TABLE VI:
Test accuracy (%) for federated fine-tuning on the Retina dataset using the proposed methods and federated self-supervised pre-training baselines.
Method | Backbone | Central | Split1 | Split2 | Split3 |
---|---|---|---|---|---|
| |||||
Rand. init. | ViT-B | 73.70 | 74.33 | 69.50 | 64.13 |
FedMoCov3 | ViT-B | 79.35 | 78.06 | 74.98 | 72.32 |
FedMoCo | ResNet-50 | 77.50 | 75.80 | 73.03 | 70.10 |
FedBYOL | ResNet-50 | 80.10 | 78.43 | 75.27 | 72.93 |
FedEMA [27] | ResNet-50 | 80.12 | 78.51 | 76.08 | 73.96 |
| |||||
Fed-BEiT | ViT-B | 79.47 | 78.40 | 76.80 | 76.77 |
Fed-MAE | ViT-B | 81.93 | 81.67 | 79.40 | 77.43 |