bcl-2
level. However, cell apoptosis induced by H2O2 was
inhibited when SESN2 was up-regulated. Taken to-
gether, SESN2 inhibited HLEC apoptosis induced
by H2O2.

HLEC damage induced by oxidative stress is the main
pathogenesis of cataract.36 SESN2 is an effective antiox-
idant protein that can accelerate the elimination of ROS
induced by various stress conditions.37,38 Here, we found
that the up-regulation of SESN2 inhibited the oxidative
stress caused by H2O2 by increasing the activity of SOD
and CAT and reducing the levels of MDA and ROS. The
accumulation of pro-inflammatory cytokines in the lens
may cause the expression of transforming growth factor-β
and the synthesis of collagen, ultimately leading to the
formation of cataract.39,40 IL-1β was found to be upre-
gulated in human cataract samples.41 In hereditary cataract
rat model, IL-18 level was increased in lens, and IL-18
level was related to opacity of lens.42 TNF-α level is raised
in several ocular diseases, such as highly myopic cataract
and primary open-angle glaucoma.43,44 In addition, TNF-α
has a hand in extrinsic apoptosis pathway and contributes
to cell apoptosis.45 In the present study, up-regulation of
SESN2 inhibited H2O2-induced inflammatory cytokines
(IL-1β, IL-18, and TNF-α). However, down-regulation of
SESN2 led to the opposite results. These results demon-
strated that up-regulation of SESN2 could protect HLECs
from oxidative stress and inflammation induced by H2O2.

Figure 6. Continued.
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Phosphatidylinositol 3-kinase (PI3K) activates mTOR
by activating protein kinase B (AKT), which further ac-
tivates the downstream factor p70S6K to exert its bio-
logical activity.46 It has been found that the mTOR
signaling pathway is inhibited during oxidative stress.47

The mTOR signaling pathway slows down neuro-
degeneration by protecting cells from oxidative stress.48,49

Dong et al. found that FUNDC1 promoted cell apoptosis by
inactivating PI3K/AKT/mTOR signaling in SRA01/
04 cells under the condition of oxidative stress.50 Han et al.
reported that SRA01/04 cell apoptosis was inhibited by
EphA2, which was related to the activation of the PI3K/
AKT/mTOR pathway.51 In the present study, p-mTOR and
p-p70S6K expression was down-regulated in cells treated
with H2O2, while up-regulation of SESN2 increased
p-mTOR and p-p70S6K expression. Moreover, treatment

with rapamycin partly reversed the inhibitive effects of
SESN2 on cell apoptosis, inflammation, and oxidative
stress. Recently, a growing body of research suggests that
blockage of autophagy attenuates LEC apoptosis and in-
hibits cataract progression.52–54 Based on above findings,
we speculated that SESN2 might promote the mTOR
pathway, inhibit autophagy, and exhibit the protective
effect in HLEC under oxidative stress.

As a key transcription factor, Nrf2 plays an important
role in cell survival, differentiation, metabolic re-
programming, redox homeostasis, and cytoprotection.55,56

In cataract, Nrf2 lower levels cause oxidative stress,
leading to failure of lens cell protection.57 In diabetic rats,
upregulation of the Nrf2/HO-1 axis attenuates the devel-
opment and progression of cataract.58 SESN2 enhanced
Nrf2/ARE activation by down-regulating Keap1, thus

Figure 7. SESN2 protected HLECs from oxidative stress, inflammation, and apoptosis induced by H2O2 by activating Nrf2. (a) SRA01/
04 cells were transfected with pcDNA-NC or pcDNA-SESN2 and then treated with 200 μM H2O2 for 24 h. Nrf2 protein expression
was detected by Western blot. SRA01/04 cells were co-transfected with pcDNA-SESN2 and si-Nrf2 and then treated with 200 μM
H2O2 for 24 h. (b) Cell viability in SRA01/04 cells was detected by CCK-8 assay. (c) Cell apoptosis in SRA01/04 cells was detected by flow
cytometry. (d) SOD activity in SRA01/04 cells. (e) MDA levels in SRA01/04 cells. (f) IL-1β levels in SRA01/04 cells. (g) IL-18 levels in
SRA01/04 cells. (h) TNF-α levels in SRA01/04 cells. The mean ± standard deviation is the presentation form of the data.N = 3. Compared
with the control group, **p < .01; compared with the H2O2 group,

##p < .01; compared with the H2O2 + pcDNA-SESN2 + H2O2 group,
&p < .05 and &&p < .01.
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protecting retinal ganglion cells from oxidative stress in-
duced by H2O2.

18 In this study, H2O2 increased
Nrf2 protein expression, and up-regulation of
SESN2 further increased Nrf2 protein. Moreover, knock-
down of Nrf2 partly reversed the inhibitive effects of
SESN2 on cell apoptosis, inflammation, and oxidative
stress. Previous studies have revealed that Nrf2 can be
regulated by mTOR. Jung et al. showed that the combi-
nation of zileuton and melatonin improved kidney injury
by activating the AKT/mTOR/Nrf2 pathway.59 Zhang et al.
found that vascular injury was attenuated by irisin, which
was associated with the activation of the AKT/mTOR/
Nrf2 pathway.60 In our present study, we found
SESN2 could activate mTOR pathway and upregulate
Nrf2 expression. According to above results, we speculated
that SESN2 might inhibit cell apoptosis, inflammation, and
oxidative stress in HLECs treated with H2O2 through ac-
tivating the mTOR/Nrf2 pathway.

Some limitations of this study should be noted. First, we
only examined the changes of SESN2 expression within
48 h of H2O2 treatment. However, when SRA01/04 cells
are treated with H2O2 for longer time, the changes of
SESN2 expression are unclear. Second, the effect of
SESN2 on HLECs in vitro was evaluated, but an in vivo
animal study will contribute to validate the role and
mechanism of SESN2 in cataract pathogenesis. Thus,
in vivo experiments, assessing a wider range of patho-
logical indicators, should be carried out in future. Third, we
used one dose of si-SESN2 to evaluate the effect of
SESN2 on HLECs; observing the effect of different doses
of si-SESN2 on HLECs is also a worthwhile study
direction.

Conclusion

SESN2 expression was down-regulated in cataract lens
tissue and up-regulated in HLECs treated with H2O2.
Moreover, up-regulation of SESN2 inhibited cell apoptosis
and inflammation and alleviated oxidative stress via acti-
vating the mTOR/Nrf2 signaling pathway. Our findings
provide novel theoretical basis for prevention and treatment
of cataract.
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